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Abstract

Convolutional representations extract recurrent patterns which lead to the discovery
of local structures in a set of signals. They are well suited to analyze physiological
signals which requires interpretable representations in order to understand the relevant
information. Moreover, these representations can be linked to deep learning models, as
a way to bring interpretability in their internal representations. In this dissertation, we
describe recent advances on both computational and theoretical aspects of these models.

Our main contribution in the first part is an asynchronous algorithm, called DICOD,
based on greedy coordinate descent, to solve convolutional sparse coding for long sig-
nals. Our algorithm has super-linear acceleration. We also explored the relationship of
Singular Spectrum Analysis with convolutional representations, as an initialization step
for convolutional dictionary learning.

In a second part, we focus on the link between representations and neural networks.
Our main result is a study of the mechanisms which accelerate sparse coding algorithms
with neural networks. We show that it is linked to a factorization of the Gram matrix
of the dictionary. Other aspects of representations in neural networks are also invest-
igated with an extra training step for deep learning, called post-training, to boost the
performances of trained networks by improving their last layer’s weights.

Finally, we illustrate the relevance of convolutional representations for physiological
signals. Convolutional dictionary learning is used to summarize signals from human
walking and Singular Spectrum Analysis is used to remove the gaze movement in young
infant’s oculometric recordings.





Notation

General

On Orthogonal matrices in Rn×n

L2(R) Space of functions f from R to R with
∫
R f

2 < +∞

Jn1, n2K Ensemble of integers between n1 and n2

IIIn Identity matrix in Rn×n

Time series

XPT Ensemble of multivariate signals in RP of length T ∈ N

X Element (signal) of XPT
X[t] Value of the signal X at time sample t.

Xp p-th channel of X, for p ∈ J1, P K. Note that for all t ∈ J0, T − 1K

X[t] =

X1[t]
..

XP [t]



z ∗D The convolution between z ∈ X 1
L and D ∈ XPW . The resulting signal

X is in XPT , with length T=L+W−1, and for J0, T − 1K,

X[t] = (z ∗D)[t] =
W−1∑
τ=0

z[t− τ ]D[τ ] .
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1.1 Motivations de la thèse : de la caractérisation
à la compréhension

1.1.1 L’acquisition en continu : le cas des signaux temporels

Au cours des dernières décennies, les capteurs suivant l’évolution de notre environne-
ment, de notre comportement ou de nos activités se sont multipliés. Sur internet, les
entreprises de publicité enregistrent les pages que nous visitons, le temps passé sur
celles-ci et même les mouvements de la souris dans la page. Dans les villes, des capteurs
sont installés pour enregistrer quantité d’information sur l’activité de la population ou
sur la qualité de l’air. Les badges de transport en commun permettent de suivre chaque
jour les trajets de millions de personnes. Les caméras de vidéo-surveillance enregistrent
en continu les flux de personnes et de vehicules dans les rues. Après acquisition, ces
informations sont enregistrées dans d’énormes bases de données à travers le monde.
Cependant, peu d’informations sont extraites de ces données, relativement à leur vo-
lume. Ces signaux qui suivent l’évolution de notre vie quotidienne ne sont pas très bien
compris. Pour la vidéo-surveillance, des algorithmes extraient automatiquement les ob-
jets présents à l’image, mais l’intervention humaine est nécessaire pour comprendre la
scène et détecter les dangers éventuels. Le traitement des signaux longs et multivariés
est en effet une tache complexe qui demande d’extraire les événements dans le temps,
de caractériser les comportements normaux et d’être capable de détecter les anoma-
lies dans le signal. L’étude des propriétés statistiques globales des données enregistrées
n’est souvent pas suffisante pour accéder à ce genre d’informations. La moyenne et la
variance des caractéristiques des séries temporelles ne permettent pas de distinguer des
différences fines dans le temps. Il est donc nécessaire de concevoir des outils statistiques
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avancés pour l’étude de la structure temporelle des signaux. La conception de ces outils
doit venir d’un effort interdisciplinaire, afin de rassembler les compétences en apprentis-
sage statistique, en traitement du signal et en reconnaissance de motifs autour d’experts
de ces signaux, des professionnels du marketing aux climatologues, en passant par les
médecins.

Le domaine médical constitue un parfait exemple de milieu où la compréhension auto-
matisée de signaux pourrait changer la donne et mener à de nombreuses applications.
La motricité humaine est un processus très complexe, faisant intervenir de nombreux
muscles qui doivent se coordonner entre eux. Différentes pathologies peuvent avoir un
impact sur la capacité d’un patient à marcher. Les neurologues ou les spécialistes en
ORL sont capables de détecter et de distinguer à l’oeil nu des différences subtiles dans
la démarche du patient. Les neurologues peuvent en effet de diagnostiquer des neuro-
pathies, tel le syndrome de Parkinson, en regardant un patient marcher. Ils observent
la démarche à différents niveaux, de l’aisance globale du patient aux potentielles asy-
métries entre les côtés. Ensuite, ils regardent l’évolution des pas au cours de l’exercice,
pour détecter si le patient se fatigue. Cette analyse permet d’extraire beaucoup d’infor-
mations qualitatives sur la condition du patient. Avec l’expérience, les spécialistes sont
capables de diagnostiquer très rapidement les patients et de leur apporter les soins adé-
quats. Les capteurs inertiels permettent aujourd’hui d’enregistrer la marche des patients
en consultation. La quantification des informations extraites par le docteur à partir de
ces capteurs est un véritable challenge qui pourrait, à terme, changer la manière dont
sont suivis les malades. La première étape pour s’attaquer à ce défi est de comprendre
ces signaux. En effet, les intuitions du médecin sur le patient se transposent rarement
en une propriété du signal. Il est donc nécessaire de pouvoir représenter le signal de
manière interprétable, afin que les experts puissent transposer leurs connaissances du
phénomène sur des caractéristiques du signal.

Au cours de ma thèse, j’ai collaboré avec Cognac-G, une équipe de recherche regrou-
pant des chercheurs en apprentissage statistique et des chercheurs cliniciens, dans le
but de quantifier le comportement humain ou animal. Dans ce but, plusieurs proto-
coles ont été définis, sur un large champs d’applications, de la respiration des souris
ou la locomotion humaine au mouvements des yeux chez le nourrisson. Ces protocoles
doivent permettre de quantifier objectivement les phénomènes d’intérêt grâce à des cap-
teurs, qui enregistrent des séries temporelles univariées ou multi-variées, aussi appelées
signaux physiologiques. Deux exemples connus de ce genre de signaux sont les électro-
cardiogrammes (ECG) pour l’activité du coeur et les électroencéphalogrammes (EEG)
pour celle du cerveau. La premier défi de ces études réside dans l’extraction des infor-
mations d’intérêt à partir de tels signaux, afin de les interpréter et de comprendre les
mécanismes biologiques, physiologiques ou biomécaniques qui les produisent. Le second
défi est d’automatiser ce processus de quantification afin de développer des outils qui
pourront être utilisés par les médecins pour le suivi longitudinal et la comparaison entre
leurs patients.

L’objectif de cette thèse est de concevoir et d’étudier des outils statistiques de compa-
raison des séries temporelles capables de répondre à ces deux défis.
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1.1.2 Comparer des signaux temporels : quantification des
différences et interprétabilité

Absence de distance canonique entre signaux

Pour les données vectorielles, la plupart des distances utilisent des comparaisons terme
à terme entre les points, comme par exemple la distance euclidienne. Ces mesures de
similarité ne sont pas adaptées pour les signaux temporels, du fait de problèmes d’ali-
gnement entre les échantillons temporels des différentes séries. Lorsque celles-ci ne sont
pas collectées dans un environnement extrêmement contrôlé, leur longueur et le décalage
qui peut exister entre elles peuvent beaucoup varier, ce qui rend difficile le problème de
recalage entre les séries.

La technique de la déformation temporelle dynamique, en anglais Dynamique Time
Wrapping (DTW), introduite par Sakoe & Chiba (1971) permet de calculer un aligne-
ment entre deux signaux. Elle est basée sur la comparaison des différents échantillons
temporels par une distance vectorielle. L’avantage de cette distance est que les séries sont
alignées automatiquement et qu’il est possible de comparer des signaux de longueurs
différentes. La DTW utilise la programmation dynamique et les équations de Bellman
(1952) pour calculer l’alignement qui minimise la distance entre les deux séries. Cet
alignement est lié à une distance entre les signaux, qui peut être utilisée pour étendre
des méthodes vectorielles aux séries temporelles comme les k plus proches voisins ou
le classifieur SVM. Des relaxations de la DTW basées sur des modifications continues
des équations de Bellman, appelées soft-DTW, ont été développées pour définir des
distances lissées (Bahl & Jelinek, 1975) ou des noyaux (Saigo et al., 2004).

Cette classe de distance, basée sur le calcul d’un alignement entre les séries, est pro-
metteuse car elle permet de résoudre le problème de l’alignement et offre une grande
flexibilité. Cependant, le coût de calcul de la distance entre deux séries de longueur T1

et T2 est proportionnelle à leur produit O
(
T1T2

)
. Ces méthodes sont donc coûteuses

à utiliser pour des séries temporelles longues. Cette distance n’est pas non plus diffé-
rentiable, ce qui complique l’adaptation de la plupart des modèles vectoriels à celle-ci.
Sur ce dernier point, les résultats récents de Cuturi & Blondel (2017) ouvrent de nou-
velles pistes de recherche pour le traitement des signaux, en dérivant un algorithme de
complexité O

(
T1T2

)
pour calculer la dérivée de la soft-DTW.

De plus, le fait de considérer des signaux longs comme des vecteurs les placent dans un
espace de très grande dimension. Or, lorsque la dimension croît, les distances terme à
terme deviennent moins discriminantes. Les distances entre les points se concentrent,
de par l’effet moyennant de la dimension. Il est donc nécessaire d’utiliser d’autres outils
statistiques pour comparer des signaux. Les méthodes les plus communes peuvent être
classées entre les méthodes basées sur l’extraction de propriétés, à partir de modèles, et
les méthodes dites bout-à-bout. Nous décrivons ci-dessous ces deux approches.

Modèles basées sur l’extraction de propriétés

Une approche pour la comparaison entre signaux est de comparer des propriétés spé-
cifiques extraites des signaux. Par exemple, la linéarité et la périodicité d’un signal
peuvent être quantifiées et utilisées pour déterminer à quel point il est similaire à
d’autres signaux. En utilisant ces propriétés globales, une sinusoïde est plus proche
d’une autre sinusoïde de fréquence proche que d’un signal linéaire. La quantification de
propriétés caractéristiques d’un signal peut résulter de plusieurs modèles du signal, des
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outils du traitement du signal, comme les coefficients de Fourier, jusqu’aux modèles de
signaux statistiques tel que les modèles ARMA. Ainsi, différentes propriétés du signal,
ici appelées caractéristiques (features en anglais), peuvent être extraites et la distance
entre deux signaux est calculée en utilisant une distance terme-à-terme entre celles-ci.

Un des challenges de ce type de comparaison est la quantification automatisée des
caractéristiques pour un jeu de signaux. En effet, pour des signaux bruités ou des signaux
non stationnaires ou hétérogènes, l’estimation des coefficients de Fourier ne donne pas
des résultats stables et fiables. Il est souvent nécessaire d’utiliser des méthodes plus
complexes. Les outils de traitement du signal ne sont pas conçus pour être utilisés sur
des populations de signaux hétérogènes et beaucoup de ces outils nécessitent de régler
manuellement les paramètres pour fonctionner sur tous les signaux du jeu de données.
De même, pour les modèles de signaux statistiques, l’estimation des paramètres peut
aussi être instable lorsque certains signaux ne vérifient pas les hypothèses du modèle.
Cet effort d’automatisation de l’usage des méthodes de traitement et de modélisation
des signaux sort de leur cadre d’application du fait des objectifs de généralisation et
de robustesse que cela impose. L’adaptation d’une seule de ces méthodes à un usage
statistique demande une bonne connaissance de celle-ci et des données sur lesquelles elle
sera appliquée.

La nécessité de choisir a priori les propriétés à inclure dans les comparaisons est un autre
inconvénient de ce type de méthode. Cette sélection doit être faite manuellement et a un
fort impact sur les performances des modèles qui les utilisent. Dans la plupart des cas,
les éléments de comparaison ne sont pas connus et doivent être conçus avec une méthode
essai/erreur pour capturer les propriétés adaptées au problème considéré. Ce processus,
appelé feature engineering, est long et nécessite souvent les connaissances d’un expert
du type de données considéré pour avoir une intuition des caractéristiques d’intérêts. Un
exemple de ce processus est donné dans le domaine du traitement de l’image, avec les
descripteurs Scale-Invariant Feature Transform (SIFT). Ces descripteurs, développés
par Lowe (1999) pour capturer les variations locales d’intensité dans une image de
manière à être invariants aux rotations, aux translations et aux changements d’échelle,
permettent de comparer aisément des sous-parties du signal et ont été utilisés avec
succès pour des tâches de reconnaissance d’images. Ils ont ensuite été raffinés pendant
près d’une décennie pour diverses applications, afin d’améliorer les performances sur
chacune des tâches. Cependant, ces features ne peuvent pas être utilisés pour d’autres
applications avec des données différentes comme les signaux audio. Et même pour les
images, le choix de caractéristiques peut dépendre de la tâche, et les descripteurs SIFT
ne sont pas forcément les mieux adaptés. La multiplication des applications et le besoin
de résoudre plusieurs problèmes à la fois rend le design de features peu pratique.

Lorsqu’aucune information sur les propriétés d’intérêt n’est disponible, il est possible
d’utiliser une approche de bag of features. Cette technique est inspirée du modèle de
sac de mots (Harris, 1954), utilisé en traitement du langage naturel (NLP) et a été
utilisée avec succès avec des images par Qiu (2002). L’idée est d’inclure dans le modèle
un large choix de caractéristiques communes et de procéder ensuite à une choix des
features critiques pour le modèle avec des méthodes de sélection de variables comme
par exemple le LASSO (Tibshirani, 1996) ou les méthodes de régression pénalisées avec
des normes structurées telles que le Group LASSO (Yuan & Lin, 2006). Cette étape de
sélection est cruciale pour garder une interprétabilité dans la comparaison. Elle permet
en effet de ne conserver que les propriétés jugées importantes par le modèle pour résoudre
la tâche.
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Modèles bout-à-bout

Une autre approche efficace pour comparer des signaux est d’utiliser des méthodes
dites bout-à-bout, ou end-to-end en anglais. Ces méthodes opèrent directement sur
les signaux bruts et intègrent une partie qui calcule pour chaque donnée d’entrée une
représentation interne, utilisée pour les comparaisons. Lors de la phase d’apprentissage,
la représentation est entraînée en même temps que le modèle statistique pour résoudre
la tâche. Les modèles bout-à-bout classiques sont les réseaux de neurones utilisés dans
l’apprentissage profond (cf. Goodfellow et al. 2016 et références associées). Ces réseaux
utilisent des représentations internes successives des données pour extraire l’information,
et la dernière couche utilise la représentation finale pour résoudre la tâche considérée.
Comme cette représentation est apprise en simultané avec le solveur, elle est adaptée
pour résoudre le problème. Un autre exemple de technique bout-à-bout a été proposé par
(Mairal et al., 2012) avec l’apprentissage d’un dictionnaire adapté à la tâche (en anglais
task-driven dictionary learning). Dans leur article, les auteurs proposent d’apprendre
une représentation des données, basée sur l’apprentissage d’un dictionnaire, en même
temps qu’un modèle pour résoudre une tâche supervisée. Ce modèle est appris pour
résoudre la tâche à partir de la représentation sur le dictionnaire, et les deux parties
sont apprises conjointement. Ceci permet d’adapter la représentation des données au
problème à résoudre, comme cela est fait dans le cas des réseaux de neurones.

Ces méthodes diffèrent des techniques basées sur l’extraction de propriétés car les pro-
priétés comparées par les modèles bout-à-bout ne sont pas connues à priori mais ap-
prises à partir des données, en association avec la tâche à résoudre. Cette co-adaptation
de la représentation et du modèle statistique explique en grande partie le succès de ces
méthodes. De plus, elles permettent d’éviter la phase coûteuse d’automatisation de l’ex-
traction de propriétés dans les signaux, ce qui rend leur utilisation plus rapide et efficace.
Cependant, le fait de ne pas connaître les propriétés comparées rend ces modèles moins
interprétables. L’interprétation des représentations internes des réseaux de neurones
est complexe. Cela rend la comparaison entre les signaux plus opaque. Ce problème est
moins important pour les algorithmes d’apprentissage de dictionnaire. L’utilisation de la
parcimonie dans leurs représentations permet de donner du sens à l’information extraite
en termes d’analyse de motifs. Ainsi, les comparaisons qui utilisent ces représentations
sont plus faciles à étudier.

Un autre inconvénient de ces techniques est qu’elles conduisent généralement à des
problèmes d’optimisation non convexes. Les propriétés théoriques de ces modèles sont
mal comprises et la convergence des algorithmes d’apprentissage n’est pas garantie. En
pratique, ces modèles peuvent être entraînés à condition de disposer d’un jeu de données
de très grande taille. En effet, contrairement aux modèles peu profonds, ces modèles
nécessitent de grandes quantités de données pour l’apprentissage, et ils ne sont pas
robustes aux erreurs d’étiquetage. Le manque de garanties théoriques pour ces modèles
ne permet pas de quantifier ces besoins en exemples d’entraînement et peut donc être
un frein à leur utilisation.

1.1.3 Donner du sens : représentations prédéfinies et
dictionnaires empiriques

Une représentation est un moyen visuel de résumer un signal, dans le but de com-
prendre ses propriétés. Pour les modèles basés sur l’extraction de propriétés comme
pour les modèles bout-à-bout, l’utilisation de représentations capables de mettre en
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Figure 1.1: Comparaison de trois signaux avec une représentation temporelle (gauche)
et une représentation de Fourier (droite). Avec la représentation temporelle, les signaux
X(2) et X(3) semblent être plus proches mais dans le domaine fréquentiel, X(3) est aussi
proche de X(1) et l’on peut voir que le troisième signal est la somme des deux premiers
X(3) = X(1) +X(2) .

avant les principales différences entre des classes de signaux est fondamentale. En ef-
fet, des représentations discriminantes permettent de sélectionner les caractéristiques
utiles à extraire pour la comparaison des signaux. Pour les modèles bout-à-bout, ces re-
présentations peuvent permettre d’interpréter le processus de décision. Nous décrivons
ci-dessous différentes méthodes de représentation des signaux temporels.

Représentations globales

La représentation la plus commune est sans doute le tracé temporel des valeurs prises
par le signal. Ce genre de représentation est utile, car très général, et l’on peut y
détecter aisément certaines propriétés du signal, étant habitué à voir ces tracés. En
effet, nombre de ses caractéristiques sont reconnaissables avec ces figures : la linéarité,
la périodicité, la stationnarité, les formes récurrentes, les artefacts ou les ruptures par
exemple. Les experts ayant l’habitude de ces visualisations peuvent en extraire des
informations importantes, tels les cardiologues capables de diagnostiquer des maladies
cardiaques à partir de l’analyse des relevés d’électrocardiogramme (ECG). Mais ces
représentations canoniques sont moins faciles à analyser lorsqu’il n’y a pas de motifs
clairs dans le signal, notamment en présence de bruit.
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Figure 1.2: Différentes représentations pour le signal X[t] = sin((t+ 2)t/2) + ε[t] avec
ε un bruit blanc gaussien. (En haut à gauche) représentation temporelle, (en haut à
droite) représentation de Fourier et (en bas) spectrogramme.

Une autre représentation très commune des signaux est leur spectre de Fourier. Cette
représentation est liée aux propriétés harmoniques du signal et atténue l’effet du bruit
s’il est indépendant. La Figure 1.1 présente un exemple de trois signaux représentés
dans le domaine temporel et dans le domaine fréquentiel de Fourier. Les deux signaux
bruités X(2) et X(3) semblent très proches en utilisant la représentation temporelle
mais la représentation de Fourier montre que le signal X(3) a aussi une composante
harmonique, de même fréquence que celle de X(1). La représentation de Fourier, on
peut voir que le signal X(3) est la somme des signaux X(1) et X(2). Cet exemple montre
l’importance de sélectionner correctement la représentation utilisée pour étudier des
signaux, car celle-ci conditionne les propriétés des séries qu’il est possible de comparer.
Ces deux représentations permettent de mettre en avant des caractéristiques globales
des signaux et permettent donc de distinguer les signaux de manière globale.

Extraire la structure locale

Pour les signaux non stationnaires ou bruités, les propriétés globales ne permettent
pas de distinctions précises entre les signaux et peuvent être difficiles à estimer. Par
exemple, l’estimation du spectre de Fourier sur l’ensemble d’un signal non stationnaire
n’est pas stable et il est compliqué d’extraire les harmoniques utiles. Pour ces séries, les
informations sont contenues dans les structures locales du signal. L’extraction de ces
structures ne peut se faire que par l’analyse locale du signal. Une extension naturelle
de la représentation de Fourier pour l’analyse locale du signal a été proposée par Gabor
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Figure 1.3: (haut) Représentation temporelle d’un signal d’accélérométrie le long de
l’axe verticale pendant un exercice de marche. Les barres rouges verticales indiquent les
emplacement des activations des pas et rendent compte de la régularité de la marche.
(bas) Trois pas différents dans le signal : ces trois pas pourraient être résumés par un
pattern unique, du fait de leur faible différence.

(1946), puis développée avec la transformée temps-fréquence (STFT). Cette analyse uti-
lise la transformée de Fourier sur des sous-fenêtres du signal de départ. L’information
n’est pas agrégée globalement mais présentée en fonction du temps et de la fréquence,
ce qui permet de révéler les transitions dans le signal. La Figure 1.2 montre que cette
représentation met en valeur des variations de la fréquence au cours du temps qui ne
sont pas visibles avec des représentations globales. L’utilisation de méthodes globales
sur des sous-portions du signal est une méthode populaire de représentation des si-
gnaux. Par exemple, les approximations linéaires par morceaux quantifient la linéarité
de sous-segments du signal et réduise sa complexité (cf. Keogh et al. 2001 et références
associées). La transformée en ondelettes est un autre exemple de représentation pour
la structure locale du signal. L’analyse en ondelettes la plus courante représente le si-
gnal de manière parcimonieuse, en concentrant l’information autour des discontinuités
(cf. Mallat 2008 et références associées). Le caractère multi-échelle de cette transformée
permet de plus de mettre en avant des phénomènes de durée différente. Une version
multi-couche de cette transformée a été proposé avec la transformée scattering (Mal-
lat, 2012). Cependant, toutes ces représentations analysent des propriétés spécifiques
du signal, connues à priori. L’analyse de Fourier révèle les propriétés harmoniques du
signal, tandis que les approximations linéaires par morceaux quantifient sa linéarité.
Lorsque l’on ne connaît rien de la structure du signal, la recherche d’une représentation
discriminante doit être faite par tâtonnement.

Représentation par motifs

Pour les signaux dont on ne connaît pas la structure, l’adaptabilité de la méthode de
représentation est cruciale. Une idée pour résumer un signal est d’extraire automatique-
ment les motifs récurrents dans ce signal. Les caractéristiques des structures locales sont
alors apprises directement à partir des données, ce qui permet d’extraire des structures
non-analytiques et non-connues a priori. Ces structures locales sont appelées motifs, en
anglais patterns. Les représentations basées sur les motifs ont d’abord été développées
pour les données vectorielles comme un moyen de réduire la variabilité des points et
de réduire le bruit. Hotelling (1933) a proposé l’Analyse en Composantes Principales
pour calculer les vecteurs qui expliquent le plus de variance possible dans les données
observées. Ces composantes principales peuvent être vues comme des vecteurs qui repré-
sentent les motifs typiques dans les données. Une autre représentation vectorielle basée
sur les motifs est l’algorithme de K-moyennes (Macqueen, 1967). Cette méthode assigne
chaque point du jeu de données à un des K groupes de points et les points sont ensuite
représentés par le barycentre de tous les éléments du groupe auquel ils appartiennent.
Beaucoup d’autres techniques de réduction de dimension peuvent ainsi être analysées
comme des techniques de représentation basées sur des motifs, notamment l’analyse en
composantes indépendantes (ICA, Jutten & Herault 1991), ou la factorisation de ma-
trice positive (NMF, Paatero & Tapper 1994). Olshausen & Field (1997) ont proposé
l’apprentissage de dictionnaires parcimonieux, qui apprend des motifs, appelés atomes
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d’un dictionnaire, à partir des données et les utilise pour encoder les signaux originaux.
Cette méthode est un cadre très général pour l’apprentissage de motifs et peut être
étendue aux signaux temporels.

Pour les signaux temporels, les motifs sont des sous-signaux typiques, qui peuvent être
répétés dans le temps. La série peut alors être encodée par un signal d’activation de
ces patterns, séparant ainsi les variations de la série et leur localisation dans le temps
(Vautard & Ghil, 1989; Grosse et al., 2007). Le fait que seul un nombre limité de motifs
soit utilisé permet de réduire la complexité de la représentation et l’utilisation d’acti-
vations parcimonieuses permet la localisation dans le temps de ces variations. Ce type
de représentation est très naturel dans le contexte des signaux physiologiques comme
les ECG, EEG, les mouvements des yeux ou l’accélération verticale du pied pendant
la marche, comme présenté dans la Figure 1.3. Ces méthodes pour extraire des motifs
des signaux ont été introduites en utilisant les intuitions provenant de l’apprentissage
de dictionnaire pour des données vectorielles. Bien qu’elles n’aient pas fait l’objet de
beaucoup d’études, ces méthodes ont montré de bons résultats sur des applications en
traitement d’images et de la parole, du fait de leur adaptabilité et de leur interpréta-
bilité. Le choix du design du dictionnaire permet de changer la taille et l’échelle des
atomes, les variations de résolution permettent d’accéder à différents niveaux du signal.
Une propriété très importante de ces représentations est la séparation entre les motifs
et leur localisation dans le temps. La Figure 1.3 montre qu’il est plus facile d’étudier
la régularité des pas à partir du signal d’activation en rouge pointillé qu’à partir du
signal original en bleu, comme les variations sont résumées par un pattern unique, et
les petites perturbations autour de ce pattern sont abandonnées.

1.2 Contributions de la thèse

1.2.1 Résumé des travaux

Au cours de mon doctorat, je me suis intéressé aux questions d’interprétabilité de la
représentation des signaux temporels. Les représentations convolutives des signaux sont
des méthodes qui permettent de représenter un signal de manière intuitive et inter-
prétable. Cependant, ces méthodes ont un coût de calcul élevé et un grand nombre
de paramètres qui les influencent. D’un autre coté, les réseaux de neurones sont très
efficaces et résolvent en pratique beaucoup de tâches mais il est difficile d’interpréter
les résultats obtenus. L’étude conjointe de ces deux classes de modèles et des liens qui
peuvent exister entre elles permet d’amener de nouvelles perspectives pour combler les
inconvénients de chacune de ces méthodes. Nous listons ici les contributions faites dans
ce manuscrit et les publications associées.

Dans la Partie I, nous nous intéressons aux représentations convolutives et à l’amélio-
ration de leur coût de calcul.

Chapitre 3 : Représentation convolutive. Les représentations convolutives sont
utilisées pour modéliser des signaux en extrayant des motifs qui résument les variations
locales du signal. Ces représentations sont particulièrement adaptées pour les signaux
quasi-périodiques, comme les signaux physiologiques qui présentent souvent des motifs
très marqués. Le Chapitre 3 présente ce modèle en détail, ainsi que sa version parcimo-
nieuse.
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Definition 1.1. La représentation convolutive modélise un signal multivarié X ∈ XP
T

comme la somme de K produits de convolution entre un motif multivarié DDDk ∈ XPW et
un signal d’activation Zk ∈ XL, avec L=T−W+1, tel que

X[t] =
K∑
k=1

(Zk ∗DDDk)[t] + E [t], ∀t ∈ J0, T − 1K .

Le signal E ∈ XPT représente un terme de bruit additif, de même dimension que X.

Nous décrivons ensuite les algorithmes de l’état de l’art pour calculer les motifs dans
ces représentations ainsi que les coefficients associées.

Chapitre 4 : Interprétabilité de l’Analyse du Spectre Singulier. L’Analyse
du Spectre Singulier, en anglais Singular Spectrum Analysis (SSA), est une technique
utilisée pour l’analyse de signaux courts et bruités. Cette méthode extraie les sous-séries
de longueur W du signal original et construit la matrice de W -trajectoires XXX(W ), dans
laquelle chaque ligne est l’une des sous-séries extraites, i.e.,

XXX(W ) =


X[0] X[1] . . . X[W − 1]
X[1] X[2] . . . X[W ]
. . .

X[T −W − 1] X[T −W ] . . . X[T − 1]

 .

Cette matrice est ensuite réduite avec une décomposition en valeur singulière, en anglais
Singular Value Decomposition (SVD), comme une somme de matrices de rang 1,

XXX(W ) =
W∑
k=1

λkUkV
T
k ,

avec U ∈ RL×K unitaire et V ∈ OK . Pour chacune des matrices λkUkV T
k , un signal

Y (k) ∈ X 1
T peut être reconstruit en prenant comme valeur au temps t la moyenne le

long de la t-ième anti-diagonale de la matrice, i.e.

Y (k)[t] =
1

Wt

Wt−1∑
τ=0

(
λkUkV

T
k

)
τ,t−τ

où Wt = min(t, T − t,W ) . Les signaux ainsi reconstruits sont liés à la tendance et la
saisonnalité de la série étudiée. Afin d’améliorer l’interprétabilité de la décomposition,
la SSA requiert une étape manuelle de groupement des composantes Y (k). Cette étape
s’effectue en calculant une partition

{
Im ⊂ J1,W K ; ∪Mm=1Im = J1,KK

}
et les compo-

santes finales {C(m)}Mm=1 sont obtenues en sommant les composantes du groupe Im,
i.e.

C(m) =
∑
k∈Im

Y (k) .

Les contributions faites dans le Chapitre 4 sont les suivantes.

I Dans le Théorème 1.2, nous montrons que la décomposition ainsi obtenue peut
être interprétée comme une représentation convolutive du signal et nous mettons
en valeur les propriétés des motifs ainsi extraits. Nous notons pour Y ∈ XPT la
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norme

‖Y ‖2w =
T−1∑
t=0

Wt‖Y [t]‖22

où Wt = min(t, T − t,W ) .

Théorème 1.2. Les K premiers triplets singuliers {λk, Uk, Vk}Kk=1, calculés par
la SSA pour le signal X ∈ X 1

T univarié, donnent une solution du problème d’opti-
misation suivant,

(Z∗,DDD∗) = argmin
Z∈XKL ,{DDDk}Kk=1⊂X

1
W

∥∥∥∥∥∥X −
K∑
k=1

Zk ∗DDDk

∥∥∥∥∥∥
2

w

où les atomes dans DDD = {DDDk}Kk=1 forment une famille orthonormale.
Les valeurs de DDD∗ et Z∗ sont données par DDD∗k[t] = Vk,t et Z∗k [t] = λkUk,t .

I Nous présentons un cadre unifié pour l’automatisation de l’étape de groupement
des composantes. Les stratégies de regroupement peuvent ainsi être décrites en
trois phases :

1. Sélection des composantes de la SSA non liées au bruit.
2. Formation d’une matrice d’adjacence entre ces composantes.
3. Création des groupes Im de composantes adjacentes.

I Nous proposons deux nouvelles mesures de similarité,wCG andHSG, dans le but
de calculer la matrice d’adjacence pour le groupement, ainsi qu’une une nouvelle
méthode de formation des groupes, HM, basées sur l’importance de chaque com-
posante. Ces méthodes nouvelles sont ensuite comparées aux méthodes proposées
dans la littérature sur des signaux simulés.

Chapitre 5 : Codage Parcimonieux Convolutif Distribué (DICOD). Dans le
Chapitre 5, nous nous intéressons à l’approche gloutonne de la descente par coordonnée
pour résoudre le problème de représentation convolutive parcimonieuse suivant,

Z∗ = argmin
Z∈XKL

1

2

∥∥∥∥∥∥X −
K∑
k=1

Zk ∗DDDk

∥∥∥∥∥∥
2

2

+ λ
∥∥Z∥∥

1
, (1.1)

pour un signal X ∈ XPT et un dictionnaire DDD = {DDDk}Kk=1 ⊂ XPW fixés. Lorsque tous
les coefficients de Z sont fixés sauf le coefficient (k0, t0), ce problème a une solution
explicite, notée Z ′k0 [t0]. À chaque itération, la descente gloutonne par coordonnée choisit
une coordonnée (k0, t0) telle que

(k0, t0) = argmax
(k,t)∈J1,KK×J0,T−1K

∣∣∣Zk[t]− Z ′k[t]∣∣∣
et la valeur de cette coordonnée (k0, t0) de Z est mise à jour à Z ′k0 [t0] . Ces mises à
jour peuvent être calculées efficacement en maintenant une variable auxiliaire β ∈ XKL ,
moyennant une complexité numérique de l’ordre de O

(
KW

)
. Nos contributions dans

le Chapitre 5 sont les suivantes.
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Figure 1.4: Illustration de l’algorithme DICOD. Le processeur m + 1 met à jour
(k1, t1) ∈ Cm+1 indépendamment des autres processeur car le coefficient est hors de la
zone d’interférences, c’est à dire qu’il ne change rien pour les valeurs optimales des coef-
ficients hors du segment de Cm+1. Le processeur m met à jour le coefficient (k0, t0) ∈ Cm
qui est dans la zone d’interférence JmLM−S,mLM K. Ainsi, il doit notifier le processeur
voisin m + 1 de la mise à jour, en lui envoyant un message contenant la valeur de la
mise à jour ∆Zk0 [t0] et les coordonnées de celle-ci. Lorsque le processeur m + 1 reçoit
ce message, il met à jour sa version de β pour prendre en compte la mise à jour.

Algorithm 1.1 DICODM

1: Entrée : Dictionnaire DDD ⊂ XPW , signal X ∈ XPT , paramètre ε > 0
2: En parallèle pour m = 1 · · ·M
3: Pour tout (k, t) in Cm, initialiser βk[t] et Zk[t]
4: Répéter
5: Prendre en compte les messages reçus pour mettre à jour β si besoin.
6: Pour tout (k, t) ∈ Cm, calculer Z ′k[t] à partir de β
7: Choisir (k0, t0) = argmax

(k,t)∈Cm
|∆Zk[t]|

(
∆Zk[t] = Zk[t]− Z ′k[t]

)
8: Mettre à jour β pour tout (k, t) ∈ J1,KK× Jt0 −W, t0 +W K
9: Mettre à jour la solution : Zk0 [t0]← Z ′k0 [t0]

10: Si t0 −mLM < W alors
11: Envoyer (k0, t0,∆Zk0 [t0]) au processeur m− 1
12: Si (m+ 1)LM − t0 < W alor
13: Envoyer (k0, t0,∆Zk0 [t0]) au processeur m+ 1
14: jusqu’à ce que |∆Zk0 [t0]| < ε pour tous les coeurs
15: Retourner Z

I Nous proposons l’algorithme distribué DICOD (Algorithme 1.1), pour résoudre le
problème du codage parcimonieux convolutif. Cet algorithme, basé sur la descente
gloutonne par coordonnée, est asynchrone et efficace en terme de communications.
Il repose sur un découpage du signal X ∈ XPT en segments continus Cm = {(k, t) ∈
J1,KK × JmT/M, (m + 1)T/MK}. Lorsque des coordonnées sont mises à jour sur
le bord d’un segment, le processeur voisin doit être notifié. La Figure 1.4 illustre
le schéma de communication envisagé dans DICOD.

I Nous décrivons également un algorithme séquentiel, appelé SeqDICOD, qui opère
les mêmes mises à jour que DICOD, mais de manière séquentielle. Les mises à
jour sont donc localement gloutonne, ce qui réduit la complexité de calcul des
itérations par rapport à l’algorithme glouton classique.

I Nous prouvons la convergence de l’algorithme DICOD distribué sous des hypo-
thèses faibles.
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Figure 1.5: (Gauche) Évolution de l’objectif en fonction du temps pour un long si-
gnal (120000 échantillons temporels). (Droite)Évolution de l’accélération de DICOD
par rapport à CD en fonction du nombre de coeurs.

Théorème 1.3. Si les hypothèses suivantes sont vérifiées :

H1. Les corrélations entre les atomes du dictionnaire sont strictement inférieures
à 1 ;

H2. Les processeurs ne sont pas arrétés avant que la solution sur leur segment
soit localement optimale ;

H3. Le délai de communication entre les coeurs est inférieur au temps de calcul
d’une mise à jour,

alors, l’algorithme DICOD converge vers la solution optimale Z∗ du problème
(1.1).

I Nous démontrons que l’accélération de DICODM distribué avec M coeurs par
rapport à la version séquentielle SeqDICODM est sous-linéaire avec le nombre
de coeurs utilisés mais l’accélération par rapport à la descente gloutonne par
coordonnée (CD) est super-linéaire,

Corollaire 1.4. Soit α = W/T et M ∈ N∗ le nombre de coeurs utilisés pour
DICOD. Si αM < 1/4 et si les coefficients non nuls du signal d’activation Z sont
distribués de manière uniforme dans le temps, alors Ā, l’espérance de l’accélération
de DICODM par rapport à CD a pour borne inférieure quand α tend vers 0,

Ā &
α→0

M2(1− 2α2M2 +O(α4M4)) .

I Nous illustrons enfin les performances numériques de notre algorithme, distribué et
non distribué, ainsi que son accélération sur de longs signaux. Dans la partie droite
de la Figure 1.5, DICOD et SeqDICOD sont comparés aux algorithmes de l’état
de l’art pour résoudre le problème (1.1). Ces différents algorithmes sont décrits
dans la Section 3.3. La partie gauche de la Figure 1.5 confirme que l’accélération
de DICOD est super-linéaire par rapport à la descente gloutonne par coordonnée.

Ensuite, dans la Partie II, nous étudions certains modèles d’apprentissage profond et
leurs représentations internes dans le but d’améliorer leur interprétabilité.

Chapitre 6 : Interprétabilité des réseaux de neurones profonds. Les réseaux
de neurones se sont imposés dans de nombreux domaines qui nécessitent de comparer
des signaux, comme le traitement audio ou la reconnaissance d’image. Cependant, ces
techniques sont souvent vues comme des boîtes noires, qui ne permettent pas de com-
prendre le mécanisme de décision. Ce manque d’interprétabilité vient notamment du
fait qu’il est difficile d’étudier leurs représentations internes. Bien que chaque fonction
définissant une couche soit simple, il est difficile de comprendre leurs interactions. Le
Chapitre 6 rappelle tout d’abord le cadre général de l’apprentissage profond ainsi que
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Figure 1.6: Erreur d’entraînement (haut) et de test (bas) sur CIFAR10. La courbe en
pointillés bleus montre l’entraînement régulier. La valeur de la courbe pleine rouge pour
l’itération i montre l’erreur après i− 100 itérations normales, suivies de 100 itérations
de post-entraînement. Le post-entraînement limite donc le sur-apprentissage, puisque
l’erreur de test est inférieure bien que l’erreur d’apprentissage soit un peu plus élevée.

ses principaux résultats théoriques. Les réseaux de neurones sans rétroaction, en anglais
feedforward network, se décrivent comme la composition de plusieurs fonctions simples

ΦWWW = φL ◦ φL−1 ◦ · · · ◦ φ1

où chaque fonction φl : Xl → Xl+1 envoie la l-ième représentation interne sur la l+1-
ième et oùWWW correspond aux paramètres du modèle. Lorsqu’une couche est linéaire, φl
peut être réécrit

φl : x 7→ ψl
(
Wlx

)
,

où ψl est une fonction d’activation fixée. La suite du chapitre est dédiée à une revue
des résultats récents sur l’interprétabilité de ces réseaux.

Chapitre 7 : Post-entraînement pour l’apprentissage profond. En utilisant
l’idée d’interpréter les représentations internes dans les réseaux de neurones profonds,
le Chapitre 7 propose de revisiter l’apprentissage des modèles bout-à-bout. Lorsque la
dernière couche d’un réseau de neurones est linéaire, le problème d’apprentissage du
réseau peut se réécrire

min
ΦL−1,WWWL

E(x,y)∼P

[
`

(
ψL

(
WWWLΦL−1(x)

)
, y

)]
.

où ΦL−1 est le réseau formé par les premières couches du réseau, ψL et WWWL sont res-
pectivement la fonction d’activation et le vecteur de poids de la dernière couche, ` est
la fonction de coût de la tâche à résoudre et P est la distribution d’entrée. Lors de la
phase d’entraînement d’un réseau, tous les poids sont mis à jour simultanément avec
une estimation du gradient sur un ensemble d’entraînement. Pour les modèles bout-à-
bout, cela permet de co-adapter la représentation interne du modèle, apprise par les
premières couches du réseau ΦL−1, et le modèle de résolution de la tâche, calculé dans
la dernière couche avec WWWL. À la fin de la phase d’apprentissage, on considère que le
réseau a appris une bonne représentation et un bon modèle pour résoudre la tâche. Dans
le Chapitre 7, nous faisons les contributions suivantes.

I Nous proposons une étape supplémentaire pour l’apprentissage des réseaux de
neurones, appelée le post-entraînement (post-training en anglais), où la représen-
tation apprise au cours de l’entraînement est fixée et l’on optimise les poids de la
dernière couche du réseau. Le problème est posé sous la forme

WWW ∗L = argmin
WWWL

1

N

N∑
i=1

`

(
ψL

(
WWWLΦL−1(xi)

)
, yi

)
+ λ‖WWWL‖22 , (1.2)

avec λ > 0 un paramètre de régularisation. Dans ce problème, ΦL−1 est fixé et
on cherche uniquement les meilleurs paramètres possibles WWWL pour la dernière
couche. Dans de nombreux cas, ce problème est fortement convexe et il est très
peu coûteux en temps de calcul de le résoudre.
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I Nous donnons une justification de notre méthode basée sur une interprétation des
réseaux de neurones comme des méthodes à noyaux. Dans le problème (1.2), une
régularisation `2 est ajoutée pour les paramètres WWWL. Cet ajout est proposé en
interprétant ΦL−1 comme une carte topologique (feature map en anglais) pour les
données d’entrée et en utilisant la théorie des méthodes à noyaux sur le calcul de la
fonction minimisant le risque moyen dans l’espace de Hilbert à noyau reproduisant,
en anglais Reproducing Kernel Hilbert Space (RKHS).

I Nous montrons que cette étape supplémentaire permet d’obtenir de manière consis-
tante un gain de performance sur de multiples architectures, pour des réseaux
convolutifs ou des réseaux récurrents, avec différents jeux de données. La Figure 1.6
montre le gain obtenue en utilisant notre méthode sur un réseau convolutif avec
le jeu de données CIFAR10 (Krizhevsky, 2009).

Chapitre 8 : Comprendre le modèle ISTA appris. Pour un dictionnaire D ∈
Rp×K et un vecteur x ∈ Rp, le problème du LASSO est défini comme suit :

z∗ = argmin
z∈RK

‖x−Dz‖22 + λ‖z‖1︸ ︷︷ ︸
F (z)

, (1.3)

avec λ > 0 un paramètre de régularisation fixé. Des travaux récents ont montré qu’il
était possible d’accélérer la résolution numérique de ce problème en utilisant un ré-
seau de neurones entraîné pour estimer la solution (Gregor & Lecun, 2010; Sprech-
mann et al., 2012). Ces résultats se basent sur une vision de l’algorithme Iterative
Soft-Threshosholding (ISTA, Daubechies et al. 2004) sous forme d’un réseau de neu-
rones récurrent, qui peut être déplié K fois pour calculer K itérations de l’algorithme.
Les résultats empiriques montrent que l’utilisation de K itérations de ISTA est moins
efficace que le réseau à K couches entraîné pour résoudre le problème et que ce réseau,
appelé LISTA, se généralise bien. La compréhension des mécanismes qui expliquent ce
résultat pourrait permettre de mettre en évidence le lien entre les modèles de représen-
tation par dictionnaire et l’interprétabilité des représentations internes des réseaux de
neurones. Dans le Chapitre 8, nos contributions sont les suivantes.

I Dans un premier temps, nous montrons qu’il est possible d’accélérer ISTA lorsque
la matrice de Gram B = DTD associée au problème admet une quasi-diagonali-
sation avec des espaces propres parcimonieux B ≈ ATSA . Nous proposons une
procédure basée sur des factorisations successives (Aq, Sq) de la matrice de Gram
B pour résoudre le problème (1.3), telle que

z(q+1) = AT
q argmin

u
QSq

(
u,Aqz

(q) − S−1
q AqB(z(q) − y)

)
, (1.4)

oùQS(v, w) :=
1

2
(v−w)TS(v−w)+λ‖v‖1 et y = (DTD)−1DTx. Le problème (1.4)

est séparable et une solution être calculée explicitement. En particulier, si A = IIIK
et S = ‖B‖2IIIK , on retombe sur l’algorithme ISTA. Le Theorem 8.2 montre que cet
algorithme généralisé a une vitesse de convergence de l’ordre de O

(
1
q

)
, similaire à

ISTA, avec un facteur constant qui peut être amélioré en fonction des factorisations
utilisées.

I De plus, on peut montrer aisément que :
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Figure 1.7: Performance de LISTA et de FacNet sur un problème générique (gauche)
et sur un problème adverse (droite).

Proposition 1.5. Pour une itération q donnée, si la matrice Rq = AT
q SqAq −B

est définie positive, et si z(q+1) est défini selon l’équation (1.4), alors nous avons

F (z(q+1))− F (z∗) ≤ 1

2
‖Rq‖‖z(q) − z∗‖22 + δAq

(
z∗
)
− δAq

(
z(q+1)

)
, (1.5)

où δA(z) = ‖Az‖1 − ‖Z‖1.

Nous démontrons ensuite dans le Theorem 8.7 que, sous certaines conditions, en
moyenne sur les dictionnaires gaussiens normalisés (dit dictionnaires génériques),
la borne Proposition 1.5 peut être meilleure pour une factorisation (Aq, Sq) de la
matrice de Gram que pour ISTA. Ce théorème permet de montrer le corollaire
suivant,

Corollaire 1.6 (Certificat d’accélération). Si la distribution d’entrée P et le pa-
ramètre de régularisation λ vérifient

λ
√
p

8
≤ Ez∼P

[
‖z∗‖1

]
,

alors, pour toute résolution Ez∼P
[
‖z(q) − z∗‖2

]
= ε > 0 à l’itération q, la borne de

la Proposition 1.5, pour notre algorithme basé sur les factorisations est meilleure
que celle pour ISTA, en moyenne sur les dictionnaires génériques.

I Nous montrons ensuite que ces résultats sont suffisants pour expliquer l’accé-
lération de ISTA, car l’algorithme basé sur les factorisations peut être réécrit
comme une reparamétrisation de LISTA, nommée FacNet, avec des contraintes
supplémentaires sur les poids. Cet algorithme est donc toujours moins efficace que
LISTA. Cette observation est étayée par des expériences numériques, par exemple
dans la Figure 1.7.

I Finalement, nous montrons que des exemples adverses, conçus pour empêcher
l’accélération dans FacNet, ne permettent pas non plus d’accélération pour LISTA
(cf la partie droite de la Figure 1.7). Ces résultats empiriques semblent montrer
que notre analyse capture une partie du mécanisme à l’oeuvre dans l’accélération
de ISTA par LISTA.

Par ailleurs, pendant toute la durée de mon doctorat, j’ai collaboré avec des médecins
autour de la recherche clinique, par le développement d’outils pour les aider à analy-
ser les signaux physiologiques. La collaboration a été centrée autour de deux projets :
l’étude de la marche chez les adultes et l’étude des mouvements oculaires chez les en-
fants en bas âge. La Partie III du manuscrit présente les résultats d’application des
méthodes développées dans les chapitres 3, 4 et 5 aux signaux physiologiques, ainsi que
des résultats médicaux.
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Figure 1.8: Représentation basée sur des gabarits de pas, extrait d’une base de 50
sujets sains. (Haut) Activations des motifs de pas au cours du signal. (Bas) Gabarits
de pas extraits par apprentissage de dictionnaire convolutif.

Chapitre 9 : Étude de la marche. La quantification de la motricité chez l’humain
à partir de capteurs inertiels présente un intérêt majeur pour le suivi des patients. Par
définition, la marche est un mouvement répétitif, où le pas joue un rôle de composant
atomique. L’extraction de la structure locale de la démarche permet d’étudier la ré-
gularité ou la symétrie du signal. Ainsi, la capacité à identifier et extraire les pas de
manière robuste dans un signal de marche est cruciale pour l’analyse de la marche. Nos
contributions dans le Chapitre 9 sont les suivantes.

I Nous utilisons les représentations convolutives, décrites dans le Chapitre 3 afin de
résumer les exercices de marche sous forme d’un signal d’activation du pas et d’un
gabarit de pas (cf Figure 1.8).

I Nous présentons un nouvel algorithme permettant de détecter les pas dans un
signal de marche de manière robuste. Notre méthode se base sur la comparaison
du signal avec des exemples de pas pour identifier la présence d’un pas. Notre
algorithme détecte correctement les pas pour les patients sains comme les pa-
tients présentant des pathologies diverses et nous analysons l’effet de chacun des
paramètres sur les performances de notre algorithme.

I Ces travaux ont été associés à l’analyse des signaux de marche dans plusieurs
études médicales, comme Barrois et al. (2015) and Barrois et al. (2016).

Chapitre 10 : Étude des mouvements oculaires. La neuro-opthalmologie est
l’étude des relations entre le système nerveux et le système oculaire. Dans ce contexte,
l’étude des mouvements des yeux est très intéressante car elle permet de révéler les
mécanismes de contrôle du système nerveux sur les yeux. Au cours de cette thèse, nous
avons étudié le nystagmus, un mouvement oculaire pathologique chez les jeunes enfants.
Ce type de mouvement peut être un symptôme de plusieurs maladies, qui peuvent
être diagnostiquées lorsque le nystagmus est correctement identifié. Nous faisons les
contributions suivantes dans le Chapitre 10.

I Nous montrons que la SSA peut être utilisée afin de pré-traiter les signaux ocu-
lométriques dans le but de séparer les mouvements liés au nystagmus des mouve-
ments du regard.

I Nous proposons deux représentations des propriétés du nystagmus, qui peuvent
aider le médecin afin de mieux caractériser le mouvement et d’affiner son diagnos-
tique.

I Ces outils ont été utilisés pour trois études : une communication orale à la Gor-
don Research Conference on Eye Movements (Robert et al., 2015), une étude du
nystagmus associé au gliome du nerf optique (Robert et al., 2016) et une étude
sur le nystagmus chez les enfants atteints du syndrome de Down.
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1.2.2 Développement opensource

Au cours de la deuxième et troisième année de mon doctorat, j’ai été impliqué dans un
projet open-source, soutenu par le Centre for Data Science, financé par l’IDEX Paris-
Saclay, ANR-11-IDEX-0003-02. L’objectif de ce projet était de fournir un backend pour
la bibliothèque joblib . joblib est une bibliothèque python conçue pour paralléliser
facilement les calculs scientifiques, car elle fournit une interface efficace pour le calcul
simplement parallélisable, où chaque coeur peut effectuer des calculs indépendants et
les résultats sont également renvoyés indépendamment.

En collaboration avec Olivier Grisel, j’ai développé loky pour fournir une implementa-
tion robuste et fonctionnelle, multi-plateforme et multi-version de la classe
ProcessPoolExecutor de concurrent.futures . Cette librairie présente notamment :

• Implémentation sans deadlock : Une des principales préoccupations dans les
bibliothèques standards multiprocessing et concurrent.futures sont les ca-

pacités du Pool / Executor à gérer les incidents dans les processus esclaves.
Notre bibliothèque répare les blocages possibles et renvoie des erreurs significa-
tives lorsqu’une erreur arrive dans la gestion des travaux.

• Comportement de lancement cohérent : Tous les processus sont lancés en
utilisant fork / exec sur les systèmes POSIX. Cela garantit des interactions plus
sûres avec les bibliothèques tierces.

• Exécuteur résutilisable : Notre bibliothèque propose une stratégie pour éviter
de relancer un exécuteur complet à chaque fois. Une instance d’exécuteur peut
être réutilisée (et redimensionnée dynamiquement si nécessaire) à travers les ap-
pels consécutifs pour éviter les opérations de lancement et d’arrêt répétées. Les
processus de travail peuvent être arrêtés automatiquement après un délai confi-
gurable pour libérer les ressources du système lorsqu’ils ne sont pas utilisés.

• Integration transparente de cloudpickle : Cette intégration permet d’ap-
peler en parallèle des fonctions et des expressions définies de manière interactive.
Les voies de communication entre les processus peuvent aussi être reconfigurées
simplement.

• Plus besoin de if __name__ == "__main__": dans les scripts : Grâce à
l’utilisation de cloudpickle pour l’appel des fonctions définies dans le module
__main__ , il n’est pas nécessaire de protéger l’appel de fonctions parallèles.

1.3 Publications

L’ensemble des travaux présentés dans ce document ont donné lieu à diverses publica-
tions et communications :

• Moreau, T., Oudre, L., and Vayatis, N. Groupement automatique pour l ’ analyse
du spectre singulier. In Proceedings of the Groupe de Recherche et d’Etudes en
Traitement du Signal et des Images (GRETSI), 2015b
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Introduction

“Any fool can know. The point is to
understand.”

– Albert Einstein
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2.1 Thesis Motivations: Understanding Time Series

2.1.1 Continuous Monitoring with Temporal Signals

In the last decades, there has been an explosion of the number of sensors, which re-
cord more and more information about our environment, our activity and our behavior.
When navigating the web, many companies record the visited URLs, the time spent
on each page or even the movement of the mouse on these pages. In cities, sensors are
installed to record quantities of information about the environment or the population.
Public transit badges track the daily travels of millions of people each day and CCTV
cameras record hours of video surveillance in the streets. After being recorded, all these
data are stored in huge data centers around the world, but little information is extracted
from it. These signals which trace the evolution of many aspects of our daily life are not
well understood. For CCTV cameras, even if automated methods are able to extract
the content of a scene, human intervention is still needed to understand it and to high-
light potential threats. Indeed, the understanding of long multivariate signals is a very
complex task. It requires real-time analysis of the events, characterization of normal
behaviors and abnormalities detection. For all these tasks, studying the statistical prop-
erties of the recorded data is often not enough. The mean or the variance of temporal
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series characteristics are often not sufficient to distinguish the differences between sig-
nals. There is a need for tools specially designed to understand the temporal structures
in signals. The design of these tools is expected to come from an interdisciplinary effort
as they shall combine techniques from machine learning, signal processing and pattern
recognition augmented by the knowledge of experts, from marketing professionals, to
climatologists or medical doctors.

The medical field is a good example of a domain where understanding the signals could
lead to many applications. Human motion is a complex process, which requires the
coordination of many muscles. Different pathologies impact the ability of a patient to
walk and neurologists or ENT specialists are able to detect and distinguish these very
subtle differences in gaits using their eyes. For instance, a neurologist is able to diagnose
neural disorders – such as the Parkinson syndrome – by looking at a patient walking.
He looks at different levels of details, from the easiness in the motion to the potential
asymmetries between the sides. Finally, he follows the gait evolution during the exercise
to quantify if the patient is getting tired. With this multi-scale observation, the doctor
gets qualitative information about the patient condition. A trained specialist is able to
judge a patient very quickly and to provide adequate care. With the development of
inertial sensors, it is now possible to record the gait of patients walking. Being able to
quantify the information perceived by the doctor using these recorded signals is a real
challenge. The first step to tackle this challenge is to understand the signal. Intuitions of
the doctors can rarely be transposed directly as signal properties. To allow the experts
to find relevant characteristics of the signal based on their knowledge and understanding
of the studied phenomenon, it is necessary to use comprehensive representations of the
signal which highlights some parts related to physical movement. Representations based
on the localization of local patterns, such as steps, are interpretable in the sense that
the regularity of the representation can directly be linked to the regularity of the walk
of the subject.

During my PhD, I have collaborated with Cognac-G, a research team that brings to-
gether machine learning researchers and medical doctors, to study the quantification
of human and animal behavior. To that aim, several experimental protocols have been
defined for a wide range of clinical problems from mice breathing or human locomotion
to young infant eye movements. Each protocol provides an objective quantification of
the phenomenon of interest through the use of sensors, that record univariate or mul-
tivariate time series known as physiological signals. Electrocardiogram (ECG) for the
heart or electroencephalogram (EEG) for the brain are well known examples of such
signals. The first challenge consists in extracting relevant information from these sig-
nals, in order to interpret them and to help understand the physiological, biological or
bio-mechanical mechanisms that produced them. The second challenge is to automate
the quantification process in order to provide tools that can be used by doctors for the
longitudinal follow-up and the inter-individual comparison of their patients.

The aim of this thesis is to provide and study statistical tools that answer both these
challenges.
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2.1.2 Comparing Time Series: Discrepancy Quantification and
Interpretability

No Natural Distance for Time Series

For vector data, most distances use coordinate-wise comparison of the data samples, as
it is the case for the Euclidean distance. These similarity measures are not well suited
for time series as there is no natural way to match the time samples from one series to
another. Indeed, if the time series result from measurements acquired with setups that
are not very constrained, the length and phase of the sequences are subject to many
variations. This makes it unclear which time samples should be compared together.

The dynamic time wrapping technique, introduced by Sakoe & Chiba (1971) computes
the best alignment between two signals, based on a given metric to compare each time
sample. The advantage of this distance is that it automatically aligns the compared
time series. It is also possible to compare signals with different length. DTW relies
on dynamic programming and the Bellman’s equations (Bellman, 1952) to compute
efficiently the alignment which minimizes the discrepancy between the series. The
minimum value defines a distance between signals which can be used to extend vector
methods like the k-nearest neighbors or the SVM classifier. Also, relaxations of this
problem – using smoothed Bellman’s equations – have been proposed to define smoothed
distances (Bahl & Jelinek, 1975) or kernels (Saigo et al., 2004).

This class of distances, based on the computation of an alignment between signals,
can be used to extend classic machine learning technique to time series. However,
the computational cost of the distance between two signals of length T1 and T2 is
proportional to their product i.e. O

(
T1T2

)
. This cost becomes expensive for long

series and hinders the usage of DTW. Also, as this distance is not differentiable, some
vectorial distances cannot be adapted to use it. This motivated recent work by Cuturi &
Blondel (2017) which proposed an algorithm to compute the gradient of the soft-DTW
with the same complexity as the distance computation O

(
T1T2

)
, opening interesting

research opportunities.

Another challenge is that time series can be very long. Considering them as vectors
embeds them in a high-dimensional space. As the dimension increases, the pair-wise
comparison distances between samples gets less informative as all points tend to be at
the same distance, due to the averaging effect of the dimension. This observation, called
curse of dimensionality, makes it less effective to compare long time series with time wise
distance, even when it is possible to align them. Thus, it is necessary to use statistical
tools specifically designed to compare signals. The existing approaches can be classified
in two categories. The first approach is to compare the signals using properties that
are chosen a priori. These methods, called here property-based comparison, are very
interpretable as we know the compared properties. The discrepancy between two signals
can be linked to different characteristics of these signals. The second approach is to use
end-to-end models, such as neural networks. These models take the raw signal as an
input and integrate the extraction of information in the model. Here, the comparison
is based on unknown properties, which are chosen directly from the data. This type
of models tends to have better performances in practice on given tasks but are less
interpretable, as the compared properties are unknown.
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Property-based Comparisons

A high level approach to signal comparison is to compare specific properties extracted
from the signals. For instance, the periodicity or linearity of signals can be quantified
and used to determine how similar they are to each other. Using these two global
properties, a waveform will be closer to another waveform with similar frequency than to
a linear signal. Many properties of the signal can be quantified and the distance between
two signals is computed by comparing these features using property-wise distances.
Examples of such simple features include the Fourier coefficients, the linear regression
coefficients or global statistics such as the mean and variance of the signal.

More advance signal models such as Linear Dynamic Systems (LDS) or Hidden Markov
Models (HMM) can also be used to compare time series. The model parameters esti-
mated for a signal can be used as quantifiers of signal properties. While these models
are different from classical feature extractors, they also quantify properties chosen in
a data-agnostic setting and can thus be considered as property-based comparisons. In
this case, the metric used to compare the model parameter needs to be adapted. For
instance the parameter-space for LDS can be non-euclidean and the distance need to be
carefully selected. The definition of suitable distances for such space has been studied
since the 70s using the Riemannian framework (Krishnaprasad, 1983). Recently, compu-
tationally efficient approaches have been proposed. The Martin distance (Martin, 2000)
is an algebraic metric between two processes which can be linked to subspace angles
between the models (De Cock & De Moor, 2002). Other approaches in the machine
learning communities have been proposed to compare LDS such as the Binet-Cauchy
kernels (Vishwanathan et al., 2007), the alignment distance (Afsari et al., 2012) and the
KL-divergence (Chan & Vasconcelos, 2005).

One challenging problem for the property-based comparison is to be able to reliably
quantify the selected properties for the studied set of signals. Indeed, the estimation
of global features for a set of signals can be unstable, especially when these signals are
non-stationary, noisy or heterogeneous. Signal processing tools are rarely designed to
handle heterogeneous populations of signals which appear in many applications and the
selection of the correct parameters requires manual tweaking to work on all signals in
the database. For statistical time series models, like ARMA, the presence of outliers in
the set can also lead to unstable results, as they do not verify the model’s hypothesis.
The automatization of the property extraction can require domain knowledge and a lot
of engineering.

Another challenge of this method is the selection a priori of the properties to include
in the comparison. This decision has to be done manually and is critical for the per-
formance of the statistical models based on these comparisons. In many cases, the com-
parison elements are unknown and the extracted properties are designed using some
trial and error methods to find the features that best capture the intrinsic properties
necessary for the considered task. This process, called feature engineering, can be a
very long and tedious process and requires expert knowledge to get an intuition about
the critical properties that need to be quantified.

For activity recognition from inertial sensors recordings, certain features have been
developed such as measurements in certain frequency bands of the signals (Oudre et al.,
2012). These features are specifically validated to distinguish the signals from a human
walking from a human running or biking. Thus, they cannot be reused to classify
the same type of data for different activity such as swimming or rowing without a
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novel validation step. A better known example can be found in image processing.
Local descriptors – such as the Scale-Invariant Feature Transform (SIFT; Lowe 1999)
or the Histogram of Gradient (HOG; Dalal & Triggs 2005) – have been designed to
measure the local variation of the intensity in the image in order to be invariant to
specific image transformations. Using these metrics, it is possible to define similarity
measures between local patches in images for object recognition. These features have
been refined over the decade following their development by multiple advances in the
fields – such as GLOH (Mikolajczyk et al., 2005), SURF (Bay et al., 2008) or GF-HOG
(Hu et al., 2010). But these features, which are well suited for images, are not directly
usable for other applications with non image signals. While some can be adapted
for new usages – such as 3D-SURF developed for 3D data (Knopp et al., 2010) or
image descriptors applied to time-frequency representations of audio signals (Zhu et al.,
2010; Rakotomamonjy & Gasso, 2015) – the resulting features must be validated as new
features. Even for the same kind of signals, the choice of features can be task-dependent.
As the feature selection and validation is time consuming, property-based comparisons
are less practical than methods which automatically select the comparison properties.

A possible solution to select characteristic properties when there is no insight on the
properties of interest is to use the bag-of-features approach. This technique is inspired
by the bag-of-word model (Harris, 1954) used in Natural Language Processing (NLP)
and has been used for instance with images in Qiu (2002). The idea is to quantify the
largest set of properties possible, and then proceed to feature selection with methods
such as LASSO (Tibshirani, 1996). Here, the properties can be selected in a supervised
setting, to be specifically adapted to the considered task, or in an unsupervised setting
to capture enough information in the signals to be able to generate them. The selection
process is critical for the interpretability of the comparison, as it selects few properties
that are judged important for the task at hand. It relies on the same principles as the
property-based comparison but does not manually select the features. This technique
has been extended in the context of activity recognition in videos with the bag of spatio-
temporal features (Schüldt et al., 2004).

End-to-end Models

Another efficient technique to compare signals is to design end-to-end models. This
type of model is operating directly on raw signals and integrates a part that computes
a representation for each data sample. During the training phase, the representation
is learned simultaneously with the parameters for the model solving the task. Typical
end-to-end models are the deep neural networks (see Goodfellow et al. 2016 and ref-
erences therein). Neural networks compute successive internal representations of the
data, which are then used by the last layer to solve the considered task. As these rep-
resentations are learned simultaneously with the model parameters, they are adapted
to the specific task to be solved. Another example of end-to-end technique has been
proposed with the task-driven dictionary learning (Mairal et al., 2012). In their paper,
the authors propose to learn a data-representation, based on a learned dictionary, sim-
ultaneously with a statistical model to solve the considered task, based on the learned
representation. This approach adapts the representation to the problem we try to solve,
as with neural network models. Other works also proposed to learned discriminative
dictionary, adapted for the considered task such as Mairal et al. (2008), Zhang & Li
(2010) and Jiang et al. (2011).
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Figure 2.1: ECG signal for a human under anesthesia. (top) raw signal and manual
annotation for the patterns localisation. (bottom left) extracted patterns (bottom right)
mean pattern. The mean pattern is repeated almost exactly in the signal.

Figure 2.2: Convolutional dictionary learned from a accelerometer signal recorded dur-
ing the walk of a human subject. (top) raw signal. (bottom) learned dictionary atoms.
The elements learned with the convolutional dictionary learning can be interpreted as
step patterns.

Figure 2.3: Convolutional dictionary learned with a eye position signal recorded from
an infant with pathological nystagmus movement. (top) raw signal. (bottom) learned
dictionary atoms. The elements learned with the convolutional dictionary learning can
be linked to nystagmus movements, with upward slow phase and downward saccades.

These methods differ from the property-based comparison because the properties com-
pared by these methods are not known a priori but learned from the data, in association
with the considered task. The co-adaptation of the representation and the statistical
model is one big factor in the success of such methods. Also, removing the need to
automate property quantification allows faster and more efficient practical applications.
But because the compared properties are unknown, these models tend to lose inter-
pretability. Neural networks are not easily interpretable in the sense that the internal
representations they compute are hard to link to signal properties in the original space
even though recent works propose feature visualization methods (Olah et al., 2017;
Montavon et al., 2018). Dictionary learning algorithms can have better interpretabil-
ity, in particular for physiological signals. These signals are often composed of repeated
patterns. For instance, electrocardiogram signals (ECG) can have very regular patterns,
as presented in Figure 2.1. These patterns have a medical signification as they are linked
to different phases of an heartbeat. In the figure, starting positions of the heartbeats
are manually annotated and the bottom left part presents all the extracted patterns.
We can see that the variation between the extracted patterns of heartbeat and the
mean pattern in the bottom right part of the figure are small. Convolutional dictionary
learning techniques could be used to extract these patterns automatically and robustly,
in order to facilitate the study of the heart-rate. For this simple example, the extraction
of the repeated patterns seems trivial but it remains challenging for full signals which
can be heterogeneous, have noise or trends which alter the patterns and have different
amplitude. For other physiological signals such as accelerometer data recorded from a
human walking in Figure 2.2 or the eye position of an infant with a nystagmus presen-
ted in Figure 2.3, the patterns learned with convolutional dictionary learning can be
interpreted as specific movement from the body. Here, the task is more complex than
with ECG as the shapes have more variations, which can be due to different phases in a
recording or to pathologies. In this sense, the convolutional dictionary learning extracts
interpretable representations for physiological signals as it learns patterns that can be
linked to specific physical phenomenons. The representation of a signal on this set of
learn patterns permits to naturally study the regularity of these phenomenons as well
as their local variations.
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Another issue with end-to-end techniques is that most optimization problems for sta-
tistical learning become non-convex when the representation and the statistical model
based on it are jointly learned. The theoretical guarantees for these models are not
well understood and they do not always converge, but recent works show that it is
possible to guarantee the convergence of the training under certain conditions (Agarwal
et al., 2013; Haeffele & Vidal, 2015, 2017). In practice, these models can be trained
when the training set is large enough, with limited noise on the labels. Recently, a lot
of attention has been focused on understanding the generalization properties of neural
networks, notably using the generalization properties of invariant classifiers (Sokolic
et al., 2017), margin preservation properties of neural networks (Sokolic et al., 2016)
or the regularization properties of learning algorithms (Neyshabur et al., 2015; Keskar
et al., 2017; Neyshabur, 2017).

2.1.3 Extracting Information: Fixed Representations and
Empirical Dictionaries

A representation is a visual way to summarize a series, in order to investigate its proper-
ties. Finding representations that highlight the main variance sources for a set of signals
is very important, both for property-based comparisons and for end-to-end models. In-
deed, discriminant representations help to select the relevant properties to extract to
compare signals. For end-to-end models, the decision process can be studied with such
representation, in order to make it more interpretable. We describe in the following
different representation methods for time series.

Global Representations

The most common representation of a temporal signal is a plot where the values are
displayed against time. This kind of plots are useful because they are very general and,
as we are very used to it, we can easily detect specific properties of the signal. Indeed,
we recognize many properties of the signals from their plots when we see them, such
as linearity, periodicity, stationarity, recurrent patterns, artifacts or ruptures. Also,
experts are able to extract a lot of information from this representation. For instance,
cardiologists are able to diagnose some disease by observing at electrocardiogram (ECG)
signals. But this canonical representation becomes less informative when no clear shape
is present in the signal, for instance in presence of noise.

Another common representation for signals is the Fourier spectrum of the signal. This
representation reveals the harmonic properties of the series and attenuates the noise.
Figure 2.4 shows an example of 3 signals represented using temporal and Fourier rep-
resentations. With the temporal representation, the two noisy signals X(2) and X(3)

appear to be the most similar. But using the Fourier representation, it can be seen that
X(3) has an harmonic component with the same frequency as X(1). With the Fourier
representation, we can thus see that X(3) is the sum of the same harmonic component
as in X(1) and a noise term similar to X(2). This example shows that it is important to
carefully select the representation used to study a set of series as the compared proper-
ties are linked to this representation. Looking at these representations of the signal, we
access global properties that can then be quantified to globally distinguish the signals
and their similarity.
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Figure 2.4: Comparison of 3 signals for temporal representation (left) and Fourier rep-
resentation (right). With the temporal representation, signals X(2) and X(3) appear to
be more similar but in the Fourier domain, X(3) is also close to X(1).

Extracting Local Structure

For non-stationary and noisy series, global properties of the signal are not very inform-
ative and might even be hard to estimate correctly. For instance, the estimation of
the Fourier spectrum of non-stationary signal is unstable and it is hard to extract the
relevant harmonics. The relevant information is thus contained in the local structures
of the signal. To capture these structures, methods that analyze the signal locally
are needed. A natural extension to the Fourier representation to local structure ana-
lysis was proposed in Gabor (1946), and later developed as the Short-Time Fourier
Transform (STFT). This analysis uses Fourier Transform on windowed sub-series of the
original signal. The information is not aggregated, but presented as a function of the
time and the frequency and it reveals the transient structure in the signal. Figure 2.5
shows that this representation highlights the variation of the frequency structure of the
series, which was not visible at all on its spectrum. The idea of using global analysis
on portions of the signal has been a popular way to represent a signal. For instance,
piecewise linear approximations (PLA) quantify the linearity of sub-segments of the
original signal to reduce its complexity (see Keogh et al. 2001 and references therein).
Another example of representation which study the local structure in the signal is the
wavelet transform. The most common wavelet analysis computes a sparse representa-
tion of the signal, which concentrate the information around the discontinuities of the
signal (see Mallat 2008 and reference therein). As this transform is multi-scale, it re-
veals phenomenons which have different time spans. Note that this transform have been
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Figure 2.6: Illustration of the pattern based representation for a signal from human
walking. (top) Temporal representation of an accelerometer signal on the vertical axis
during the walk. The dashed lines indicate the localization of the steps, and highlight
the regularity of the walk. (bottom) Three different steps from the signal, respectively
the second step, the first step and the smaller center step and their activation signals
computed with convolutional sparse coding. The activation signals indicate the position
where the patterns are detected. This representation efficiently separates the local
variations in the signal from their localization.

extended as a multi-layer analysis with the scattering transform (Mallat, 2012). But
all these representations analyze specific properties, known a priori. Indeed, the use of
Fourier analysis is designed to study harmonic properties, and the PLA quantifies the
linearity of the segments in the series. If we do not know the structure of the signal, it
is hard to chose a discriminant representation.

Pattern-based Representations

For series with unknown structure, the adaptivity of the representation method is crit-
ical. An idea to summarize the signal is to automatically extract the recurring shapes.
The characteristic of the structures are learned from the data, making it possible to ex-
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tract non-analytic behaviors. The local structures extracted are called patterns. Pattern
representation was first developed for vector data as a way to reduce the variability of
the points and the noise. Hotelling (1933) developed the popular Principal Component
Analysis (PCA) to compute the vectors which explain the most the variance in the data.
The principal components can be seen as pattern vectors, typical of the observed data.
Another vector representation based on patterns is the K-means algorithm (Macqueen,
1967). This method assigns each vector to one of the K clusters and represents it as the
centroïd of all the elements in the cluster. Many other classical vector techniques can
be interpreted in the pattern-based representation framework such as the Independent
Component Analysis (ICA, Naik & Kumar 2011), or the Non-negative Matrix Factor-
ization (NMF, Gillis 2011). Olshausen & Field (1997) introduced the sparse dictionary
learning, a method which learns patterns from the data, called atoms of a dictionary,
and uses them to encode the original samples. This method can be seen as a very
general framework to learn patterns.

For temporal signals, patterns are typically sub-series which are repeated in time. The
series are encoded with the activation of a limited number of these patterns. This rep-
resentation has a double advantage. First, the limited number of patterns ensure that
we reduce the complexity of the variation of the series. Then, if the coding signal is
sparse, this representation efficiently separates the variations of the signal from their
localization in time. This kind of representation is quite natural for physiological signals
which have some characteristic patterns such as ECG, EEG, or the vertical acceleration
of a foot during the walk presented in Figure 2.6. By using insights from the diction-
ary learning for vector data, algorithms designed to extract typical local structures in
signals have been developed recently. The advantages of this set of techniques are their
adaptivity and their interpretability. Fixing the design of the learned dictionary allows
to tweak for the size and scale of the atoms, and the resolution of the method to study
the structure of the signal. Also, the split between the localization and the shape of the
patterns makes the representation informative. For instance, in Figure 2.6, it is easier
to study the regularity of the steps from the activation signal in dashed red than from
the original signal in blue, as the variations are summarized by a unique pattern and
the small variations from this pattern are discarded, making the analysis clearer and
cleaner.

2.2 Thesis Contributions

2.2.1 Summary

During my Ph.D, I became interested in the issues of representation learning for time-
series and interpretability of the learned representations. The convolutional dictionary
learning for temporal signals are methods which allow to represent a signal in an intuitive
and interpretable way. However, these methods can be complicated to use, due to the
large number of parameters that influence them and to their computational cost. On
the other hand, neural networks are very effective and solve many tasks in practice but
it is very difficult to interpret the obtained results. The joint study of these two model
classes and the ties between them can bring new perspectives to reduce the drawbacks
of each of these methods.



2.2. THESIS CONTRIBUTIONS 43

In Part I, we study models based on convolutional representations and show how to
improve their interpretability and computational cost.

Chapter 3: Convolutional Representations. The convolutional representation
is used to represent time series by extracting patterns which are used to summarize
the series variations. This model is interesting in the context of physiological signals
which are quasi-periodic, with defined patterns. In Chapter 3, we present this model
and its sparse version. Then we describe the state-of-the-art algorithms to compute
the embedding with this models (see Section 3.3) and to update the patterns (see
Section 3.4).

Chapter 4: Interpretability of the Singular Spectrum Analysis. The Singular
Spectrum Analysis (SSA) is a technique used for short and noisy signal analysis. This
technique extracts sub series from the original series and studies them using PCA. The
principal components can be used to compute a decomposition of the signal with low-
rank components, tied to the trend and seasonality of the studied signal. To improve
the interpretability of the extracted components, the SSA requires a manual step which
groups the raw components of the resulting decomposition. In Chapter 4, we make the
following contributions.

I We show with Proposition 4.7 that this method solves a convolutional representa-
tion optimization problem, with dense activation, and we highlight the properties
of the learned patterns. This shows that the SSA can be used to compute effi-
ciently the solution of the non-convex problem of convolutional dense dictionary
learning, for a certain class of orthogonal dictionaries.

I We describe a general unified framework to automate the grouping step in Sec-
tion 4.5. In addition, we propose two novel similarity measures to compare the
components (GG3 and HGS) and a new group formation scheme based on the
importance of each component, named hierarchical method (HM). These novel
grouping strategies are compared to the methods proposed in the literature on
generated signals.

Chapter 5: Distributed Convolutional Sparse Coding. The greedy coordinate
descent can be used to solve the convolutional sparse coding. At each iteration, this
algorithm updates the coordinate which is the farthest from its optimal value given all
the other coordinates are fixed. It converges to the optimal solution and for large signal,
numerical results show that it requires less iterations than its randomized counter part.
We present the following contributions in Chapter 5.

I We introduce in Section 5.3, DICOD, a novel distributed algorithm, based on the
greedy coordinate descent to solve the convolutional sparse coding. This algorithm
is communication efficient and can run asynchronously.

I We also describe a sequential algorithm, called SeqDICOD. This algorithm is
designed to run sequentially the updates made by DICOD. In this setting the
updates are locally greedy. This reduces the computational cost of the updates
compared to the greedy coordinate descent.
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I In Section 5.4, we establish the convergence of DICOD with Theorem 5.2, under
mild condition on the dictionary elements. We also show in Theorem 5.3 that
the computational acceleration of DICOD is super-linear compared to the greedy
coordinate descent. Theorem 5.5 shows that this acceleration is only sub-linear
compared to our new locally greedy algorithm SeqDICOD.

I Finally, we demonstrate in Section 5.5 that these two algorithms work well in
practice. We also confirm in Figure 5.6 that the computational acceleration of
DICOD compared to greedy CD is quadratic when the number of cores is small
enough.

Then, in Part II, we focus deep learning models and their internal representations aiming
to improve their interpretability.

Chapter 6: Interpretability in Deep Learning Models. The Deep Learning
models have improved the state-of-the-art performance for many tasks where signals
are involved, such as images or audio signal processing. But these techniques are often
seen as black boxes and provide little intuitions on their decision process. A key aspect is
the lack of interpretability of their internal representation. Chapter 6 starts by recalling
the general framework of deep learning and some of its theoretical properties. Then,
we review recent results on neural network interpretability.

Chapter 7: Post-training for Deep Learning Models. During the training of a
neural network, all the weights are updated together using an estimate of the gradient.
For the end-to-end model, this adapts the representation learned by the first layers to
the model solving the task at hand, which is computed in the last layers. At the end of
the training, the model is considered to have learned both a good representation and a
good model solving the task. The contributions made in Chapter 7 are the following.

I We propose in Section 7.2 an extra training step, called post-training, where the
representation learned during training is fixed and we optimize the last layer. This
extra step aims to improve the usage of the learned representation to solve the
considered task.

I We propose a justification of our method based on the interpretation of neural
network as a kernel method in Section 7.3.

I We show in Section 7.4 that this extra step provides a small performance boost for
many network architectures, from convolutional networks to recurrent networks,
and with different data sets.

Chapter 8: Understanding Trainable Sparse Coding. Some recent works have
shown that it was possible to accelerate the resolution of the LASSO problem using a
trained neural network to estimate the optimal solution. This study relies on the inter-
pretation of the ISTA algorithm as a recurrent neural network, which can be unfolded
K times to represent K iterations of the algorithm. The findings were backed by some
interesting empirical results which showed that using the same number of ISTA itera-
tions as the number of layers in the trained network was less efficient. In Chapter 8, we
make the following contributions.
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I We design in Section 8.2 an algorithm based on a factorization of the Gram matrix
of the LASSO problem. This algorithm updates have the same computational
cost as the iteration of ISTA. We show that the performances of this algorithm
are linked to the sparsity of this factorization (see Proposition 8.1).

I We show with Theorem 8.2 that this algorithm has the same convergence rate as
ISTA but with possibly better constant factors.

I In Section 8.3, we highlight with Theorem 8.7 the conditions under which the per-
formance of our factorization based algorithm are better than ISTA, in expectation
for generic dictionaries.

I Section 8.4 shows that our algorithm can be computed with a neural network called
FacNet. This network is a re-parametrization of LISTA, with a more constrained
parameter space. This shows that when FacNet is able to accelerate the resolution
of LASSO, LISTA can also accelerate it. Thus, our results are sufficient to explain
the acceleration of LISTA.

I Finally, we design in Section 8.5 an adversarial dictionary for which FacNet does
not accelerate the resolution of the LASSO compared to ISTA. The results show
that the performances of LISTA networks for this problem are also reduced. This
empirical result suggests that our analysis captures part of the mechanism at work
in the LISTA acceleration.

Part III presents some chosen results of physiological signal analysis. During my PhD,
I have collaborated with medical doctors for clinical research purposes, developing tools
to help them analyze physiological signals. This collaboration has been centered around
two projects: the study of human walking and the study of nystagmus eye movements
of young infants.

Chapter 9: Extracting Steps from Human Gait Signals. The quantification of
human locomotion based on inertial sensors could change the way doctors follow their
patients. By definition, walking is a repetitive movement, were the building block is
the step. The extraction of the local structure in the signal enables the study of the
regularity or the asymmetry of the signal. Thus, being able to robustly identify the
steps in a walk exercise is critical to analyze the gait of the patient. In Chapter 9, we
present the following contributions.

I In Section 9.3, we apply the convolutional representations described in Chapter 3
to signals of human walking. Preliminary results show that convolutional diction-
ary learning is able to identify local structures in the signals.

I We present a novel technique to robustly detect the steps in signals of human
walking (Oudre et al., 2015). This technique relies on a base of steps templates to
identify the start of a step. The algorithm identifies the steps robustly for healthy
and pathological subjects.

I This study was associated to the analysis of signals from human walking with
medical doctors in various studies, like Barrois et al. (2015) and Barrois et al.
(2016). We briefly present our study in Barrois et al. (2015), which is included in
the annex.
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Chapter 10: Recording Eye Movements in Young Children. Neuro-ophthalmology
is a field which studies the relation between the nervous system and the ocular system.
The study of eye movements is particularly interesting as it sheds light on the control
mechanisms between these two systems. In this thesis, we studied a particular type of
eye movements, called the nystagmus, in early infancy. These movements are associated
to various conditions which can be detected when the nystagmus is correctly classified.
In Chapter 10, the following contributions are described.

I We showed that the Singular Spectrum Analysis (SSA) can be used to pre-process
oculometric signals and to extract the eye movements linked to the nystagmus
syndrome.

I We developed signal processing tools to analyze characteristics of the nystagmus
syndrome to improve the doctor diagnosis.

I These tools were used for three studies: a communication at the Gordon conference
on eye movement (Robert et al., 2015), a study on the nystagmus associated to
optical path-way gliomas (Robert et al., 2016) and a study on the nystagmus for
children with Down Syndrome.

2.2.2 Opensource development

During the second and third year of my PhD, I was involved in an open-source de-
velopment projects, supported by the Center for Data Science, funded by the IDEX
Paris-Saclay, ANR-11-IDEX-0003-02. The aim of the project was to provide a backend
for the library joblib . joblib is a popular python library to easily parallelize
scientific computations, as it provides simple support to embarrassingly parallel compu-
tation, where each process can perform independent computations and the results are
also returned independently.

With Olivier Grisel, we developed loky to provide a robust, cross-platform and cross-
version implementation of the concurrent.futures.ProcessPoolExecutor class. It
notably features:

• Deadlock free implementation: one of the major concern in standard
multiprocessing and concurrent.futures libraries is the ability of the

Pool/Executor to handle crashes of worker processes. This library intends to
fix possible deadlocks and send back meaningful errors in these situations.

• Consistent spawn behavior: All processes are started using fork/exec on
POSIX systems. This ensures safer interactions with third party libraries.

• Reusable executor: strategy to avoid respawning a complete executor every
time. A singleton executor instance can be reused (and dynamically resized if
necessary) across consecutive calls to limit spawning and shutdown overhead.
The worker processes can be shutdown automatically after a configurable idling
timeout to free system resources.

• Transparent cloudpickle integration: to call interactively defined functions
and lambda expressions in parallel. It is also possible to register a custom pickler
implementation to handle inter-process communications.
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• No need for if __name__ == "__main__": in scripts: thanks to the use
of cloudpickle to call functions defined in the __main__ module, it is not
required to protect the code calling parallel functions under Windows.
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In this part, we focus on pattern-based representations. Part I is organized as follows.
Chapter 3 introduces the convolutional representation model as well as state-of-the-art
algorithms used to extract patterns from signals. Then, Chapter 4 introduces the Singu-
lar Spectrum Analysis (SSA) and shows that it actually corresponds to a convolutional
representation with specific patterns. Then, a framework to automatically improve
the interpretability of the components computed with the SSA is evaluated. Finally,
Chapter 5 presents a novel algorithm based on greedy coordinate descent to solve the
convolutional sparse coding. This algorithm can be distributed asynchronously to rep-
resent long signals in the convolutional representation model. It is proven to converge
and to have a super-linear speedup compared to the classical greedy coordinate descent
algorithm.





3
Convolutional Representations:

a state-of-the-art
“Set patterns, incapable of adaptability,
of pliability, only offer a better cage.
Truth is outside of all patterns.”

– Bruce Lee
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In this chapter, we describe the convolutional representation framework and present
state-of-the-art algorithms used to compute such representations. The convolutional
representation has been used to compute unsupervised representations of signals in
various fields and is well adapted to study physiological signals. There are multiple
methods to compute such representation, due to the independence of the different com-
putation blocks involved in embedding the data or updating the patterns. We present
here a unified view of these different blocks.
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3.1 Convolutional Representation

The convolutional representation is an efficient and adaptive model to describe the
patterns composing a signal. Consider the P -dimensional signal X ∈ XPT of length T .
Let DDD =

{
DDDk

}K
k=1
⊂ XPW be a set of K multivariate patterns of length W � T with

the same dimension P and
{
Zk
}K
k=1
⊂ X 1

L be a set of K scalar activation signals with
length L=T−W+1 . We denote Z ∈ XKL the K-dimensional signal of length L such
that

Z[t] =

Z1[t]
. . .
ZK [t]

 .

Definition 3.1. The convolutional representation models a multivariate signal X as
the sum of K convolutions between a multivariate pattern Dk ∈ XPW and an activation
signal Zk ∈ XL such that:

X[t] =

K∑
k=1

(Zk ∗DDDk)[t] + E [t], ∀t ∈ J0, T − 1K . (3.1)

with E ∈ XPT representing an additive noise signal with the same length and dimension
as X.

A univariate signal generated using this model is presented in Figure 3.1. This kind of
model has first been introduced by Grosse et al. (2007), who showed this method can
be useful for audio signal comparison.

A shift Invariant Model. This model is well suited for time series studies as it
captures the patterns in a shift-invariant way. Indeed, with the convolution operator,
the presence of the k-th pattern DDDk at any time in the signal is encoded in the activ-
ation signal Zk. Using the code signals, it is easy to study the regularity of a pattern
occurrence or the correlation between patterns. The representation based on model
(3.1) is particularly useful to separate the localization of the patterns, encoded in the
activation signal Z, and their shapes captured in DDD. The search for patterns shorter
than the signal permits to compare easily the representation of signals with different
lengths as it focuses on local structures in the signal.

Higher Order Extension. Note that this model can be extended to higher order sig-
nals such as images by using the proper convolution operator. In this thesis, the focus is
set on 1D-convolution due to the application domain, with temporal physiological sig-
nals. Most of the algorithms described here can be easily adapted using 2D-convolutions
and the focus of many works on convolutional dictionary learning was the image pro-
cessing (Bristow et al., 2013; Chalasani et al., 2013; Kavukcuoglu et al., 2010).

3.1.1 Interpretability of the Dictionary

The choice of dictionary to encode the signal is critical as it conditions the interpretabil-
ity of the coding signal. The dictionary can be chosen a priori, with analytical patterns
which capture specific properties, or adapted to the data, to highlight specific structures
present in the data.
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Figure 3.1: Representation of a scalar signal X generated from one dictionary element
D1 and the coding signal Z1 using the model (3.1). The pattern D1 is repeated at
different time locations with different activation intensities in the signal. The coding
signal Z1 captures the apparitions of the patternD1 in all possible shifted time locations.

Analytic Dictionary

The analytic approach uses predefined functions to extract interpretable properties of
the signal. For example, the dictionary can be set to be the Fourier basis. When this
technique is used on the full signal, it gives information on oscillatory properties of the
signal such as its harmonic spectrum. This dictionary can also be used to encode sub-
segments of the signal using the short-time Fourier Transform (STFT) (Gabor, 1946).
This technique can be analyzed in the convolutional dictionary model as the result-
ing spectrogram can be interpreted as an activation signal for each harmonic. Other
transformation can be used on windowed signals such as Discrete Cosine Transform
(Ahmed et al., 1974), Hadamard Transform (Pratt et al., 1969) or Wavelet Transform
(Mallat, 2008). Each of these transformations is linked to an analytic dictionary. The
wavelet transform is of particular interest when interpreted as a convolutional repres-
entation. The idea is to use a base pattern, called mother wavelet, which is replicated
with different scales (typically the powers of 2) and positions to extract information
localized around signal discontinuities. Here, the dictionary is composed of a single
pattern, scaled to multiple levels. Using wavelets brings two important advantages: the
embedding of the signal on the dictionary can be done using a very efficient methods
and the resulting activation signal is very sparse. With analytical dictionaries, the rep-
resentation captures particular properties that are defined a priori. Thus, the choice of
the dictionary have a large impact on the type of information highlighted.
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Learned Dictionary

Another choice for the dictionary is to learn it from the observed signals. The shape
of the dictionary elements are chosen with an optimization problem, leading to repres-
entations that capture the intrinsic information by analyzing unknown patterns. The
dictionary elements, also called atoms, are chosen from a constraint set Ω which is
defined by the user. The most common constraint imposed on the dictionary atoms
is to have a unit norm. Indeed, for convolutional sparse coding – where we seek to
minimize the `1-norm of Z and the reconstruction error – scaling DDD by α and Z by
1/α, for α > 1, does not change the reconstruction error but decreases `1-norm of Z by
a factor 1/α . Thus, without the unit norm constraint, Z tends to 0 and the norm of
the atoms explodes. Other insights for dictionary design can be taken from matrix fac-
torization and dictionary learning techniques for vectorial data. For instance, Principal
Component Analysis uses the directions that best explain the variance in the data set
as dictionary elements (Hotelling, 1933). A similar problem can be solved for signals
with the Singular Spectrum Analysis (SSA) introduced by Vautard & Ghil (1989). It
analyzes the recurrent patterns in a time series and extracts the ones that explain the
variance of the signal in order to encode the signal using them as dictionary elements.
This technique has been studied in details by Golyandina et al. (2001) and is used to
analyze short and noisy time series. It notably decomposes the series as the sum of a
trend pattern, a few seasonal components and a noise term. In Chapter 4, we will show
how this method can be used to compute a convolutional representation. The same
idea could be used to extend other matrix factorization techniques such as Independent
Component Analysis (Naik & Kumar, 2011), which computes statistically independent
dictionary elements. Another example of dictionary learning technique is the Empir-
ical Wavelet Transform (EWT) developed by Gilles (2013). This method chooses the
dictionary elements by adapting to the observed signals an analytic base constructed
from wavelet multi-resolution, thus segmenting the spectral information of the signals.
Finally, the dictionary can be learned directly by solving an optimization problem for
a given constraint set Ω. This process is described in Section 3.2.

3.1.2 Interpretability of the Activation Signal

The choice of constraints for the signal embedding on the dictionary controls the prop-
erties of the representation. A possible constraint is to penalize with the rank of the
representation as done in Liu et al. (2010) or Candes et al. (2011). This ensures a
representation in a low dimensional manifold, compressing the information on a few
patterns. The low-rank embedding ensures that if two signals can be represented with
similar patterns, the distance between their representation should be small.

Another common hypothesis for the convolutional representation is to assume that the
coding signals Zk are sparse, in the sense that only few entries are nonzero in each
signal. The sparsity property forces the representation to display localized patterns in
the signal. This is very important to the interpretability of the coding signal. Indeed,
a sparse signal can be seen as events, or spikes, occurring in time and it is easier to
distinguish their regularity of their correlation than with a dense signal. This constraint
can be enforced using the `0 regularization, with algorithms such as the matching pur-
suit (Mallat & Zhang, 1993) and the orthogonal matching pursuit (Pati et al., 1993).
Other techniques ensure sparsity by solving a relaxed version of the `0-problem using
norm Lp, p ≤ 1, with algorithms like FOCUSS (Gorodnitsky & Rao, 1997). One no-
ticeable sparsity inducing technique is the convolutional sparse coding with the sparsity
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constraint enforced using a `1-regularization of the coding signals. The embedding is
computed using an specialization of the LASSO problem with convolution product in-
stead of matrix multiplication. Section 3.3 provides details on this method and the
state-of-the-art algorithm to compute the signal embedding.

Finally, nonnegative constraints, similar to the one used in Nonnegative Matrix Factor-
ization (NMF) (Gillis, 2011), can be used to improve interpretability. Indeed, forcing
the nonnegativity of the activation signals avoids having multiple patterns being mixed
together to represent the same phenomena by canceling some parts of each other. This
improves interpretability as it makes it easier to see the effect of each separate compon-
ents.

3.1.3 Link to Classic Dictionary Learning

The convolutional representation is an extension of the matrix factorization problem,
which can be retrieved for W = T = 1. In this case, the multivariate signal Z is just a
coding vector as it is of length L = 1 and the sum of convolution can be summarized
as a matrix multiplication such that

X[0] = Z[0]DDD[0] + E [0] .

Here, X[0] and Z[0] are vectors, respectively of size P and K and D[0] is a matrix
of size K × P . Also, using vector forms for the signals, it is possible to re-write the
convolutional model as a vectorial model. For a signal X ∈ XPT , we define the vector
x̄ ∈ RPT representing X as

x̄t∗P+k = Xk[t] ∀(k, t) ∈ J1,KK× J0, T − 1K .

We define a band circulant matrix D ∈ RKL×PT constructed by repeating the blocks
D̄ ∈ RK×PW at every time positions, i.e. for the block dictionary

D̄ =


d1,1[0] . . . d1,P [0] . . . d1,1[W ] . . . d1,P [W ]
d2,1[0] . . . d2,P [0] . . . d2,1[W ] . . . d2,P [W ]

...
...

...
...

dK,1[0] . . . dK,P [0] . . . dK,1[W ] . . . dK,P [W ]

 ,

the band circulant matrix D associated to the convolutional dictionary DDD repeats D̄
L = T −K + 1 times a shift of P columns.

D̄ 0̄

0̄ D̄ 0̄

0̄ D̄ 0̄

0̄ D̄ 0̄

0̄ D̄ 0̄

0̄ D̄

0

0

D =
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where the 0̄ here denotes matrices in RK×P filled with 0. This dictionary contains all the
patterns from the convolutional dictionary DDD replicated in all shifted positions. Using
this band circulant matrix D and denoting z̄ ∈ RKT , the model (3.1) can be re-written
as

x̄ = z̄D + ε̄ (3.2)

where x̄, ε̄ ∈ RPT and z̄ ∈ RKL are vectors representing the signals X, E and Z. Thus,
convolutional dictionary learning is equivalent to dictionary learning for band-circulant
matrices and the classical algorithms can be used. However, due to the dimension of
(3.2), the algorithms are not efficient enough as they do not make use of the specific
structure of the problem. Moreover, if the signals to encode do not have the same length,
this formulation cannot be used for multiple signals without zero-padding. The use of
the more compact representation (3.1) is thus preferred for convolutional representation.

3.2 Learning Dictionary via Alternate Minimization

Multiple algorithms have been designed to learn a dictionary suitable to represent a set
of vectors, such as the Method of Optimal Directions (MOD; Engan et al. 1999), the
K-SVD (Aharon et al., 2006), the stochastic gradient descent (Aharon & Elad, 2008)
or the online dictionary learning (Mairal et al., 2010). These techniques all rely on an
alternated procedure which computes the embedding of the data point on the dictionary
and then update the dictionary to improve the representation. In the case of the `1-
penalized coding signal, the process to learn a dictionary that can describe a given set
of signals

{
X [1], . . . , X [N ]

}
can be posed as an optimization problem such that

argmin
DDD∈Ω

1

N

N∑
n=1

argmin
Z[n]

1

2

∥∥∥∥∥∥X [n] −
K∑
k=1

Z
[n]
k ∗DDDk

∥∥∥∥∥∥
2

2︸ ︷︷ ︸
GN (DDD)

+ λΨ
(
Z [n]

)
, (3.3)

for a certain set of constraints Ω for the dictionary DDD and a regularization function
Ψ for the coding signal. For sparse dictionary learning, the regularization function Ψ
is usually chosen chosen to be either the `1 or `0-norm of the coding signal (Grosse
et al., 2007; Yellin et al., 2017). The learned dictionary can be adapted to the intended
usage by imposing different sets of constraints Ω to the dictionary’s elements. Finding
both DDD and Z is a non-convex problem. However, estimates of the solution can be
obtained using alternate minimization. This method requires to be able to solve two
independent steps. The first one is to infer the activation signal associated to a given
signal and dictionary. This step is named convolutional sparse coding and is described
in Section 3.3. It computes the embedding Z [n] for all signals X [n] and the current
dictionary DDD(q) for n ∈ J1, NK. Then, the second step is to be able to update the
dictionary, to find the atoms that best describes the given signal population. Given a
constraint set Ω, the dictionary is updated to improve the modeling of the signals X [n]

given the current coding signals Z [n]. This step and algorithms to update the dictionary
are described in Section 3.4.

3.2.1 Online Learning

One of the drawbacks of the alternate minimization algorithm is its complexity. At each
iteration, it is necessary to compute convolutional sparse coding for all signals. This
step is computationally expensive. Moreover, if the dictionary needs to be updated
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to take into account a new signal, it is also necessary to recompute the codes for all
the other signals to be able to perform the update. One way to improve the efficiency
of the alternate minimization is to use online dictionary learning. This technique –
proposed by Mairal et al. (2010) for vectorial data – has recently been extended for
convolutional dictionary learning in Liu et al. (2017). The core idea of this procedure is
to approximate at each iteration q the function GN by a surrogate function Ĝq defined
as

Ĝq(DDD) =
1

q

q∑
p=1

1

2

∥∥∥∥∥∥X [p] −
K∑
k=1

Z
[p]
k ∗DDDk

∥∥∥∥∥∥
2

2

, (3.4)

with Z [p] the coding signal for signal X [p] for dictionary DDD(p) at iteration p. Note that
with this surrogate function, only one signal X [p] is encoded at each iteration.

Multiple variants of this algorithm have been proposed to improve its convergence. A
very natural variant is to use mini-batch updates for the surrogate function. At each step
q, instead of only selecting one signal, a batch of Q signals are added in the surrogate
function. In order to give more importance to the samples with more accurate coding
signals, computed with more recent dictionary, Mairal et al. (2010) proposed to add a
forgetting factor to the previous samples. The surrogate function becomes

Gq,γ(DDD) =
1

q

q∑
p=1

γp

2

∥∥∥∥∥∥X [p] −
K∑
k=1

Z
[p]
k ∗DDDk

∥∥∥∥∥∥
2

2

, (3.5)

where 0 < γ < 1 is a forgetting factor, controlling the importance of history in the new
updates. Another online approach to learn convolutional dictionary was described in
Kavukcuoglu et al. (2010). In their paper, they rely on the stochastic gradient descent
approach to update their dictionary. At each iteration q, they draw randomly one of
the signal X [q] and compute its coding signal Z [q]. The dictionary is then updated by
considering the surrogate function gq, defined as

gq(DDD) =
1

2

∥∥∥∥∥∥X [q] −
K∑
k=1

Z
[q]
k ∗DDDk

∥∥∥∥∥∥
2

2

. (3.6)

3.2.2 Theoretical Guarantees for Convolutional Representation

The alternate minimization approach for dictionary learning is not guaranteed to con-
verge to a good solution in general. Indeed, the non-convexity of the problem makes it
hard to determine a convergence at all. The first theoretical studies of alternate min-
imization for dictionary learning were for vectorial data. In their paper, Agarwal et al.
(2014) show that if data is generated using a dictionary DDD0, there exists a polynomial
time algorithm which permits estimating this dictionary, given that there are enough
samples and that the observed signals do not have noise or outliers. The algorithm relies
on initialization schemes proposed by previous works (Arora et al., 2013; Agarwal et al.,
2013) which ensures that the initial estimate of the dictionary is in the neighborhood of
the solution. Gribonval et al. (2015) show the sample complexity of dictionary retrieval
methods under presence of noise and outlier points. This paper does not provide an
algorithm to find the dictionary but quantifies the effect of the assumptions made in the
model. One key quantity in their analysis is the cumulative coherence which quantifies
the over-completeness of the dictionary elements with the sparsity of the coding vectors.



60 CHAPTER 3. CONVOLUTIONAL REPRESENTATIONS

As we have seen in Subsection 3.1.3, the convolutional setting is equivalent to the
vectorial case. Thus, these previous works can be directly applied for convolutional
dictionary learning. However, due to the particular structure of the problem, these
results can be improved to better handle the temporal structure. Recent work from
Papyan et al. (2017) introduces quantities which extend the different concepts used
in sparse coding literature to convolutional settings and highlights the properties of
dictionary elements critical for the uniqueness of the coding signal. The core of their
analysis is to study the properties of stripes of the original signal, avoiding the very
large dimension of the whole signal. Their work is completed in a companion paper
which studies the recovery capacities of classical convolutional sparse coding algorithms
for noisy observations (Papyan et al., 2016).

3.3 Convolutional Sparse Coding

The convolutional sparse coding refers to the computation of the embedding of a signal
X on a fixed dictionary DDD with a sparsity inducing regularization Ψ, solving

argmin
Z

1

2

∥∥∥∥∥∥X −
K∑
k=1

Zk ∗DDDk

∥∥∥∥∥∥
2

2

+ λΨ
(
Z
)
. (3.7)

The choice of the regularization function Ψ has an impact on the sparsity of the esti-
mated coding signal and the performance of the algorithms used to solve (3.7). The
`0-norm is a natural choice for Ψ as it is directly measuring the sparsity of the solu-
tion, but the problem (3.7) in this case is non-convex and NP-hard to solve. Greedy
algorithms such as the Matching Pursuit (MP; Mallat & Zhang 1993) and the Ortho-
gonal Matching Pursuit (OMP; Pati et al. 1993) efficiently compute an approximate
solution to this problem, and can give good results in practice (Yellin et al., 2017). A
convex relaxation of this problem is obtained by taking Ψ to be the `1-norm of the coding
signal and efficient algorithms can compute the minimal solution. Under some assump-
tions on the sparsity of the solution and the design of the dictionary, this relaxation can
be shown to consistently estimate the solution of the `0 problem (Donoho & Elad, 2002;
Fuchs, 2004). In the following, we focus on sparse coding with `1-regularization as its
guaranteed convergence can improve the accuracy compared to approximate `0 minim-
ization algorithms. Note that `1-regularized methods tend to be slower than the greedy
`0 approaches so the choice of the method results of tradeoff between computational
power and accuracy.

The convolutional sparse coding refers to the embedding of a signal on a dictionary with
a `1 regularization. Given a dictionary of patterns D̄DD, convolutional sparse coding aims
to retrieve the activation signals Z∗ associated to the signal X by solving the following
optimization problem,

Z∗ = argmin
Z

E(Z)
∆
=

1

2

∥∥∥∥∥∥X −
K∑
k=1

Zk ∗DDDk

∥∥∥∥∥∥
2

2︸ ︷︷ ︸
h1(Z)

+λ
∥∥Z∥∥

1︸ ︷︷ ︸
h2(Z)

, (3.8)

for a given regularization parameter λ > 0 . (3.8) can be interpreted as a special case of
the LASSO problem with the band circulant matrix D̄ and the model (3.2). Therefore,
classical optimization techniques designed for LASSO can be applied to solve it with the
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Methods Original paper for sparse coding Convolutional adaptation
FSS Grosse et al. 2007 Lee et al. 2007

FISTA Beck & Teboulle 2009 Chalasani et al. 2013
ADMM Gabay & Mercier 1976 Bristow et al. 2013
CD Friedman et al. 2007 Kavukcuoglu et al. 2010

Table 3.1: Algorithms for `1-regularized convolutional sparse coding

same convergence guarantees. However, the dimension of the problem is too large for the
algorithms to be efficient. The expression (3.8) using convolution allows the use of more
efficient computation for the gradient of h1 and it is possible to design. State-of-the-art
algorithms for (3.8) and their link to original algorithm in the optimization literature
are recalled in Table 3.1 and the following subsections describe them in details.

3.3.1 Feature Sign Search (FSS)

The Feature Sign Search algorithm (FSS) was introduced by Lee et al. (2007). This
algorithm is developed to solve traditional sparse coding problem, without the convo-
lution but can be easily adapted to solve the convolutional case. Knowing the signs of
the non-zero coefficients of the optimal solution, we can replace the `1-norm by a linear
operator. If Θ∗ denotes the sign of the values of Z∗ such that, Θ∗k[t] = sign(Z∗k [t]), then

‖Z∗‖1 = 〈Θ∗, Z∗〉 . (3.9)

If Θ∗ is known, (3.8) is equivalent to the differentiable problem

argmin
Z∈XKL

1

2
‖X −

K∑
k=1

Zk ∗DDDk‖22 + λ〈Z,Θ∗〉 . (3.10)

Here, the non-differentiable `1-norm has been replaced by a linear scalar product. Grosse
et al. (2007) showed that the FSS algorithm, designed to solve the LASSO problem,
could be efficiently used for the convolutional sparse coding.

Algorithm 3.1 describe the pseudo code of the FSS algorithm in details. The idea of
FSS is to estimate the signs of the coefficients in Z∗ and to solve the resulting quadratic
program (QP) sub-problem (3.10). Each iteration refines the sign estimation, and the
algorithm converges to a global solution. Due to the high dimension of the problem,
the algorithm is designed as a working set algorithm, putting coefficients which are
estimated to be non-zero in the active set and then computing the solution of the
resulting QP. From this new solution, the sign of Z∗ is estimated again and the working
set is updated accordingly.

Solving the QP Sub-problems

In order to clarify its steps, it is necessary to use a vector form for (3.10), which has
a closed form solution and helps understand the benefit of the working set. We recall
that for a signal X ∈ XPT , x̄ is defined as x̄t∗P+p = Xp[t] . Re-using the vectorized form
of the convolutional representation from (3.2), with the vector x̄ ∈ RPT representing X
and the vectors z̄, θ̄(q) ∈ RKL representing Z and sign(Z), (3.10) can be rewritten as

argmin
z̄

1

2
‖x̄−Dz̄‖22︸ ︷︷ ︸

F (z̄)

+λ〈θ̄(q), z̄〉 . (3.11)
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Algorithm 3.1 Feature Sign Search Algorithm
1: Input X,DDD and λ

We recall that x̄ is the vector notation for X ∈ XPT , i.e. xt∗P+p = Xp[t]
And D is the band cirucant matrix associated to DDD (see Subsection 3.1.3)

2: Initialize z̄ = 0, θ̄ = 0 and I = {}
3: repeat
4: Compute the gradient vector G = ∇h1(Z)

5: Update the active set I = I ∪
{
t ∗K + k

/ ∣∣∣Gk[t]∣∣∣ > γ

}
6: Estimate the signs on the active set s.t.

Θk[t] =

sign(Gk[t]) if Zk[t] = 0

sign(Zk[t]) if Zk[t] 6= 0
∀(k, t) s.t (t ∗K + k) ∈ I

7: Solve the QP sub-problems:
8: repeat
9: Extract matrix Ã = D[I,I];

10: Extract vectors z̃ = z̄I ; θ̃ = θ̄I ; x̃ = x̄I ;
11: Compute solution of (3.11) with z̃new = (ÃTÃ)−1(ÃTx̃− λθ̃/2)
12: Discrete line search:

13: Set Sd =

z̃α;α ∈
{

z̃new,i
z̃new,i−z̃i

}
∩ [0, 1] and z̃αj =

0 if θ̃j z̃αj < 0

αz̃j + (1− α)z̃new,j


14: Set z̃∗ = argmin

z̃α∈Sd
‖x̃− Ãz̃α‖2 + λθ̃Tz̃α

15: Set z̄I = z̃∗ and θ̄ = sign(z̄)

16: until ḡj + λθ̄j = 0 ∀j ∈
{
j ∈ I; z̄j 6= 0

}
17: Set I =

{
i|z̄i 6= 0

}
;

18: until |ḡj | ≤ λ ∀j ∈
{
j ∈ I; z̄j = 0

}
19: Return Z

This minimization problem has a closed form solution

z̄ =
(
DTD

)−1 (
DTx̄− λθ̄(q)/2

)
. (3.12)

The computational cost of (3.12) is too expensive to be computed for the whole problem,
as its complexity is O

(
K3T 3

)
. The FSS algorithm reduces the computational cost of

solving the QP by only considering a working set of coefficient I(q) at each iteration q.
By only considering non-zero variable in I(q), (3.12) can be reduced to

z̄I(q) =
(
DTD

)−1

[I(q),I(q)]

(
(DTx̄)[I(q),I(q)] − λθ̄

(q)

I(q)/2

)
. (3.13)

The complexity of the iteration is reduced from O
(
K3T 3

)
to O

(
|I(q)|3

)
. In practice,

due to the sparsity of the searched solution, the size of the working set is manageable
and the complexity of the iteration does not explode.
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Sign Estimation and working set extension

At each iteration q, the estimated sign of the solution is updated. For coefficient i
which are non-zero in the current solution Z(q−1), the estimation of the sign is set to
be coherent with the solution estimate, i.e.

θ̄
(q)
i = sign

(
z̄

(q−1)
i

)
.

Then, the working set is updated to include extra coefficient in I(q). To avoid overly
growing the working set, a fixed number of coefficient are chosen from the zero coeffi-
cients to be added to the working set. The selected coefficients are the one with maximal
gradient, such that

I(q) = I(q−1) ∪
{
i

/
|∇F (z̄(q−1))i| ≥ max

(
λ,∇F (z̄(q−1))j |

)
∀j /∈ I(q−1)

}
. (3.14)

For these coefficients, the sign is estimated from the value of the gradient and

θi = sign
(
∇F (z(q−1))i

)
∀i ∈ I(q) s.t. z̄(q−1)

i = 0 . (3.15)

Discrete Line Search

An important point of this algorithm is that the current solution should stay coherent
with the sign estimate. This property ensures that the cost function will always decrease
with the algorithm iterations. The solution computed with (3.12) is not guaranteed to
be coherent. To cope with this, a line search is used to find a point, coherent with
the current sign estimate θ(q) which decreases the objective function. As the objective
(3.11) is convex, this line search can be conducted by looking at a discrete number of
point, where coefficients are zeroed. First, the QP sub problem solution ȳ is computed
with (3.12). We define the set of coefficients J which are not coherent, such that

J =

{
i

∣∣∣∣ θ̄(q)
i ȳi < 0

}
.

Then, we find the points on the segment from z̄(q−1) to ȳ where the coefficients are null,
i.e. for j ∈ J , we define αj ∈ [0, 1] as the number such that

(
αj z̄

(q−1) + (1− αj)ȳ
)
j

=

0. These scalars have a closed form,

αj =
z̄

(q−1)
j

z̄
(q−1)
j − ȳj

.

The discrete line search is performed for all these value {αj}j∈J . We define a set of
possible coherent solutions {ȳ[j]}j∈J such that

ȳ
[j]
i =

αj z̄(q+1) + (1− αj)ȳ, if ȳ
[j]
i θ̄

(q)
i > 0 and i ∈ I(q) ,

0, elsewhere.

The computed ȳ[j] are all coherent with θ̄(q). The coefficients which flip signs on the
segment [0, αj ] are set to 0 to keep the coherence. The next solution estimate is chosen
such that

z̄(q+1) = argmin{
ȳ[j]
}
j∈J

1

2
‖x̄−DDDȳ[j]‖22 + λ〈θ̄(q), ȳ[j]〉 .
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Algorithm 3.2 Windowed FSS
1: Input X,DDD and λ
2: Initialize Z = 0
3: for q = 1 . . . Npass do
4: for w = 0 . . . L−W+1

W do

5: Select sub-signal W =
{
t
∣∣∣(w − 1) ∗ 2W < t < (w + 1) ∗ 2W

}
6: Solve the sub-signal coefficients by restricting I ⊂ W in Algorithm 3.1
7: end for
8: end for
9: return Z

Convergence and Complexity

This algorithm converges to the optimal solution of (3.8). The proof of convergence
was derived by Lee et al. (2007) in the vectorial case and can be adapted easily to the
convolutional case. We refer the reader to this paper for details about the proof. The
proof starts by showing that the solution at each iteration of the feature sign search
step is guaranteed to strictly reduce the objective cost if the current solution, coherent
with the support set I(q) and sign estimate θ̄(q), is not optimal for (3.11). Then, they
show that no pair of sign estimate and active set can be repeated during the algorithm.
As there is only a finite set of these pairs, the algorithm is guaranteed to converge. This
proof does not state any convergence rate and the convergence can be very slow as the
number of pairs grows exponentially with the dimension. However, the pairs that can
be visited have to result in energy strictly lower than the current energy and in practice,
this algorithm is able to solve reasonable scale problems.

The most computationally expensive operation for the FSS iteration is to compute the
solution of (3.11) using the closed form solution (3.12). With the working set technique,
this operation complexity is reduced to O

(
|I(q)|3

)
. The complexity of this algorithm

is thus highly dependent of the solution sparsity. If the solution is very sparse, the
size of the working set should not grow much and thus each iteration of FSS should be
fast. Wohlberg (2016) showed in practice that FSS was efficient for very sparse signals
or short signals. For large signals, the number of coefficients in the active set might
grow bigger and the resolution of the quadratic sub problem becomes computationally
too expensive. In their original work, Grosse et al. (2007) propose an more efficient
extension for longer signals called Windowed FSS and described in Algorithm 3.2. This
extension selects a sub-part of the signal of length 2W at each step and calls the FSS
algorithm on this sub-signal. Then, the next windowed signal is selected by shifting the
selection window by W time samples. This algorithm can be related to a cyclic block
coordinate descent and converges in practice. It is necessary to make multiple pass over
all the windows to ensure that the results are good enough. Empirically, Grosse et al.
(2007) showed that after 2 passes, the results was slightly worse than the optimal value.

3.3.2 Fast Iterative Soft Thresholding Algorithm (FISTA)

Iterative Soft-Thresholding Algorithm

The most classical algorithm to solve `1-regularized problems such as LASSO is the
Iterative Soft Thresholding Algorithm (ISTA). It was designed by Daubechies et al.
(2004) and relies on a proximal gradient descent. It is straight forward to adapt this
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Algorithm 3.3 Iterative Soft-Thresholding Algorithm (ISTA)
1: Input: dictionary D, regularization parameter λ, and tolerance ε
2: Initialization: Z(0)

k [t] = 0 and L = maxω ‖D̂DD[ω]D̂DD[ω]T‖22
3: repeat
4: Gradient step: Update for all (k, t) ∈ C

Uk[t] = Z
(q)
k [t]− 1

L
∇f(Z(q))k[t]

5: Soft-thresholding: point with proximal operator for U

Z(q+1) = Sh

(
U,
λ

L

)

6: until
∥∥∥Z(q+1) − Z(q)

∥∥∥
∞
< ε

7: Return Z(q)

algorithm to the convolutional setup. The algorithm updates the current estimate Z(q)

at iteration q using a proximal descent step for (3.8) i.e.

Z(q+1) = Sh
(
Z(q) − α∇h1(Z(q)), αλ

)
(3.16)

with α > 0 a learning rate parameter and Sh the soft-thresholding operator. The soft-
thresholding operator is defined as a coordinate-wise operator, such that applying it to
the scalar u ∈ R gives

Sh(u, λ) = sign(u) max(|u| − λ, 0) . (3.17)

It is the closed form formula for the proximal operator associated to λ‖ · ‖1 . The
proximal operator extends gradient descent for convex, non-differentiable functions.
For differentiable convex functions, the operator corresponds to a gradient descent step.
As h2 is a convex function, its proximal operator in Z is defined as

prox h2(Z) = argmin
Y

1

2
‖Z − Y ‖22 + h2(Y ) .

This minimization problem is separable on each coordinate and its solution is given by
the coordinate-wise function Sh.

Accelerating ISTA with Momentum

This algorithm can be accelerated via the momentum method. In their paper, Beck &
Teboulle (2009) derive an algorithm called Fast ISTA (FISTA), based on ISTA with an
extra step which accelerates the convergence of the algorithm to the optimal solution
of (3.8). This extra step has been developed by Nesterov (1983) and is called the
Nesterov’s momentum. It defines an auxiliary point Y q by continuing in the direction
of the update between points at iterations q − 1 and q, such that

Y (q) = Z(q) +
γ(q) − 1

γ(q+1)

(
Z(q+1) − Z(q)

)
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Algorithm 3.4 Fast Iterative Soft-Thresholding Algorithm (FISTA)
1: Input: dictionary D, regularization parameter λ, and tolerance ε
2: Initialization: Z(0)

k [t] = Y
(0)
k [t] = 0, L = maxω ‖d̂[ω]d̂[ω]T‖22

3: repeat
4: Proximal gradient step: compute ISTA like update from Y (q)

Z(q+1) = Sh

(
Y (q) − 1

L
∇f(Y (q)),

λ

L

)

5: Update momentum coefficient γ(q+1) =
1 +

√
1 + 4γ(q)2

2
6: Nesterov momentum step:

Y (q+1) = Z(q+1) +
γ(q) − 1

γ(q+1)

(
Z(q+1) − Z(q)

)
7: until

∥∥∥Z(q+1) − Z(q)
∥∥∥
∞
< ε

8: Return Z(q)

with scalar γ(q) following the recursion with γ(0) = 1 and γ(q+1) = 1+
√

1+4γ(q)
2

2 . The
design of the γ term was derived to maximize the acceleration given by this extra step.
The proximal descent update is then computed starting from this new point, using the
same mechanism as in ISTA. Algorithm 3.4 summarizes this algorithm.

The explanation of why this algorithm is able to accelerate the convergence of gradient
descent is complicated. An intuition of what happens can be seen when analyzing this
algorithm as a dynamical system. If we consider the function we want to minimize
as a bowl and assimilate our current point to a ball, the minimization can be seen as
the movement of the ball toward an equilibrium point. In the gradient descent, the
ball is moved as if it was starting each time with zero speed and only gravity helps it
moves to the next spot. The momentum technique adds the speed of the ball in the
equation and speed up the movement of the ball toward the equilibrium point, which
is the minimal point of the surface defined by the cost function. A formal link with
second order differential equations is established by Su et al. (2016).

Convergence and Complexity

Both ISTA and FISTA were proven to converge to the optimal solution of the LASSO
in Beck & Teboulle (2009). The convergence rate of ISTA is O

(
1
q

)
and its accelerated

version has a convergence rate of O
(

1
q2

)
. Their extension to the convolutional cases

is really straightforward. The only change is the formula for the gradient computation.
The proof of convergence and the convergence rates do no depend on the particular
structure of h1 and can also be proven for (3.8). Using FISTA to solve the convolutional
sparse coding was proposed by Chalasani et al. (2013). They show that when using
convolution to compute the gradient of h1, it is possible to efficiently solve convolutional
sparse coding (3.8).
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Algorithm 3.5 Alternating Direction Method of Multipliers (ADMM)
1: Input: functions h1, h2, matrix AAA,BBB, vector C, parameter µ and tolerance ε
2: Initialization: Y (0),Θ(0)

3: repeat

4: X(q+1) = argmin
X

h1(X) +
µ

2

∥∥∥∥∥AAAX +BBBY (q) − C +
Θ(q)

µ

∥∥∥∥∥
2

2

5: Y (q+1) = argmin
Y

h2(Y ) +
µ

2

∥∥∥∥∥AAAX(q+1) +BBBY − C +
Θ(q)

µ

∥∥∥∥∥
2

2

6: Θ(q+1) = Θ(q) +AAAX(q+1) +BBBY (q+1) − C
7: until max

(
‖AX(q+1) +BY (q+1) − C‖2, ‖µATB(X(q+1) −X(q))‖2

)
< ε

The most computationally expensive operation for the FISTA updates is to compute
the gradient ∇h1 . An interesting idea proposed by Wohlberg (2016) and by Haeffele
et al. (2017) is to use fast Fourier Transform (FFT) to compute it quickly. Indeed, using
the Parseval theorem, ∥∥∥∥∥∥X −

K∑
k=1

Zk ∗DDDk

∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥X̂ −
K∑
k=1

ẐkD̂DDk

∥∥∥∥∥∥
2

2

(3.18)

This technique accelerates the computations for the updates at each step in FISTA.
The most expensive computation is the FFT performed to obtain the Fourier transform
of the elements. It has a computational cost of O

(
KT log T

)
.

3.3.3 Alternating Direction Method of Multiplier (ADMM)

General ADMM Algorithm

An algorithm which received much attention recently for `1 optimization is the altern-
ating direction method of multiplier (ADMM). It was introduced for general problems
by Gabay & Mercier (1976). The paper considers solving problem of the form

minimize h1(X) + h2(Y )

subject to AAAX +BBBY = C
(3.19)

with X ∈ RP1 , Y ∈ RP2 , C ∈ RP3 andAAA ∈ RP3×P1 ,BBB ∈ RP3×P2 for two convex functions
h1, h2. The resolution of this constraint optimization problem is performed using the
augmented Lagrangian, defined as

L(X,Y,Θ, µ) = h1(X) + h2(Y ) + ΘT(AAAX +BBBY −C) +
1

2
µ‖AAAX +BBBY −C‖22 . (3.20)

with Θ ∈ RP3 the dual variable of the problem. Algorithm 3.5 describes the steps of
the ADMM algorithm. In a nutshell, the updates are performed alternatively on each
variable of the Lagrangian to reach the optimum. Updates line 4 and line 5 minimize
the Lagrangian L in the first two arguments and then, in line 6, the dual variable Θ is
updated in order to maximize L.
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Fast Convolutional Sparse Coding (FCSC)

Bristow et al. (2013) built on this method to propose a new algorithm to solve (3.8).
The idea is to re-write the minimization problem by splitting the two parts of the cost
function with an auxiliary variable Y , such that

minimize
1

2

∥∥∥∥∥∥X −
K∑
k=1

Zk ∗DDDk

∥∥∥∥∥∥
2

2︸ ︷︷ ︸
h1(Z)

+λ
∥∥Y ∥∥

1︸ ︷︷ ︸
h2(Y )

,

subject to Z = Y .

(3.21)

The augmented Lagrangian for problem (3.21) is given by

L(Y, Z,Θ, µ) = h1(Z) + h2(Y ) + ΘT(Y − Z) +
µ

2
‖Y − Z‖22 (3.22)

The updates are then computed using the same steps as described in Algorithm 3.5.
The steps line 5 and 6 are easy to compute in this setup. The updates can be computed
using the following

Y (q+1) = Sh

(
Z(q+1) +

Θ(q)

µ
,
λ

µ

)
(3.23)

Θ(q+1) = Θ(q) +
(
Z(q+1) − Y (q+1)

)
(3.24)

where Sh is the soft thresholding operator, defined in (3.17). The most expensive part
is to compute the update line 4,

Z(q+1) = argmin
Z

1

2

∥∥∥∥∥∥X −
K∑
k=1

Zk ∗DDDk

∥∥∥∥∥∥
2

2

+
µ

2

∥∥∥∥∥Y (q) +
Θ(q)

µ
− Z

∥∥∥∥∥
2

2

. (3.25)

Using the same idea as the one to accelerate the gradient in FISTA in (3.18), we can
rewrite (3.25) using the Parseval theorem

Ẑ(q+1) = argmin
Z

1

2

∥∥∥∥∥∥X̂ −
K∑
k=1

ẐkD̂DDk

∥∥∥∥∥∥
2

2

+
µ

2

∥∥∥∥∥∥Ŷ (q) +
Θ̂(q)

µ
− Ẑ

∥∥∥∥∥∥
2

2

.

The solution to this problem is given by the solution Ẑ of the linear system

(
D̂DD
H
D̂DD + µIII

)
Ẑ = D̂DD

H
X̂ + µ

Ŷ (q) +
Θ̂(q)

µ

 . (3.26)

This system is composed of T independent system, which correspond to each frequency
computed by the FFT and the solution of (3.25) can be retrieved using the inverse
Fourier transform. The full algorithm to solve the convolutional sparse coding based on
ADMM is described in Algorithm 3.6.
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Algorithm 3.6 Fast convolutional Sparse Coding (FCSC)
1: Input: Signal X, Dictionary DDD, parameter µ and tolerance ε
2: Initialization: Y (0) = X,Θ(0) = 0
3: Precompute D̂DD with FFT of DDD with zero-padding to length T
4: repeat
5: Compute Ŷ (q), Θ̂(q) with FFT of Y (q),Θ(q) with zero-padding to length T
6: Solve the linear system for l ∈ J0, T2 J for Ẑ(q+1)

(
D̂DD[l]HD̂DD[l] + µIIIK

)
Ẑ(q+1)[l] = D̂DD[l]HX̂[l] + µ

Ŷ (q)[l] +
Θ̂(q)[l]

µ


7: Compute inverse FFT of Ẑ(q+1)

8: Update Y (q+1) = Sh

(
X(q+1) +

Θ(q)

µ
,
λ

µ

)
9: Update Θ(q+1) = Θ(q) +

(
X(q+1) − Y (q+1)

)
10: until max

(
‖X(q+1) − Y (q+1)‖2, ‖X(q+1) −X(q)‖2

)
< ε

11: Return: Y (q)

Convergence and complexity

Gabay & Mercier (1976) showed that the ADMM algorithm converges to the optimal
solution of (3.8). A detailed study of the properties of this algorithm is given in Boyd
et al. (2010). This algorithm often gives an estimate with sufficient accuracy for dic-
tionary learning within tens of iterations. Indeed, with alternate minimization, each
iteration does not need to find an optimal point, but a point with medium accuracy.
However, ADMM can be slow to converge to high accuracy.

For convolutional sparse coding, the computational complexity of each iteration of the
ADMM is driven by the update of Z(q). The updates are performed with FFT, costing
O
(
KT log T

)
, and the resolution of the T/2 linear systems (3.26), with cost O

(
TK3

)
using the cholesky decomposition.

The value of µ in the ADMM algorithm controls the enforcement of the constraint
X = Y . A natural extension is to have this parameter vary at each iteration, with
the goal to improve the practical convergence to a good solution and to make the
algorithm more robust to initialization. Rockafellar (1976) showed that for strongly
monotone operator, having µ(q) −−−−→

q→+∞
+∞ implied super-linear convergence of method

of multiplier. As the convergence proof for ADMM relies on a fixed µ, it is sufficient to
consider that µ becomes fixed after a certain number of iterations. The most classical
scheme to scale µ is the following:

µ(q+1) = min(µmax, τµ
(q)) ,
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Algorithm 3.7 Greedy Coordinate Descent
1: Input: D̄DD,X, parameter ε > 0
2: C = J1,KK× J0, L− 1K
3: Initialization: ∀(k, t) ∈ C,
Zk[t] = 0, βk[t] =

(
D̃k ∗X

)
[t]

4: repeat

5: ∀(k, t) ∈ C, Z ′k[t] =
1

‖Dk‖22
Sh(βk[t], λ) ,

6: Choose (k0, t0) = argmax
(k,t)∈C

|∆Zk[t]|

7: Update β using (3.29) and Zk0 [t0]← Z ′k0 [t0]
8: until |∆Zk0 [t0]| < ε

for a given τ > 1 and µmax usually fixed to 105. Another scaling proposed for µ is to
adapt it to balance the two parts of the function. He et al. (2000) proposed to use the
update rule

µ(q+1) =


τµ(q), if ‖AX(q+1) +BY (q+1) − C‖2 > ν‖µATB(X(q+1) −X(q))‖2 ,
1

τ
µ(q), if ‖µATB(X(q+1) −X(q))‖2 > ν‖AX(q+1) +BY (q+1) − C‖2 ,

µ(q), elsewhere,

where ν > 1 and τ > 1. Typical choices for these parameters are ν = 10 and τ = 2. The
idea between this penalty is to balance the residuals of the primal and dual problems,
keeping them withing a factor ν of one another. Once one residual becomes bigger than
this factor, the weight of the associated problem is increased by properly scaling the
multiplier ν. This simple scheme works well in practice.

3.3.4 Convolutional Coordinate Descent (CD)

Another classical algorithm for sparse coding is the coordinate descent (CD). This
method was first proposed specifically for LASSO problem by Wang et al. (2007) and
then described in a unified framework by Friedman et al. (2007). Based on this seminal
work, multiple extensions and variant have been developed. The core idea for this
algorithms is the following framework:

1. Select a coordinate to update,

2. Update only this coordinate.

The different choices for steps 1 and 2 are critical and should be chosen based on the
optimization problem at hand. The key idea in coordinate descent is that updating one
coordinate of the solution is computationally cheap and if the solution is sparse, only
few coordinates should be updated as most of them are 0.

Coordinate Update

For the second step of the procedure, two schemes have been proposed. Given a co-
ordinate (k0, t0) to update in the current solution, the simplest update is to use a
proximal gradient descent step for the cost function reduced to this coordinate. This
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update strategy uses a learning rate α > 0 given as a parameter to perform the gradient
descent and performs the following step

Zk0 [t0] = Sh
(
xk0 [t0]− α

(
∇h1(Z(q))

)
k0

[t0]

)
(3.27)

This strategy allows the practitioner to adapt the step size algorithm, which can be
critical in some application. In most cases, using the inverse of the coordinate-wise
Lipschitz constant is a good choice. In the case of the convolutional sparse coding, it
is also possible to compute the optimal value of a given coordinate if all the other are
fixed. The problem in coordinate (k0, t0) admits a closed form solution, which can be
used to replace the value of the updated coefficient,

Z ′k0 [t0] =
1

‖Dk0‖22
Sh(βk0 [t0], λ) (3.28)

with

βk[t] =

D̃k ∗

X −
K∑
k′=1
k′ 6=k

Zk′ ∗Dk′ − Φt

(
Zk
)
∗Dk


 [t] .

The coefficient is then updated to its optimal value Z ′k0 [t0].

Coordinate Selection

The first coordinate selection strategy proposed for this algorithm is to cycle through
all the coordinates (Friedman et al., 2007). The coordinates are all updated, once at
a time, before a new pass is made. Shalev-Shwartz & Tewari (2009) proposed another
selection scheme picking coordinates at random. Different sampling strategies have been
proposed but the most common one is the uniform strategy. For these two methods, the
choice of coordinate is computationally inexpensive as it can be made independently of
the current point.

Osher & Li (2009) proposed another idea for the selection step, aiming to maximize
the cost function descent. A good proxy to the cost change induced by one coefficient
update is to choose the coefficient which would be changed the most by the update, i.e.
if for any coefficient (k, t), the current value Zk[t] would be updated to Uk[t], then the
chosen update coefficient (k0, t0) is

(k0, t0) = argmin
(k,t)∈J1,KK×J0,T−1K

∣∣∣Zk[t]− Uk[t]∣∣∣ .
If the updates are computed using the proximal gradient descent (3.27), this method

chooses the coefficient with the maximal gradient
∣∣∣∣(∇h1(Z(q))

)
k

[t]

∣∣∣∣, up to the soft

thresholding border effect. When the update is done using the optimal value of the
coefficient, the updated coefficient is the one the farthest from its optimal value. This
strategy, tagged as greedy, is efficient in the context of sparse coding as it focuses on
coordinates which have high chances to be non-zero. The drawback is that computing
the updates is more expensive than the previous methods. Moreover, if the greedy
selection is computed naively, the cost of one update can be as expensive as computing
the full gradient. In this case, this method is obviously less efficient than gradient based
method as the full gradient is computed but only one coordinate is updated, leading to
slower algorithm.
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Convergence and Complexity

Tseng (1988) shows the convergence of coordinate-wise maximization to the optimal
solution of concave maximization problems of the form

max
x∈Rn

f(x) +

n∑
i=1

gi(xi)

with f concave and differentiable and the gi concave using cyclic updates of the coordin-
ates xi. Osher & Li (2009) give a proof of the algorithm convergence for greedy updates
and Nesterov (2012) for the randomized updates. In addition, the latter also shows that
the convergence rate of both coordinate selection schemes is O

(
1
q

)
for general convex

and differentiable function f . In their work, Nutini et al. (2015) discuss the convergence
rate of greedy algorithm in several settings and show that for strongly convex function
f , the greedy updates converge faster to the solution than their randomized counter
part, with better constants. It is not clear whether their finding can be extended to non
strongly convex f , as it is the case in the convolutional sparse coding setting.

Another important aspect of comparison between those methods is the complexity of
each iteration. Computing the new value for the updated coordinate, for both (3.27)
and (3.28), has the same complexity of O

(
KW

)
, obtained by maintaining the auxiliary

variables ζ or β after each update (see below). For coordinate selection, the compu-
tational cost of choosing a random coordinate is O

(
1
)
whereas selecting the maximal

coordinate is O
(
KT

)
. When choosing a variant of the coordinate descent, there is a

tradeoff between the computational cost of each update, larger for the greedy coordin-
ate selection, and the convergence rate of the coordinate selection, slower for random
coordinate selection. For convolutional coordinate descent with very sparse coding sig-
nals, the size of the problem is very large and randomized coordinate descent have low
chance of selecting coordinates that are relevant compared to greedy coordinate descent.
In practice, we observe that a greedy coordinate descent is quicker for these problems
with a convergence to sparser solution.

When dealing with sparse problem, only a few coordinates are really important. A
line of methods have been developed to take advantage of this fact by screening out
coefficients that are supposed to be 0 at the optimal solution. These methods are called
screening and are very efficient to improve the computational complexity of coordinate
descent methods. The screening idea was introduced in the seminal work of El Ghaoui
et al. (2012), which proposes safe-rules to screen out variables assured to be 0 in the
optimal solution. Tibshirani et al. (2012) proposed less safe rules, tagged as strong-rules
which are more aggressive and might wrongly disregard some coordinates that needs to
be recovered in a post-processing step. Recently, Fercoq et al. (2015) proposed another
set of rules which screens out more coordinates than the safe-rules but is still assured
to only screen out coordinates that are null at the optimum.

Computing Greedy Updates Efficiently

The success of the greedy updates highly depends on the efficiency to compute the
coordinate update. For problem (3.8), Kavukcuoglu et al. (2010) show that if at iteration
q, the coefficient (k0, t0) is updated from Zk0 [t0] to a value Z ′k0 [t0], by denoting ∆Z(q) =
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Methods Original paper Dictionary adapation
APGD Nesterov 1983 Kavukcuoglu et al. 2010

Block CD Luo & Tseng 1993 Mairal et al. 2010
K-SVD Aharon et al. 2006 Yellin et al. 2017
ADMM Gabay & Mercier 1976 Bristow et al. 2013

Table 3.2: Algorithms for dictionary update

Zk0 [t0]− Z ′k0 [t0], β is updated with

β
(q+1)
k [t] = β

(q)
k [t]− Sk,k0 [t− t0]

(
Zk0 [t0]− Z ′k0 [t0]

)
, ∀(k, t) 6= (k0, t0) (3.29)

with Sk,l[t] = (D̃k ∗Dl)[t] . For all t /∈ J−W + 1,W − 1K, S[t] is zero. Thus, only
O
(
KW

)
operations are needed to maintain β up to date with the current estimate

Z. Finally, the complexity of an iteration of CD is dominated by the O
(
KT

)
opera-

tions needed to find the maximum of |∆Zk[t]|.
Note that for the updates using proximal gradient descent for one coordinate, it is also
possible to maintain the current gradient value with the same complexity. We will
denote ζ(q) = ∇h1(Z(q)) , the gradient at iteration q. If coordinate (k0, t0) is changed
from Zk0 [t0] to Z ′k0 [t0], ζ is updated by

ζ
(q+1)
k [t] = ζ

(q)
k [t]− Sk,k0 [t− t0]

(
Zk0 [t0]− z′k0 [t0]

)
, ∀(k, t) ∈ C (3.30)

This update rule is very close to the one in (3.29) except that all the coordinates
are updated this time, even (k0, t0). After a coordinate update, the gradient can be
maintained using the same number of operation O

(
KW

)
.

3.4 Dictionary updates

Let
(
X [1], . . . , X [N ]

)
be a set of signals in XPT and

(
Z [1], . . . , Z [N ]

)
the associated

convolutional sparse codes. The problem of learning a dictionary on this data set is
posed using the following minimization problem,

DDD∗ = argmin
DDDk∈Ω

1

N

N∑
n=1

1

2

∥∥∥∥∥∥X [n] −
K∑
k=1

Z
[n]
k ∗DDDk

∥∥∥∥∥∥
2

2︸ ︷︷ ︸
GN (DDD)

, (3.31)

for a given constraint set Ω. Conversely to the sparse coding, here the codes are fixed
and we update the dictionary elements. The most common constraint imposed on the
dictionary atoms is to have a unit norm. Indeed, scaling DDD by α and Z by 1/α, for
α > 1, does not change the reconstruction cost but the `1-norm is decreased by a factor
1/α . Thus, without the unit norm constraint, Z tends to 0 and the norm of the atoms
explodes. Other constraints have also been proposed, such as smoothness constraints
enforced by regularizing the gradient with its `2-norm. Problem (3.31) is smooth and
convex if Ω is convex. Table 3.2 summarize three algorithms usually used to compute
DDD∗.
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Algorithm 3.8 Proximal Gradient Descent

1: Input: initial dictionary DDD(0), regularization parameter λ, signals X,Z and toler-
ance ε

2: repeat

3: DDD′ = DDD(q) − 1

L
∇GN (DDD(q)) IGradient step

4: DDD(q+1) = projΩ(DDD′) IProximal operator
5: until maxk,t∈C |DDD(q+1)

k [t]−DDD(q)
k [t]| < ε

6: Return: DDD(q)

3.4.1 Proximal Gradient Descent

If Ω is convex, it is possible to solve (3.31) using a proximal gradient descent. Indeed,
if IΩ denotes the indicator function of the constraint set Ω, (3.31) is equivalent to

argmin
Dk

GN (DDD) + IΩ(DDD)

The proximal operator of IΩ is the projector projΩ on Ω. If Ω is the unit ball, this
proximal operator is separable for each atom and can be computed using the following
close form,

projΩ(DDDk) =
DDDk

max
(
‖DDDk‖2, 1

) .

The proximal gradient descent is recalled in Algorithm 3.8. At each iteration, a gradient
step is performed for the smooth and convex function GN . Then, we use the proximal
operator of IΩ to compute the next point.

Algorithm 3.9 Accelerated Proximal Gradient Descent

1: Input: initial dictionary DDD(0), regularization parameter λ,
signals X,Z and tolerance ε

2: Initialize: A(0) = DDD(0) and γ(0) = 1
3: repeat
4: Gradient step:

DDD(q+1) = projΩ(AAA(q) − 1

L
∇GN (AAA(q)))

5: Update momentum coefficient γ(q+1) =
1 +

√
1 + 4γ(q)2

2
6: Nesterov momentum step:

AAA(q+1) = DDD(q+1) +
γ(q) − 1

γ(q+1)

(
DDD(q+1) −DDD(q)

)
7: until maxk,t∈C |DDD(q+1)

k [t]−DDD(q)
k [t]| < ε

8: Return: DDD(q)

Like ISTA, this algorithm can be accelerated using the Nesterov momentum (as de-
scribed in Subsection 3.3.2). Algorithm 3.9 summarizes the Accelerated Proximal Gradi-
ent Descent (APGD). This acceleration uses an auxiliary point AAA computed by continu-
ing in the direction of the update between two iterations.
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Algorithm 3.10 Block Coordinate Descent

1: Input: initial dictionary DDD(0), signals A and B defined in (3.32) and tolerance ε
2: Pre-compute Lk = Ak,k[0]
3: repeat
4: for k = 1 . . . K do
5: Compute

1

Lk
∇GN (DDD(q))k using (3.33)

6: DDD′k[t] = DDD
(q)
k [t]− 1

Lk
∇GN (DDD(q))k[t] IGradient step on coordinate k

7: DDD
(q+1)
k = projΩ(DDD′k) IProximal operator for DDD′k

8: end for
9: until maxk,t∈C |DDD(q+1)

k [t]−DDD(q)
k [t]| < ε

10: Return: DDD(q)

3.4.2 Block coordinate Descent

Mairal et al. (2010) proposed another algorithm to solve (3.31) based on the block co-
ordinate descent. The block coordinate descent updates at each iteration one of the
dictionary atoms to minimize the objective function relatively to this element with all
the other fixed. The atoms are updated using the coordinate-wise proximal gradient
descent step. The main difference with Algorithm 3.8 is that it is only necessary to
compute the gradient for one atom at a time, making the iteration more efficient. The
proposed method uses cyclic updates for the atoms but can easily be extended to ran-
domly choose the atom. Algorithm 3.10 describe the algorithm.

An important observation for this algorithm is the method to compute the coordinate-
wise gradient. The gradient of GN can be easily computed when using these two con-
stants

Ak,l[t] =
1

N

N∑
n=1

(
Z̃

[n]
k ∗ Z

[n]
l

)
[t]

Bk[t] =
1

N

N∑
n=1

(
Z̃

[n]
k ∗X [n]

)
[t]

∀t ∈ J−(W − 1),W − 1K (3.32)

These two constants are simply the sum of the auto-correlation and cross-correlation of
X and Z, for a given shift t. Using this constants, it is possible to compute the gradient
without using the signals Z and X, i.e.

∇GN (DDD)k[t] = Bk[t]−
K∑
l=1

(
Ak,l ∗DDDl

)
[t] . (3.33)

3.4.3 K-SVD

When the constraint set Ω is the `2 ball, it is possible to compute the dictionary updates
using the K-SVD algorithm. In their paper, Aharon et al. (2006) propose a technique
based on the computation of K Singular Value Decomposition to update the dictionary.
This algorithm can be seen as an extension of the K-Means algorithm and it has been
adapted for convolutional dictionary learning in Yellin et al. (2017). For each dictionary
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Algorithm 3.11 K-SVD

1: Input: estimate of the sparse code Z, initial dictionary DDD(0)

2: Initialize DDD to 0
3: for k = 1 . . . K do

4: Compute Rk = X −
K∑
l=1
l 6=k

DDD
(0)
l ∗ Zl.

5: For t ∈ J0, L− 1K such that Zk[t] 6= 0,
collect the sub-series (Rk[t], . . . , Rk[t+W−1]) in a matrix Ak. such that Zk[t] 6= 0,

6: Compute the first singular vectors (u, v) of Ak
7: Set DDDk = v
8: end for
9: Return: DDD

element DDDk, the residual signal

R
[n]
k = X [n] −

K∑
l=1
l 6=k

DDDl ∗ Z [n]
l

is computed without the atom DDDk. Using this notation, the problem of minimizing GN
with respect to DDDk can be re-written as

argmin
‖DDDk‖2=1

1

N

N∑
n=1

∥∥∥∥R[n]
k −DDDk ∗ Z [n]

k

∥∥∥∥2

2

The idea in K-SVD is to use the fixed support of Z [n]
k and to solve this problem using the

SVD. To that purpose, we select the segments in the residuals which are activated in the
signals Z [n]

k , i.e. the segment (R
[n]
k [t], . . . R

[n]
k [t+W − 1]) for (t, n) ∈ J0, L− 1K× J1, NK

such that Z [n]
k [t] 6= 0. All these segments are used to create a matrix Ak where each

line is one of the segment. Then, the first singular vectors (u, v) of Ak are computed
using the SVD of Ak and the value of DDDk can be updated to v. Note that the value of
u can also be used to update the non-zero values of Zk. The algorithm is summarized
in Algorithm 3.11.

One advantage of this method is that the dictionary can be updated simultaneously with
the non-zero coefficients of Z. This ensures that the cost function can only decrease
when using an `0 penalization of the coding signal. For the `1-norm, this property is
not verified anymore, but the sparsity of the activation vectors cannot be reduced.

3.4.4 Alternate Direction Method of Multiplier (ADMM)

Finally, Bristow et al. (2013) proposed a method for the dictionary updates based on
the ADMM. The basic idea behind this method is to split the cost function between two
variables and to constrain these variables to be equal as described in Subsection 3.3.3.
For problem (3.31), this gives

argmin
DDD=DDD′

GN (DDD) + IΩ(DDD′) (3.34)
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Algorithm 3.12 ADMM for dictionary update

1: Input: initial dictionary DDD(0), signal X [n] and Z [n], parameter µd and tolerance ε
2: Initialize Θ

(0)
d to 0 and DDD′(0) = DDD(0)

3: repeat
4: Compute DDD(q+1) with (3.35)
5: Compute DDD′(q+1) with (3.36)
6: Compute Θ

(q+1)
d with (3.37)

7: until max
(
‖DDD(q+1) +DDD′(q+1) − C‖2, ‖DDD(q+1) −DDD(q))‖2

)
< ε

8: Return: DDD′(q)

The augmented Lagrangian of (3.34) is

L(DDD,DDD′,Θd, µd) = GN (DDD) + IΩ(DDD′) + ΘT
d (DDD −DDD′) + µd‖DDD −DDD′ + Θd‖22

Then, the ADMM algorithm optimizes L for each variable iteratively. In the case of
(3.31), the following updates are performed,

DDD(q+1) = argmin
DDD

GN (DDD) + µd

∥∥∥∥∥∥DDD −DDD′(q) +
Θ

(q)
d

µd

∥∥∥∥∥∥
2

2

(3.35)

DDD′(q+1) = projΩ

DDD(q+1) +
Θ

(q)
d

µd

 (3.36)

Θ
(q+1)
d = Θ

(q)
d +DDD(q+1) −DDD′(q+1) (3.37)

As for the convolutional sparse coding, the update (3.35) is the most expensive to
compute. Using the same idea as for the computation of the of the updates of Z in
(3.25), we can use Fourier domain to show that DDD(q+1) is the inverse Fourier transform

of the solution D̂DD
(q+1)

of the linear system N∑
n=1

Ẑ [n][l]HẐ [n][l] + µdIIIK

D̂DD[l] =

 N∑
n=1

Ẑ [n][l]HX̂ [n][l] + µdD̂DD′[l] + Θ̂d[l]

 ,

for l in J0, T/2K and for Fourier Transforms computed with zero-padding to length T
of Z and DDDk. As DDD′ is projected on the constraint set, it is the one which should be
returned at the end of the algorithm.

One advantage of this algorithm is that it is easy to use with Algorithm 3.5. In-
deed, the ADMM algorithm can be used for the full dictionary learning problem (3.3).
The updates are performed following the equations (3.23),(3.24), (3.25), (3.35), (3.36)
and (3.37) sequentially. This algorithm can be reduced to using one iteration of Al-
gorithm 3.6 followed by one iteration of Algorithm 3.12.
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In this chapter, we describe the Singular Spectrum Analysis (SSA) in the convolu-
tional representation framework and discuss the properties of the learned dictionary.
This novel description of the SSA shows that it can be used to solve the non-convex
optimization problem for dictionary learning with null regularization and orthonormal
dictionary elements. Then, we derived a general framework to automatize SSA grouping
step, which is crucial for interpretability of the components extracted by this method.
This framework is used to compare different grouping strategies and to highlight their
properties. These grouping techniques are used in Chapter 10 to capture the trend of
oculometric signals.
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4.1 Analyzing Short and Noisy Time Series

In their paper, Vautard & Ghil (1989) introduced Singular Spectrum Analysis (SSA),
a technique based on the study of sub-series of a signal to decompose it as a sum of
meaningful components. These components can be linked to the trend and seasonality
of the studied series. The technique presents several advantages for the treatment of
heterogeneous series. We will present the main steps involved in the decomposition and
give hints on its usage as a time series representation.

The main idea behind the SSA is to extract from the signal a family of patterns explain-
ing the variation of the sub-series of the signal. Then, the signal is decomposed as a
sum of components linked to these extracted patterns. Vautard & Ghil (1989) proposed
to use Singular Value Decomposition (SVD) to extract patterns explaining the variance
of the signal. They studied the resulting components, which have interpretable role in
the signal. The analyses of the components and their Fourier spectrum reveal that the
components are linked to either the trend, the seasonality or the noise in the original
signal. The resulting components have notably been used to study meteorological data
in the original paper.

In practice, it computes a low-rank approximation of the sub-series of the studied signal.
This low-rank approximation is computed using the same technique used inthe Principal
Component Analysis (PCA, Hotelling 1933). The pattern extracted to construct the
low-rank approximation form a good basis to represent the signal as they capture its
main variation sources in the signal.

The patterns extracted with the SSA can be interpreted using the convolutional rep-
resentation presented in Section 3.1. The study of the sub-series in the signal reveals
the local structures of the signal, based on the extraction of patterns from the signal.
The link between the two representations is made clear in Section 4.4 and the particular
constraints imposed on the dictionary are explained. By design, the SSA does not find
a sparse representation and the atoms are not always interpretable. But this efficient
method can be used to initialize a convolutional dictionary learning algorithm.

The rest of this chapter will be organized as follows. The SSA method is presented in
Section 4.2 and its known properties are exposed in Section 4.3. Section 4.4 highlights
the link between the SSA and convolutional representation and propose to use the SSA
as an initialization for convolutional dictionary learning. Based on the properties of the
SSA, we also investigate in Section 4.5 strategies to automatize the grouping of the SSA
components, making the representation learned with SSA more interpretable.

4.2 Singular Spectrum Analysis (SSA)

The SSA is composed of three steps. First, low-rank patterns that can capture the
variance of the signal are computed. Then, the signal is decomposed as a sum of series
linked to these patterns. Finally, a grouping step is used to clean up the decomposition
in order to obtain informative components.
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4.2.1 Embedding the Series in a Low-rank Space

Trajectory matrix

We consider a discrete signal X ∈ X 1
T in R. The W-lagged matrix XXX(W ) ∈ RL×W is

defined for W < T/2, with L = T −W + 1 such that

XXX(W ) =


X[0] X[1] . . . X[W − 1]
X[1] X[2] . . . X[W ]
. . .

X[T −W − 1] X[T −W ] . . . X[T − 1]

 .

Remark that the rows of this matrix contain all the sub-sequences of length W which
can be extracted from x. The matrix XXX(W ) contains L examples of patterns of the
signal and it can be analyzed with the statistical tools to extract patterns of interest.
The idea of the SSA is to learn from these L sub-series the patterns which best explain
the variance of the signal. The analysis of the singular vectors of XXX(W ) determines
the patterns suited to approximate the patterns with low-rank, capturing most of the
variations within these samples. The order in this matrix plays an important role in
the analysis as it determines the number of patterns needed to correctly approximate
the signal.

Matrix Decomposition

The patterns to encode the series are extracted from XXX(W ) using the Singular Value
Decomposition (SVD). This decomposition factorizes XXX(W ) as

XXX(W ) = UΛV T

with U ∈ OL, V ∈ OW two orthogonal matrices and Λ a diagonal matrix in RL×W
containing on its first diagonal the singular values of XXX(W ),

{
λ1 ≥ · · · ≥ λW

}
. By

construction, W ≤ L and this decomposition can be re-written as a sum of W rank 1
matrices, such that

XXX(W ) =
W∑
k=1

λkUkV
T
k (4.1)

with Vk the rows of V in RW and Uk the rows of U in RL. This sum of low-rank matrices
is linked to the best low-rank approximation of the W-lagged trajectory matrix. The
optimal approximation of rank 1 ≤ K ≤W of XXX(W ) is given by the sum of the K first
terms of this sum, i.e.

argmin
rank(Y [K])=K

‖XXX(W ) − Y [K]‖2 =
K∑
k=1

λkUkV
T
k .

Another property of this decomposition is that the variance of XXX(W ) explained by each
pattern Vk is directly linked to its associated singular value λk. In this sense, λk is a
measure of the importance of pattern Vk to explain the variation of the sub-sequences
of the signal X and it gives a natural ordering of the patterns. These computations can
be linked to the Principal Component Analysis (PCA) introduced by Hotelling (1933).

In practice, the patterns are computed using a eigenvalue decomposition. Indeed, as
U ∈ OL, the value of V can be computed by diagonalizing the matrix XXX(W )TXXX(W ), as

XXX(W )TXXX(W ) = V TΛ2V .
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The singular values are then obtained by taking the square root of the computed eigen-
values and the matrix U is computed using the relation

UΛ = XXX(W )V .

With this computation, the complexity of this decomposition is reduced to O
(
W 3
)

instead of O
(
W 2L

)
.

Note that the singular spectrum of the trajectory matrix has been largely studied in the
Linear Dynamical System Literature (LDS). Indeed, for an autoregressive model (AR)
of order p, the trajectory matrix is of rank 1 and its first singular vector can be used
to estimate the coefficients of the AR model. For more complex models, the trajectory
matrix is used in the N4SID system identication method (Van Overschee & De Moor,
1994). Also, the SSA components satisfy the Linear Recurrence Relation (LRR) models
which are associated with AR models. But these two models should not be confused as
they have different models for the noise (Golyandina & Korobeynikov, 2014).

4.2.2 Reconstruction

Hankelization Operator

By construction, the signal X can be recovered perfectly from the trajectory matrix
XXX(W ) by averaging its values along the anti-diagonal. This is due to the specific structure
of the trajectory matrices, which have their anti-diagonals constant. Matrices verifying
this property are called Hankel matrices. There is a natural bijection Φ from HL,W , the
space of Hankel matrices of size L×W , to the signal space X 1

T for T = W +L− 1. The
approximation done by the factorization of the trajectory matrix does not preserve the
Hankel property. For a given matrix YYY ∈ RL×W , we would like to associate a signal
Y ∈ X 1

T whose W-lagged trajectory matrix YYY (W ) minimize the Frobenius norm with YYY ,
i.e.

argmin
YYY (W )∈HL,W

‖YYY − YYY (W )‖22 .

As YYY (W ) is the trajectory matrix of Y , we have by definition YYY
(W )
i,j = Y [t] for all

i ∈ J1, LK and j ∈ J1,W K such that i+ j = t. With this relation

‖YYY − YYY (W )‖22 =
W∑
i=1

L∑
j=1

(YYY i,j − YYY (W )
i,j )2 ,

=

T∑
t=0

∑
i+j=t

(YYY i,j − Y [t])2 .

The first order conditions for the minimization problem lead to:

Y [t] =
1

Wt

∑
i+j=t

YYY i,j

where Wt is the number of pair (i, j) ∈ J1, LK× J1,W K such that i+ j = W , i.e.

Wt = min(W, t+ 1, T − t) .
From this result, we can define the operator H : RL×W → X 1

T to recover a signal
from any matrices in RL×W , even without Hankel structure. The signal is obtained by
averaging the values of the matrix along the anti-diagonals and thus this operator is
linear. This operator is called the Hankelization operator (Buchstaber, 1994).
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Low-rank Signals

The component obtained from the SVD decomposition of the trajectory matrix XXX(W )

can be associated to temporal signal with the reconstruction operator H. The two
previous steps provide a decomposition of the trajectory matrix as a sum of rank one
matrices. Let Y (k) denotes the component obtained by reconstructing the signal asso-
ciated to the k-th rank one matrix of the SVD decomposition

Y (k) = H(λkUkV
T
k ) . (4.2)

By linearity of the Hankelization operator, the decomposition (4.1) can be re-written
as a sum of temporal signals linked to the spectrum of the trajectory matrix i.e.

X = H(XXX(W )) =

W∑
k=1

H(λkUkV
T
k ) =

W∑
k=1

Y (k)

The signal X is decomposed into a sum of additive component with rank one trajectory
matrices that are linked to the singular values λk of the matrix.

Remark 4.1. Note that this procedure is split in two distinct steps. In the first one,
a low rank approximation of the sub-series subspace is computed and then, the obtained
components are projected on the space of Hankel matrices. A possibly more efficient
procedure would be to directly compute low-rank components under the Hankel constraint.
For instance, using the ADMM would allow simply require to use the hankelization
procedure and the low rank approximation with the SVD with iterative matrices in order
to compute a matrix which is both low-rank and has Hankel structure.

4.2.3 Grouping

A reconstruction based on the W computed components retrieves perfectly the traject-
ory matrixXXX(W ) and thus the signal x. But to be informative, the decomposition needs
to select the interpretable information. The last components of the decomposition, tied
to the smallest eigenvalues λk, are likely to be noise present in the series. Indeed, the
noise is not repeated in the W sub-series and thus, capturing the noise should explain
less variance of the series than capturing the other patterns. Moreover, the learned
patterns Vk can be redundant as it can be seen in Figure 4.1. After the decomposition
is computed, an extra step called grouping is necessary to clean and select the relevant
information and make the representation interpretable.

The grouping step consists in applying a chosen heuristic to create a partition (I1, . . . , IM ),
with M set Im ⊂ J1,W K such that ∪Mm=1Im = J1,W K, for which all the components
Y (k) with k ∈ Im should be interpreted together. The component linked to the group
Im is denoted X(m) and is computed as the sum of the components in this group, i.e.

X(m) =
∑
k∈Im

Y (k) .

As said earlier, some components are tied to the noise of the series and are not useful
for the interpretation of the signal representation. The last group IM is used to regroup
these components, to avoid having them polluting the other groups. To discard non-
useful elements, a natural measure of the contribution of a component in the signal is
the share of the corresponding eigenvalue linked to component k,

λk∑W
l=1 λl

.
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Figure 4.1: First elements of the dictionary of patterns extracted from the raw signal
(top) ordered from left to right and top to bottom. The first and eighth components
are both linked to the trend of the series. Some other components like the sixth and
seventh or the ninth and tenth result from very similar phenomenons and should be
interpreted together.

This measure shows the part of the series variance explained by this component. Com-
ponents with a very small contribution can be discarded as they have a negligible effect
on the signal, and are often associated to noise.

This step is very sensitive as it controls the quality of the decomposition. If the grouping
is too wide, it would lead to components mixing different local structures of the signal,
making it complicated to identify them. If it is too tight, the decomposition would fail to
group components which account for the same patterns and the obtained decomposition
would be less informative. In Golyandina et al. (2001), some insights are proposed to
perform the grouping step, but they all require a manual selection in the end. We
propose in the Section 4.5 automatized strategies to perform the grouping step in this
procedure.

4.3 Properties of the SSA

In this section, we review the known separability properties of the SSA, mostly de-
rived by Golyandina et al. (2001). It sheds light on the characteristics of the retrieved
component and dictionary.

4.3.1 Notion of Separability

In Golyandina et al. (2001), the authors introduce the mathematical concept of separ-
ability to study the SSA decomposition. The decomposition obtained from the SSA is
closely related to this notion. Let X(1) and X(2) denote two univariate series that we
would like to separate.
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Definition 4.2 (Separability). Two components X(1) and X(2) are said to be separable
by SSA with window length W if there exists two subsets I1 and I2 of J1,W K such that
I1 ∩ I2 = ∅ and

X(m) =
∑
k∈Im

Y (k) =
∑
k∈Im

H(λkUkV
T
k )

where (λk, Uk, Vk) are the singular values and associated singular vectors of theW -lagged
trajectory matrix of X = X(1) +X(2) and H is the Hankelisation operator.

The components are separable when they can be retrieved as the sum of basic com-
ponents computed with the W -lagged trajectory matrix SVD. When it is not the case,
there is no way to perfectly recover the original components from the one obtained with
the SSA.

The (Vk)k=1,...,W form an orthogonal basis of the trajectory space L(W ), the space
containing all W -lagged trajectory matrices of time series of length T . Choosing I1, I2

is equivalent to split this family into two groups of orthogonal basis vectors. As the
patterns Vk are orthogonal to each other, the trajectory matrices of each signal have to
live in the space spanned by the patterns in Im , i.e. L(W,m) = span

{
Vk/k ∈ Im

}
. The

orthogonality of these two spaces implies that all sub-series of length W of X(1) have to
be orthogonal to the sub-series of size W of X(2). By symmetry of the parameters W
and L, the same property holds for sub-series of size L too. All the rows and columns
of the W -lagged matrices linked to the separable series are orthogonal.

Proposition 4.3. Two signals X(1) and X(2) are separable by SSA with W -length
window if and only if all sub-series of length W in X(1) are orthogonal to sub-series of
length W in X(2).

This property indicates that the notion of separability is highly dependent of the choice
of the parameter W . Using this characterization of the separability, a relaxed notion of
the separability is defined.

Definition 4.4 (ε-Approximate separability). For ε > 0, two series are said ε-approximately
separable if all the Pearson correlation coefficients for the rows (or columns) of the tra-
jectory matrices are close to zero i.e. for W ′ ∈

{
W,L

}
:∑W ′−1

l=0 X(1)[t0 + τ ]X(2)[t1 + τ ]√∑W ′−1
τ=0 X(1)[t0 + τ ]2

√∑W ′−1
τ=0 X(2)[t1 + τ ]2

< ε 1 ≤ t0, t1 ≤ T −W ′

If the two series X(1) and X(2) are separable, small perturbations can result in series
which are only approximately separable. This notion keeps information on the separab-
ility of two series in a less constrained way. Also, the stability property is not stable with
the window length W and the approximate separability is more robust to the choice of
W .

Separability with Harmonics

These notions grasp the kind of signals that SSA can separate and the effects of the
different parameters. An important case is to know under which conditions a non-zero
signal X(2) is separable by SSA with window length W from a harmonic X(1)[t] =
cos(2πωt+ φ) with 0 < ω < 1

2?
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Proposition 4.5. A harmonic component X(1) can be separated with the W -windowed
SSA from a signal X(2) if X(2) has a null Fourier spectrum in ω and if the window
length is a multiple of the period of X(1) and the period of X(2).

Using Proposition 4.3, for all 0 ≤ t0, t1 ≤ T −W ,

W−1∑
τ=0

X(1)[t0 + τ ]X(2)[t1 + τ ] =
W−1∑
τ=0

cos(2πω(t0 + τ) + φ1)X(2)[t1 + τ ] = 0 .

By combining these equations for t0 and t0 + 1, we get∑W−1
l=0 X(1)[t0 + τ ]X(2)[t1 + τ ]−∑W−1

l=0 X(1)[t0 + τ + 1]X(2)[t1 + τ ] = 0
⇔ cos(2πωt0 + φ)X(2)[t1]− cos(2πω(t0 +W ) + φ)X(2)[t1 +W ] = 0

⇔ cos(2πωt0 + φ)
[
X(2)[t1]− cos(2πωW )X2[t1 +W ]

]
−

sin(2πωt0 + φ) sin(2πωW )X(2)[t1 +W ] = 0

As this equality holds for all 1 ≤ t0 ≤ T −W ,

cos(2πωW )X(2)[t1 +W ] = X(2)[t1], sin(2πωW )X(2)[t1 +W ] = 0, ∀t1 ∈ J0, L−1K .

The second equality is valid if 2ωW is an integer, as X(2) is non-zero. With this first
hypothesis verified, i.e. 2ωW is an integer, the first equation is reduced to a periodicity
condition. The separability is only possible if X(2) is periodic with period T0 and T0

divides W . Another property which comes from the orthogonality of the length W
sub-series is seen from the Fourier spectrum of component X(2). A simple computation
gives

W∑
τ=0

e2iπωkX(2)[τ ] = 0 i.e. X̂(2)(ω) = 0 .

This condition is quite natural as it means that components sharing the same harmonic
are not separable with the SSA.

Approximate Separability of Sums of Harmonics

In their book, Golyandina et al. (2001, chap. 6) show that the notion of approximate
separation is more robust to the choice of window length W .

Proposition 4.6. Two oscillatory signals X(1) and X(2) defined for N1, N2 ∈ N, for
{ω(1)

n }N1
n=1, {ω

(2)
n }N2

n=1 ⊂ R+ and {φ(1)
n }N1

n=1, {φ
(2)
n }N2

n=1 ⊂ [0, 2π[ by

X(m)[t] =

Nm∑
n=1

cos(2πω(m)
n t+ φ(m)

n )

are ε-approximately separable by SSA with window length W if they have disjoint sets

of frequencies
{
ω

(m)
n

}Nm
n=1

and if

min(W,T −W ) > max

1

ε
, max

1≤n≤N1,
1≤n′≤N2

1

|ω(1)
n − ω(2)

n′ |

 .
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Their demonstration relies on the notion of asymptotic separability, when the length
of the series and the size of the window tend to infinity. They show that oscillatory
components with disjoint Fourier spectrum are asymptotically separable and that the
correlation between their components tends to 0 with a rate 1

W .

4.3.2 Selecting a Window Length W

Resolution of SSA. The size of the window used to build the trajectory matrix has
a strong impact on the decomposition provided by the SSA, as seen in Subsection 4.3.1.
It determines the resolution for the algorithm. If the window is too small, all the
variations would be grouped together, resulting in one component, very close to the
full signal. If the size of the window is too big, the components computed with the
SSA would not have an interesting meaning. Indeed, as the number of component
increases, the oscillation and noise in the original signal are spread across them, making
it difficult to interpret the results without a good grouping step. Also, the number of
noisy components increases.

In Figure 4.2, we construct an artificial series X with a sampling rate of 1Hz as the sum
of a quadratic trend component t2 and a sinusoidal component of period T0 = 25 time
samples such that and use SSA with two different window lengths to decompose it.

X[t] = t2 + cos

(
2π

t

T0

)

When the window length is smaller than the period T0, the harmonic component is
grouped in the same component as the trend component by the decomposition. The
dictionary being learned on the windowed signal, when the window is smaller than the
period, the dictionary’s elements can not capture the effect in one element and are seen
as global variation, linked to the trend of the signal. When W is greater than T0, the
learned patterns separate the two components in the signal and we retrieve the right
decomposition.

The reason behind the link between the window length parameter W and the resolu-
tion can be seen with Proposition 4.5 and Proposition 4.6. The length of the window
influences the capacity of SSA to separate harmonic components from one another.
Particularly, Proposition 4.6 shows that the resolution of SSA is intimately tied to the
selection ofW , as harmonic components not too close with |ω1−ω2| > ε are ε-separable
if 1

ε < W .

Complexity. Because of the symmetry of the problem in W and L = T −W + 1, the
window length has to be chosen in J2, T/2K. Choosing a bigger window does not yield
better results as the SVD of the trajectory matrix is the same for W and L. Increasing
the window length also increases the resolution of the SSA and thus the separability
power of the method. Also, with larger window length, the algorithm is more stable as
small variations of the window size have less impact on the results. But the drawback
of a large window is that it increases the computational cost of the method as the SVD
is performed with a complexity O(W 3). Moreover, increasing the window length also
creates more component in the SVD. This requires a better grouping step to ensure
the interpretability of the results. There is no good heuristic to automatically tune the
window length for a particular signal. The main criterion of choice is the size of the
details we want to be able to detect coupled with the choice of a grouping heuristic
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Figure 4.2: (top) Original serie, (bottom) Components extracted with a window length
of (left) W = 10 and (right) W = 100

permitting to get back the meaningful components. The window length should be
chosen larger than the wider high level pattern we want to be able to separate.

4.4 Initialization of the Convolutional Dictionary
Learning with SSA

In this section, we show that patterns learned with the SSA can be used to initialize
the convolutional dictionary learning.

4.4.1 A Convolutional Representation

The SSA computes a set of W patterns V and the associated coding vector U to
represent the sub-series of length W in the signal. These patterns and code vectors
can be used as a convolutional representation of the signal.

Proposition 4.7. Let X ∈ X 1
T an univariate signal and {λk, Uk, Vk}Wk=1 ∈ R×RL×RW

be the eigen-triple obtained with SSA. Up to the W first and last time sample, SSA
computes a convolutional representation of the signal X, i.e. for all t ∈ JW,T −W K,

X[t] =

W∑
k=1

(
Zk ∗DDDk

)
[t] ,

where Zk[t] =
λkUk,t+1

W and DDDk[t] = Vk,t+1.

Proof. Using the properties of the SVD, we can write the coefficients of the trajectory
matrix such that

X
(W )
t,l =

W∑
k=1

λkUk,tVk,l .
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the initial signal can be recovered from the trajectory matrix X(W ) using the hankeliz-
ation operator H , i.e.

X[t] = H(X(W ))[t] =
1

Wt

∑
i+j=t

X
(W )
i,j ,

=
1

Wt

Wt∑
τ=1

X
(W )
1+t−τ,τ ,

=
1

Wt

Wt∑
τ=1

W∑
k=1

λkUk,1+t−τVk,τ ,

where Wt = min(t, T − t,W ) =
∣∣∣{(i, j) ∈ J1, LK× J1,W K; i+ j = t}

∣∣∣ count the number
of term in the t-th anti-diagonal. For t ∈ JW,T −W K, Wt = W and we can write

X[t] =

W∑
k=1

W∑
τ=1

λkUk,1+t−τ
W

Vk,τ =

W∑
k=1

(
Zk ∗DDDk

)
[t] ,

with Zk[t] =
λkUk,t+1

W and DDDk[t] = Vk,t+1.

The set of patterns V computed with the SSA can thus be used as a dictionary to
represent signals. This property shows the link between SSA and convolutional rep-
resentations. This representation is dense and most of the coefficients are nonzero but
the extracted patterns are suited to encode the signal. It is possible to use the ex-
tracted patterns as an initial dictionary for convolutional dictionary learning. This
initialization strategy can be summarized as taking the principal components of the set
of all sub-signals of length W in the training set. This strategy is similar to the one
used in non-convolutional dictionary learning where the dictionary can be initialized
using PCA (see for instance Mairal et al. 2012). This initialization strategy is tested in
Subsection 9.3.3.

Remark 4.8. As the computed convolutional representation is dense, the specific shapes
in the original signal are lost. This is typically due to the fact that the SVD only imposes
a low rank constraint on the coding components. Looking directly for sparse and low-
rank activation would permit to retrieve more interesting components. In particular,
recent results by Elhamifar et al. (2012) propose a method to approximate a matrix as
a product of itself with a sparse and low rank coding matrix. In particular, given all
the sub-series of length W , this method permits to select some of them to encode the
others as sparse linear combination of the selected sub-series. The big advantage of this
method is that the shape of the computed patterns is not altered by the learning and it
is directly a part of the analyzed signals.

4.4.2 Properties of the SSA Dictionary.

The SSA atoms form an orthonormal family, i.e. for i, j ∈ J1,KK,

W−1∑
τ=0

Di[τ ]Dj [τ ] =

0, if i 6= j

1, if i = j
(4.3)

Using the equivalence of the temporal scalar product with its counter part in the fre-
quency domain, the spectrum {D̂k}k=1,..K are also orthogonal.
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These patterns are the ones that best capture the variance in the lengthW sub-series of
the original signal if they are considered independently. They can be used to initialize
convolutional dictionary learning algorithms. Indeed, these patterns can be computed
efficiently and they are a solution of the convolutional dictionary learning (3.3) for one
signal and λ = 0. When λ is increased, it can be expected that the solution is not too
unstable and that the computed dictionary is not far from a good solution for (3.3).

4.5 Automatizing the Grouping Process: a General
Framework

The grouping step is a very delicate process as it controls the quality of the extracted
components. Empirical results show that some learned dictionary’s elements repeat the
same harmonic with different phases. The ability to identify these elements is necessary
to be able to interpret the representation. Several grouping elements are proposed by
Golyandina et al. (2001), but all requires manual selection of the groups of components.
Some recent works propose to automatize this process and this section proposes a unified
framework to analyze and compare automated grouping strategies. These strategies are
used in Section 10.2 to detrend eye tracker recordings in order to separate particular
movements of infants’ eyes from the regular gaze movement.

4.5.1 General Formulation

Automated grouping strategy can be described with 3 phases.

1. Select components Y (k) of interest from the SSA,

2. Compute a similarity matrix between these components. The choice of similarity
measure is critical for the performance of the grouping strategy and is discussed
in Subsection 4.5.2.

3. Create groups Im ⊂ J1,W K of components based on the similarity matrix. It
controls the relative importance of the components being grouped together. The
different strategies are discussed in Subsection 4.5.3.

The final components X(m) are obtained by summing all components in each group Im

X(m) =
∑
k∈Im

Y (k) . (4.4)

Selecting the Components

The components are selected from the SVD components based on the associated singular
value λk. The component Y (k) is selected if λk > τ for a given threshold τ > 0.
Indeed, as stated in Subsection 4.2.3, the singular value is linked to the part of variance
explained by this component. A low singular value indicates a pattern less important
to the interpretation of the signal. In the following, we adapt the threshold value with
the singular spectrum of the trajectory matrix, such that

τ = τlλ2 .
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The second singular value is preferred to the first one. Indeed, the first singular value
can be several orders of magnitude higher for some trend patterns and cause most of
the components to be rejected. The second singular value λ2 is more informative of the
magnitude of the signal. Based on empirical observation, a reasonable choice for the
multiplicative threshold is τl = 0.001.

4.5.2 Similarity Measures

Correlation-based Measures

The aim of grouping is to gather components which are produced by the same phe-
nomena. As these components are not independent, their correlation can be a good
similarity indicator.

Correlation (AG1). Abalov & Gubarev (2014) propose to grouped components
based on their correlation. Using this measure, two components are considered as
adjacent if their correlation is greater than a threshold value ρc. The correlation is here
taken in the sense of the Pearson coefficient, based on the inner product defined for two
components Y (k) and Y (l) as

〈Y (k), Y (l)〉 =

T−1∑
t=0

Y (k)[t]Y (l)[t] .

The norm associated to this inner product is ‖Y (k)‖2 =
√
〈Y (k), Y (k)〉 for the univariate

signal Y (k).

Definition 4.9 (Pearson correlation coefficient). For two scalar signals Y (k) and Y (l) ∈
X 1
T , the Pearson correlation coefficient is defined using the value of the inner product

compared to the `2-norms of the components i.e.

corr(Y (k), Y (l)) =
< Y (k), Y (l) >

‖Y (k)‖2‖Y (l)‖2

This similarity is computed directly using the signals reconstructed from the low-rank
components. The main drawback of using correlation is that it is weak to noise. Indeed,
if two components are correlated but with a lot of noise, the Pearson correlation might
be small. To avoid this situation, the estimation of the correlation is performed using the
full component Y (k) and not the associated pattern Vk . The estimation of the Pearson
coefficient is more stable this way as the impact of the noise is smaller for longer series.
Also, the Pearson correlation of a component of interest and a noise component can be
very high, due to scale effects, as the Pearson correlation does not take the magnitude
of the signal into account. To avoid including noise in the groups, components are
considered similar only if they have the same order of magnitude. To control this, we
compare the ratio of their associated singular value to a threshold ρ1 > 0,

min(λk, λl)

max(λk, λl)
≥ ρ1

Finally, the adjacency matrix AAA is then defined using two parameters ρc, ρ1 > 0 such
that

AAAk,l =

1 if
min(λk, λl)

max(λk, λl)
≥ ρ1 and corr(Y (k), Y (l)) ≥ ρc

0 elsewhere
.
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W-Correlation (wCG). In the context of SSA, Golyandina et al. (2001) introduced
the concept of w-correlation. This notion is based on the w-inner product

< Y (k), Y (l) >w=

T−1∑
t=0

WtY
(k)[t]Y (l)[t]

with Wt = min(t + 1, T − t,W ). We denote ‖ · ‖w the norm associated to this inner
product, such that ‖y‖w =

√
< y, y >w for a scalar signal y of length T .

Definition 4.10 (w-correlation). For two scalar signals Y (k) and Y (l) ∈ X 1
T , the w-

correlation is defined similarly to the Pearson coefficient by replacing the scalar product
by the w-inner product, i.e.

corrw(Y (k), Y (l)) =
< Y (k), Y (l) >w

‖Y (k)‖w‖Y (l)‖w

This quantity is useful as it reduces the border effect of the Pearson coefficient. When
T tends to infinity, the border effect become negligible and this quantity tends to the
correlation between Y (k) and Y (l). The W first and last terms of each series have
less impact than the other term. This quantity is linked to the notion of separability
introduced in Subsection 4.3.1. Indeed, by rewriting the w-inner product, we can see

< Y (k), Y (l) >w =
T∑
t=1

Wt∑
l=1

Y (k)[t]Y (l)[t]

=
L∑
t=1

W∑
l=1

Y (k)[t+ l]Y (l)[t+ l]

In the last equation, the inner sum is the scalar product between 2 sub-series of size
W . When Y (k) and Y (l) are separable, all these inner products are null, as stated in
Proposition 4.3. Thus, if two series are separable using SSA, the w-correlation between
them is null.

Figure 4.3 shows the correlation and w-correlation matrix between the first 20 compon-
ents extracted using the SSA on a vertical accelerometer signal during the walk. The
w-correlation on the right part of the figure is much more contrasted than the Pearson
coefficient on the left. This is due to the border effect reduction obtained with the
w-inner product.

The aim of grouping is to find components that are independent from each other, and
thus that are separable, in the sense that they do not share common structures. The
link between w-correlation and separability shows that using the w-correlation instead
of the Pearson coefficient in AG1 can define a good similarity metric. The similarity
measure is tagged wCG and the adjacency matrix AAA is defined using the same two
parameters ρc, ρ1 > 0 such that

AAAk,l =

1 if
min(λk, λl)

max(λk, λl)
≥ ρ1 and corrw(Y (k), Y (l)) ≥ ρc

0 elsewhere
.
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Figure 4.3: Correlation (left) and w-correlation (right) for the 20 first components of
a walk signal. The w-correlation is more contrasted and it is easier to decide which
components are similar.

Periodogram-based Measures

In Subsection 4.3.1, we have shown that the separability notion is tied with a certain
notion of partition of the Frourier spectrum. Following this observation, Golyandina
et al. (2001) recommend to compare the Fourier spectrum of the components or the
eigen-vectors associated to it to derive similarity metrics, as components resulting from
the same oscillatory phenomena share structures in their periodogram. In the following,
for X ∈ X 1

T , we denote (ΠX [j])j=0..T−1 its normalized periodogram, computed using

ΠX [j] =
1

C0

∣∣∣∣∣∣
T−1∑
t=0

X[t]e−itωj

∣∣∣∣∣∣
2

,

where ωj = 2π j
T and C0 is a normalization constant such that C0 =

T−1∑
j=0

ΠX [j] = 1.

Note that this definition does not take into account the sampling frequency as the
periodogram is only used to compare signals with fixed sampling rate and length. The
correct frequency in rad/seconds could be retrieved if the sampling rate Ts is known,
by scaling ωj by T

Ts
.

Harmonic Grouping (HG). In their work, Alexandrov & Golyandina (2005) design
an automatic grouping strategy based on the study of the periodogram to recover ex-
ponentially modulated harmonic. In their paper, they propose to use the following
similarity metric between signals

spike
(
Y (k), Y (l)

)
= max

0≤j<T

ΠY (k) [j] + ΠY (l) [j]

2

to compare the components. The intuition behind this metric method is that if two
components represent the same sinusoidal waveform, their periodogram will be spiked,
with the spike located at the same frequency. Thus, comparing the location of the
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maximal values of the periodogram can yield good results. If the two components
represent the same wave length with frequency ω = 2πj0

T , then their periodogram are

concentrated and ΠY (k) [j0] = 1, leading to spike
(
Y (k), Y (l)

)
= 1. However, if the

spectrum supports of the two waveforms Y (k), Y (l) are disjoint, then for any j ∈ J0, T −
1K,

ΠY (k) [j] + ΠY (l) [j]

2
< .5 .

despite their spectrum being very concentrated and thus their similarity is low.

For automated grouping, Alexandrov & Golyandina (2005) propose the following strategy.
First, they consider only consecutive components. This choice is motivated by the fact
that analytically, it can be shown that an exponentially modulated harmonic signal will
generate two eigentriples with eigenvector similar to exponentially modulated harmonic
with the same frequency, a phase shift close to π

2 and their associated eigenvalues are
very close. Moreover, as the eigenvectors themselves are harmonic, and as they contain
less noise, they use the similarity measure spike on the eigenvectors Uk and Ul associated
to the components Y (k) and Y (l). The adjacency matrix AAA is defined by

AAAk,l =

1 if spike
(
Uk, Ul

)
≥ ρ0 and |l − k| = 1

0 elsewhere

with a threshold ρ0 > 0 given as a parameter of the grouping strategy.

Support Similarity (AG2). Abalov & Gubarev (2014) introduce a more flexible
comparison of periodogram of the reconstructed components. With the previous sim-
ilarity measure, when the components are not waveform or if the frequency of the
waveform is not on the regular grid with step 1

W , spike might decrease a lot because the
periodograms of the eigenvectors are not concentrated enough. The similarity meas-
ure is defined based on the set of non-negligible frequencies, defined for a component
Y (k) ∈ X 1

L as the ordered set

FY (k) =
{

0 ≤ j1 < · · · < jM ≤ L/2
∣∣∣ ∀1 ≤ m ≤M, ΠY (k) [jm] ≥ ρp‖ΠY (k)‖∞

}
(4.5)

for a threshold ρp ∈ [0, 1] given as a parameter of the grouping strategy. The frequen-
cies 2πjm

T are the part of the spectrum with a high fraction of the spectrum energy.
The threshold is also selected adaptively from the maximal value in the periodogram,
similarly to the selection of the eigenvalue threshold for the component selection. The
measure of similarity between two components Y (k) and Y (l) is the computed using

d_supp
(
Y (k), Y (l)

)
= max

0<h<M

|FY (k) [h]− FY (l) [h]|
L/2

where FY (k) [h] denotes the h-th element in the ordered set FY (k) andM is the minimum
of the cardinal of the two sets FY (k) and FY (l) . If the support of the components Y (k)

both contain M spikes, then this measure evaluates the distance between those spikes
and the similarity is taken relatively to the maximal value. It is more robust than the
metric HG as if the components to group have two modes in their spectrum, then the
HG can reject them because their spectrum is not concentrated enough whereas AG2
will be able to detect the fact that these two modes are in the same location. However,
this metric can be unstable is the spectrum is not composed of clear spikes. If the spikes
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are not clear, the estimation of FY (k) is unstable and some extra values are included in
it in presence of noise. In this case, the order of the spikes can be misaligned, resulting
in an overestimation of the distance.

Building on this similarity, Abalov & Gubarev (2014) propose to group the components
when their distance d_supp is lower than a threshold ρ2 > 0 given as a parameter of the
method. Note that unlike HG, the spectrum is not estimated on the eigenvectors Uk
but directly on the components Y (k) computed with SSA. They use the singular value
ratio, introduced with AG1, to avoid grouping components that have very different
variance impact. They define the adjacency matrix AAA with

AAAk,l =

1 if
min(λk, λl)

max(λk, λl)
≥ ρ1 and d_supp

(
Y (k), Y (l)

)
≤ ρ2

0 elsewhere

Harmonic Support Grouping (HSG). One of the drawbacks of HG is that it is
designed exclusively to retrieve harmonic components. When SSA components have
a wide spectral support, the energy of the spectrum is spread and no frequency con-
centrate enough energy to be used for similarity comparison. The comparison of the
spectrum values makes it impossible to group wider support components, because of the
normalization. In AG2, the full spectral supports are compared. With this method, it
is possible to group components that are not spiked. But slight mistakes in the spectrum
estimation can make this method unstable. If one spike is missed in one component
and not in the other, the similarity is not correctly computed anymore.

To improve the grouping of wide spectrum components using the periodogram, we pro-
pose a more robust comparison based on the spectral support of the components. The
similarity metric is defined by considering the fundamental frequency of the spectrum
– taken as the center of the spectrum support – and the width of their support. For
a component Y (k), its fundamental frequency hY (k) and its spectrum width wY (k) are
defined as

hY (k) =
FY (k) [0] + FY (k) [M ]

2
and wY (k) =

FY (k) [M ]− FY (k) [0]

2

with FY (k) defined as in (4.5) with parameter ρp. These two characteristics can be
used to detect components which are not spiked, but with a support centered around a
fundamental frequency. We consider that two components should be grouped together
when their fundamental frequencies are close. The estimation of the fundamental fre-
quency is more stable than the ordered spike used in AG2, as small mistakes in the
estimation of the support bound do not create misalignment. But this estimation might
be off for components which have multiple modes. Indeed, if the modes are far away, the
fundamental frequency can match the one of another component which is concentrated
around this frequency. To avoid this instability, we use the spectral width to select
components with small spectrum width. The estimation of our two characteristics are
computed using the pattern Uk associated to Y (k), in order to be more robust to small
variations. Finally, the adjacency matrix is defined as

AAAk,l =

1, if
∣∣∣∣hUk + hUl

W/2

∣∣∣∣ ≤ ρf and 2wUW
W ≤ ρs for i = {k, l}

0 elsewhere
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with parameters ρf , ρs ∈ [0, 1]. This similarity measure selects components with a
spectrum which is not too wide, and groups them when their fundamental frequency
are close. This similarity metric is useful when the components to groups are uni-modal
but not spiked.

K-means (KM). Instead of defining the spectrum comparison properties and the
grouping level, it is possible to use statistical methods to form the groups. In their
paper, Álvarez-Meza et al. (2013) propose to use K-means algorithm to automatically
create the group of component. The clustering algorithm is used with the `2-norm to
form clusters based on the periodogram of the eigenvectors Uk. Using this method, the
parameter and threshold used to compare the components are directly defined by the
K-means. The method computes C clusters from the set{

ΠUk

/
k ∈ J1,W K, λk > τlλ2

}
The selection part is the same as the one defined in Subsection 4.5.1. We denote M
the number of component selected in this set. The number of clusters C is a given
parameter for the clustering method. It is critical for the performance of this grouping
strategy. An estimation of C can be made using the rank of the matrix ΠΠΠ

ΠΠΠ =
[
ΠU1 . . . ΠUM

]T
.

by computing the singular values σ1 ≥ · · · ≥ σM of Π and take C = argmink σk < ρrσ1,
with ρr ∈ [0, 1] given as the parameter of KM similarity. This similarity directly es-
timates the number of components in the decomposed signal, by estimating the number
of different Fourier spectrum for the eigenvectors. The adjacency matrix AAA is defined
using the clusters Cm formed with the K-means algorithm such that

AAAk,l =

1 if ∃ m ∈ J1, CK s.t. k, l ∈ Cm
0 elsewhere

This matrix is symmetric by definition and connected. Indeed, all the component in Cm
are considered as adjacent.

4.5.3 Group Creation

In this work, we analyze two methods to create groups based on the adjacency matrix
AAA.

Uniform Method (UM). A first strategy to create the groups from the adjacency
matrix is to group all the components that are adjacent together, without considering
that some components are more important than the other in the group. A component
Y (k) is added in a group if it is adjacent to one component of the group

Y (k) ∈ Im ⇔ max
l∈Im

Ak,l = 1⇔ ∃l ∈ Im s.t. Ak,l = 1

This method is the one commonly used by the strategies that have been proposed in
the literature (Abalov & Gubarev, 2014; Álvarez-Meza et al., 2013).
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Hierarchical Method (HM). In this work, we propose a novel group creation
method which takes into account the hierarchy between components. As stated earlier,
the components are ranked based on their importance, in term of the explained vari-
ance. The eigenvalue λk associated to Y (k) is the part of the variance of x explained
by this component. We propose to take into account the relative importance of the
components. Our strategy add a component in the group when this component is adja-
cent to the dominant component in this group, in the sense of the explained variance.
For each group Im, the dominant component is Y (km) such that km = min Im and for
l ∈ Im, λl ≤ λkm . The groups are then created such that

Y (k) ∈ Im ⇔ Ak,km = 1

If the component cannot be added into one of the existing group, a new group containing
only this component is created. This strategy gives more importance to the dominant
component in the group and therefore, produces groups with less noise and with a
stronger coherence.

4.5.4 Evaluation

Signal Generation. The grouping strategies have been evaluated on randomly sampled
artificial signals. The goal of the grouping is to identify the trend, the periodical com-
ponents and the noise. The test signals are sampled at 100Hz following

X[t] = b1t
β︸︷︷︸

C(1)

+
N∑
n=2

bne
−αnt sin

(
2πfnt+ φn

)︸ ︷︷ ︸
C(n)

+εt (4.6)

with εt a gaussian white noise with variance σ = sσX . The parameter are chosen

uniformly such that β ∈
[
0, 5
]
, bn ∈

[
0, 1
]
, φn ∈

[−π
2
,
π

2

]
, αn ∈

[
0, 1

2

]
, fn ∈

[
0, 50

]
Hz

and s ∈
[
0, 40

]
dB. We define 3 classes of signals. For the first class, we fix b1 = αn = 0 ,

(harmonic + noise), then the second class is such that αn = 0 , (trend + harmonic +
noise) and the third class corresponds to the general model defined in (4.6), with all
parameters sampled uniformly (trend + modulated harmonic + noise).

Evaluation Metrics. In previous works, the metric used to quantify the quality of the
grouping is the determination coefficients r2 (Abalov & Gubarev, 2014). This coefficient
measures the variance of the error between 2 components y and ȳ is computed with

r2
(
Y, Y ′

)
= 1− ‖Y − Y

′‖2
‖Y − EY ‖2 (4.7)

This correspond to the ratio between the estimation error and the signal variance. The
recall and the precision of the grouping is then computed as

R =
1

N

N∑
n=1

min
1≤m≤M

r2
(
C(n), X(m)

)
P =

1

M

M∑
m=1

min
1≤n≤N

r2
(
C(n), X(m)

)
(4.8)

where
{
X(m)

}
1≤m≤M

are the components obtained after the grouping and
{
C(n)

}N
n=1

are the components defined in (4.6). To merge the two concepts, we propose to consider
the score obtained for an optimal allocation between the ground truth components and
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the components computed by the grouping procedure, i.e.

S =
1

N
min

σ∈S(M)

N∑
n=1

r2

(
C(n), X

(
σ(n)

))
(4.9)

withS(M) denoting the permutation group of
{

1, . . . ,m
}
. This metrics is more inform-

ative as it penalizes grouping strategies which do not aggregate correctly the compon-
ents. If, several groups of components are close to the same original component C(n),
the precision does not penalize the number of components. For the recall, the same
group component can be used to approximate two different components. The metric S
is more robust as it considers that one group component should be associated to one
and only one original component.

The grouping quality is highly dependent of the quality of the initial component com-
puted with the SSA. Thus, it is important to compare the score with the score which
would have been obtained from the raw components from the SSA. To measure this
relative improvement, the scores are computed for the evaluated components obtained
with the grouping strategy as R,P, S and for the components obtained without group-
ing R0, P0 and S0 . The relative metric is then computed as the rate of increase between
the 2 scores, i.e.

Rr =
R−R0

1−R0
, Pr =

P − P0

1− P0
and Sr =

S − S0

1− S0
. (4.10)

These metrics are less sensible to starting components, produced by bad SSA paramet-
ers.

Numerical Results. For all the simulation, parameter W has been fixed to half the
length of the signal T/2 . The parameters from existing algorithm where chosen based
on the proposed value in the original work (Abalov & Gubarev, 2014; Álvarez-Meza
et al., 2013), i.e. ρ0 = 0.8, ρ1 = 0.8, ρ2 = 0.05, ρc = 0.8, ρp = 0.8 and ρr = 0.4 . For
the two proposed methods HSG and wCG, parameter have been fixed to ρf = 0.001
and ρs = 0.6 from a few empirical observation, outside our test samples.

Figure 4.4 illustrates the decomposition of a third class signal, composed by a trend, 4
exponentially modulated harmonic and a Gaussian white noise (SNR 9.7dB) using HG
similarity metric and HM group formation strategy. This grouping retrieves four out
of five components with very little distortion. The mean coefficient of determination r2

is 0.96 for these four components, instead of 0.21 without grouping. As the amplitude
of the fifth components is small compared to the other components, it is included in
the noise term by the grouping procedure. This is expected as it is very hard to find
components with low SNR.

The different procedures have been tested on 1000 signals from each of the three classes
and Table 4.1 reports the mean of the resulting scores for these 3000 signals. For the
relative recall Rr, method (HG)-(HM) is statically better than other methods, in the
sense of Friedman (1937) test, with a mean increase rate of 48.4% . For other metrics
Pr, Sr, methods using (KM) give statically better results than other procedures, with
mean increase rates of 80.4% for Pr and 63.9% for Sr. This boost in precision for (KM)
is explained by the good estimation of the number of components used in this method.
This also explain the improvement in Sr .
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Figure 4.4: Signal decomposition using SSA with (HG)-(HM) grouping procedure.
(top) Original signal. (middle 4 ) Four components resulting from the grouping proced-
ure. (bottom) Residual signal, containing the fifth original component and the noise.

Méthodes AG1 AG2 wCG HG KM HSG
Rr - UM 0.426 0.33 0.436 0.402 0.395 0.475
Rr - HM 0.427 0.367 0.437 0.484 0.396 0.459
Pr - UM 0.338 0.329 0.351 0.693 0.804 0.409
Pr - HM 0.339 0.347 0.351 0.705 0.804 0.439
Sr - UM 0.361 0.373 0.373 0.567 0.639 0.422
Sr - HM 0.361 0.389 0.373 0.592 0.639 0.437

Table 4.1: Evaluation of the automatic grouping procedure on the signals from the test
base. The results are presented for both grouping strategy (UM) and (HM).

For all similarity, the use of strategy (HM) introduced in this chapter improves the
results both for precision and recall. This effect is small for correlation based meas-
ures and for the (KM) procedure. For the other metrics based on the periodogram,
the improvement is statistically noticeable, except for the recall with (HSG) which is
statistically equivalent for (UM) and (HM). The (HM) group formation strategy can
be safely used with any methods as it provides more robust results, without degrading
the performance compared to (UM).
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For signal in the first class, composed only of harmonic components, the similarity (HG)
and (HSG) give equivalent results for all three metrics and are statistically better than
other methods, even (KM), for these metrics. These two metrics are well suited for
the reconstruction of pure harmonic components, and thus for the class one signals.
For the components with very concentrated spectrum, the two similarity give similar
results, explaining this equivalence between them. For class 2 and 3, using (KM) gives
statistically better results for Pr and Sr. For the recall, it is also statistically better
than all the methods, except (HSG) used with (HM) which is equivalent.

This analysis is supported by the component-wise analysis of the results. The mean
determination coefficient r2 obtained for the C(1) trend component in class 2 and 3
is greater in probability with (KM) than with other methods. This method uses the
whole frequency spectrum to compare the components. This is advantageous to retrieve
the trend component which can have a wide periodogram. For the harmonic compon-
ents (C(n))n>1 in class 1 and 2, not modulated, using similarity measure (HSG) or
(HG) with the group formation (HM) gives a statistically better r2 score. The metrics
based on the periodogram properties are particularly adapted for these components as
their spectrum displays clear spikes. For exponentially modulated components, all the
methods are statistically equivalent. These components are harder to estimate than the
harmonic components and all the described methods fail to retrieve them precisely.

The general framework for automatic grouping strategy introduced in this chapter shows
that the choice of the grouping strategy is dependent on the relative importance given
to the extraction of each kind of components. The (KM) method seems to be the most
robust to estimate different kind of components. It also gives a precise estimation of
the number of components, which could be use in combination with other grouping
methods. Finally, the hierarchical group formation strategy (HM) proposed in this
chapter slightly improves the performances of the automatic grouping methods.

4.6 Conclusion and Perspectives

In this chapter, we show that the Singular Spectrum Analysis solves a non-convex op-
timization problem, which is related to the one for convolutional representations, up to
border effects. The decomposition computed with SSA is thus a good starting point
for convolutional sparse coding with regularization parameter λ close to 0. We also
introduce in Section 4.5 a general framework for automatic grouping of the compon-
ents extracted with SSA. This step – necessary to ensure the interpretability of the
decomposition – is usually done manually. New similarity measures are introduced,
along with the description of the literature’s methods. We also propose a novel group
formation strategy, which takes the importance of the features into account to improve
the grouping quality. The different grouping strategies are then compared on artificial
signals, highlighting their strengths and weaknesses.

With the SSA, we have ssen that the application of a dimension reduction technique
on the sub-series, in addition to the duality between trajectory matrices and signals,
captures the local variations efficiently. The same idea of using a global technique on
all sub-signals has been used for various methods. The STFT is one example, with
a fixed analysis. Another example is the classical dictionary learning applied for all
patches in an image. In this case, the original signal is also reconstructed by stitching
the patches together. The study of extensions of the SSA to other matrix factorization
techniques could allow computing convolutional representation of the signal with differ-
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ent constraints on the dictionary. For instance, using Independent Component Analysis
(ICA) could retrieve components generated with independent patterns for blind source
separation problems. Another interesting idea is to use a pattern selection technique to
retrieve the patterns which permit to best encode the other one as good starting point
for convolutional dictionary learning.
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This chapter proposes a novel algorithm to solve the convolutional sparse coding prob-
lem. This algorithm was designed to run in a distributed setting, with local message
passing, making it communication efficient. It relies on locally greedy updates which
are shown to accelerate the resolution, compared to the greedy coordinate descent. We
prove the convergence of this algorithm and highlight its computational speed-up, which
is super-linear for the distributed algorithm, compared to the classical greedy coordinate
descent, but sub-linear compared to our new locally greedy version. These properties
are backed with numerical experiments.
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5.1 Convolutional Representation for Long Signals

Sparse coding aims at building sparse linear representations of a data set based on a
family of basic elements called atoms. It has proven to be useful in many applications,
ranging from EEG analysis to images and audio processing (Adler et al., 2013; Kavuk-
cuoglu et al., 2010; Mairal et al., 2010; Grosse et al., 2007). Convolutional sparse coding
is a specialization of this approach, focused on building sparse, shift-invariant repres-
entations of signals. Such representations present a major interest for applications like
segmentation or classification as they separate the shape and the localization of patterns
in a signal. Convolutional sparse coding can also be used to estimate the similarity of
two signals which share similar local patterns and to find the correspondences between
different temporal events. Depending on the context, the dictionary can either be fixed
analytically (e.g. wavelets, see Mallat 2008), or learned from the data (Bristow et al.,
2013; Mairal et al., 2010).

Several algorithms have been proposed to solve the convolutional sparse coding prob-
lem. In Kavukcuoglu et al. (2010), the authors extend to convolutional sparse coding the
coordinate descent (CD) methods introduced by Friedman et al. (2007). This method
greedily optimizes one coordinate at each iteration using fast local updates. The Fast
Iterative Soft-Thresholding Algorithm (FISTA) was adapted for convolutional problems
in Chalasani et al. (2013) and uses proximal gradient descent to compute the represent-
ation. The Feature Sign Search (FSS), introduced in Grosse et al. (2007), solves at each
step a quadratic sub-problem for an active set of the estimated nonzero coefficients and
the Fast Convolutional Sparse Coding (FCSC) of Bristow et al. (2013) is based on Al-
ternating Direction Method of Multipliers (ADMM). We refer the reader to Section 3.3
for a more detailed presentation of these algorithms.

To our knowledge, there is no scalable version of these algorithms for long signals. This
is a typical situation, for instance, in physiological signal processing where sensor in-
formation can be collected for a few hours with sampling frequencies ranging from 100 to
1000Hz. For `1-regularized optimization, some existing algorithms are already optimal
in terms of the number of iterations they use. To accelerate them on large scale prob-
lems, it is the computational complexity of their iterations that should be considered. A
first line of work to improve the complexity of these algorithm considers the estimation
of the non-zero coefficients of the optimal solution to reduce the dimension of the optim-
ization space, using screening (El Ghaoui et al., 2012; Fercoq et al., 2015) or active-set
algorithms (Johnson & Guestrin, 2015). Another line of work focuses on developing
parallel algorithms which compute multiple updates simultaneously. Recent studies
have considered distributing coordinate descent algorithms for general `1-regularized
minimization (Scherrer et al., 2012a,b; Bradley et al., 2011; Yu et al., 2012). These pa-
pers derive general purpose synchronous algorithms using either locks or synchronizing
steps to ensure convergence in general cases. In You et al. (2016), the authors derive
an asynchronous distributed algorithm for the projected coordinate descent. However,
this work relies on centralized communication and finely tuned step size to ensure the
convergence of the method. In this chapter, we develop a distributed algorithm to ac-
celerate the convolutional sparse coding. As this research direction is orthogonal to the
support estimation, it is possible to use them jointly with our algorithm. The evaluation
of the performances of our algorithm with active-set or screening strategies is left for
future work.
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By exploiting the structure of the convolutional problem, we design a novel distributed
algorithm based on coordinate descent, named Distributed Convolution Coordinate Des-
cent (DICOD). DICOD is asynchronous and each process can run independently without
locks or synchronization steps. This algorithm uses a local communication scheme to
reduce the number of inter-process messages needed and does not rely on external learn-
ing rates. We prove in this chapter that this algorithm scales super-linearly with the
number of cores compared to the sequential CD, up to certain limitations.

In Section 5.3, we introduce the DICOD algorithm for the resolution of convolutional
sparse coding. Then, we prove in Section 5.4 that DICOD converges to the optimal
solution for a wide range of settings and we analyze its complexity. Finally, Section 5.5
presents numerical experiments that illustrate the benefits of the DICOD algorithm
with respect to other state-of-the-art algorithms and validate our theoretical analysis.

5.2 Convolutional Coordinate Descent

In this section, we recall the convolutional sparse coding problem and the greedy
coordinate descent algorithm to solve it. For more details, we refer the readers to
Chapter 3.

5.2.1 Convolutional Sparse Coding

Consider the multivariate signal X ∈ XPT . Let DDD =
{
Dk

}K
k=1
⊂ XPW be a set of K

patterns with W � T and Z ∈ XKL be K activation signals with L=T−W+1 . The
convolutional sparse representation models a multivariate signal X as the sum of K
convolutions between a local pattern Dk and an activation signal Zk such that:

X[t] =
K∑
k=1

(Zk ∗Dk)[t] + E [t], ∀t ∈ J0, T − 1K . (5.1)

with E ∈ XPT representing an additive noise term. This model also assumes that the
coding signals Zk are sparse, in the sense that only a few entries are nonzero in each
signal. The sparsity property forces the representation to display localized patterns in
the signal. Note that this model can be extended to higher order signals such as images
by using the proper convolution operator. In this study, we focus on 1D-convolution for
the sake of simplicity.

Given a dictionary of patternsDDD, convolutional sparse coding aims to retrieve the sparse
decomposition Z∗ associated to the signal X by solving an `1-regularized optimization
problem:

Z∗ = argmin
Z

E(Z)
∆
=

1

2

∥∥∥∥∥∥X −
K∑
k=1

Zk ∗Dk

∥∥∥∥∥∥
2

2

+ λ
∥∥Z∥∥

1
, (5.2)

for a given regularization parameter λ > 0 . (5.2) can be interpreted as a special case
of the LASSO problem with a band circulant matrix. Therefore, classical optimization
techniques designed for LASSO can be applied to solve it with the same convergence
guarantees.
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5.2.2 Convolutional Coordinate Descent.

The coordinate descent is a method which updates one coordinate at each iteration.
This type of optimization algorithms is efficient for sparse optimization problem as few
coefficients need to be updated to find the optimal solution and the greedy selection of
updated coordinates is a good strategy to get quick convergence to the optimal point.
The localized updates make it natural to consider the parallelization of such algorithm.

The method proposed by Kavukcuoglu et al. (2010) iteratively updates at each itera-
tion one coordinate (k0, t0) of the sparse code. Algorithm 3.7 gives the details of the
algorithm. When the coefficient (k, t) of Z(q) is updated to a value u ∈ R for Z(q+1), a
simple function of u gives the reduction of the cost obtained with this update and we
denote its maxima

∆Ek[t] = max
u∈R

ek,t(u) = E(Z(q))− E(Z(q+1)) . (5.3)

The greedy coordinate descent updates the chosen coordinate (k0, t0) to the value
Z ′k0 [t0] = argmaxu∈R ek0,t0(u), maximizing the cost reduction of the update. The co-

ordinate is chosen as the one with the largest difference max(k,t)

∣∣∣∆Zk[t]∣∣∣ between its
current value Zk[t] and the value Z ′k[t] with

∆Zk[t] = Zk[t]− Z ′k[t] (5.4)

The updates are run until the maxk,t |∆Zk[t]| become smaller than a specified tolerance
parameter ε We studied this update scheme as it aims to get the largest gain from
each updates. Other coordinate update strategies were proposed such as cyclic updates
(Friedman et al., 2007) or random updates (Shalev-Shwartz & Tewari, 2009) and our
algorithm can easily be implemented with such update schemes. In this study, we focus
on the greedy approach as it aims to get the largest gain from each update. Moreover,
as the updates in the greedy scheme are more complex to compute, distributing them
provides a larger speedup compare to other strategies. We refer the reader to the work
by Nutini et al. (2015) which discussed extensively the difference between these schemes.

A closed form solution exists to compute the optimal value Z ′k0 [t0] of ek0,t0

Z ′k0 [t0] =
1

‖Dk0‖22
Sh(βk0 [t0], λ) = argmax

u∈R
ek0,t0(u), (5.5)

with βk[t] =

D̃k ∗

X −
K∑
k′=1
k′ 6=k

Zk′ ∗Dk′ − Φt

(
Zk
)
∗Dk


 [t] and Sh the soft threshold-

ing operator Sh(u,λ)=sign(u)max(|u|−λ,0) . The success of this algorithm highly de-
pends on the efficiency in computing the coordinate update. For problem (5.2), Kavuk-
cuoglu et al. (2010) show that if at iteration q, the coefficient (k0, t0) of Z(q) is updated
to the value Z ′k0 [t0], then it is possible to compute β(q+1) from β(q) using

β
(q+1)
k [t] = β

(q)
k [t]− Sk,k0 [t− t0]∆Z

(i)
k0

[t0], ∀(k, t) 6= (k0, t0) (5.6)

with Sk,l[t] = (D̃k ∗Dl)[t] . For all t /∈ J−W + 1,W − 1K, S[t] is zero. Thus, only
O(KW ) operations are needed to maintain β up to date with the current estimate
Z. Finally, the complexity of an iteration of CD is dominated by the O(KT ) operations
needed to find the maximum of |∆Zk[t]|.



5.3. DISTRIBUTED CONVOLUTIONAL COORDINATE DESCENT 107

Algorithm 5.1 DICODM

1: Input: DDD,X, parameter ε > 0
2: In parallel for m = 1 · · ·M
3: For all (k, t) in Cm, initialize βk[t] and Zk[t]
4: repeat
5: Receive messages and update β with (5.6)
6: ∀(k, t) ∈ Cm, compute Z ′k[t] with (5.5)
7: Choose (k0, t0) = argmax

(k,t)∈Cm
|∆Zk[t]|

8: Update β with (5.6) and Zk0 [t0]← Z ′k0 [t0]
9: if t0 −mLM < W then

10: Send (k0, t0,∆Zk0 [t0]) to core m− 1
11: if (m+ 1)LM − t0 < W then
12: Send (k0, t0,∆Zk0 [t0]) to core m+ 1
13: until for all cores, |∆Zk0 [t0]| < ε

5.3 Distributed Convolutional Coordinate Descent

This section introduces an asynchronous algorithm called DICOD, which exploits the
local independence of the coordinate descent updates to derive a distributed algorithm
solving (5.2).

5.3.1 Algorithm

Algorithm 5.1 describes the steps of DICOD with M workers. Each worker m ∈ J1,MK
is in charge of updating the coefficients of a segment Cm of length LM = L/M defined
by:

Cm =
{

(k, t) ; k ∈ J1,KK, t ∈ J(m− 1)LM ,mLM − 1K
}
.

The local updates are performed in parallel for all the cores using the greedy coordinate
descent introduced in Subsection 5.2.2. When a core m updates the coordinate (k0, t0)
such that t0 ∈ J(m− 1)LM +W,mLM −W K, the coefficients of β that are updated are
all contained in Cm and there is no need to update β on all the other cores. In these
cases, the update is equivalent to a sequential update. When t0∈JmLM−W,mLM K(
resp. t0∈J(m−1)LM ,(m−1)LM+W K

)
, some of the coefficients of β in core m + 1

(resp. m − 1) need to be updated and the update is not local anymore. This can
be done by sending the position of updated coordinate (k0, t0), and the value of the
update ∆Zk0 [t0] to the neighboring core. Figure 5.1 illustrates this communication
process. Inter-processes communications are very limited in DICOD. One node only
communicates with its neighbors when it updates coefficients close to the extremity of
its segment. When the size of the segment is reasonably large compared to the size of
the patterns, only a small part of the iterations needs to send messages. We cannot
apply the stopping criterion of CD in each worker of DICOD, as this criterion might
not be reached globally. The updates in the neighbor cores can break this criterion. To
avoid this issue, the convergence is considered to be reached once all the cores achieve
this criterion simultaneously. Workers that reach this state locally are paused, waiting
for incoming communication or for the global convergence to be reached.
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Cm updated in (k0, t0) Cm+1 updated in (k1, t1)

∆Zk1
[t1]

∆Zk0
[t0]

t0t0−S t0+S t1−S t1 t1+S

β β

Z Z

∆Zk0 [t0], k0, t0

No message

Figure 5.1: Core m+1 updates (k1, t1) ∈ Cm+1 independently from the other cores as it
is located out of the interference zones. Core m is updating a coordinate (k0, t0) ∈ Cm
which is in the interference zone JmLM−S,mLM K. Therefore, it needs to notify the
process m+ 1 of the update by sending a message composed of the value of the update
∆Zk0 [t0] and its location (k0, t0). When core m+ 1 retrieves the pending message from
m, it will update β to take into account the update of Zk0 [t0].

The key point that allows distributing the convolutional coordinate descent algorithm is
that the solutions on time segments that are not overlapping are only weakly dependent.
Equation (5.6) shows that a local change has impact on a segment of length 2W −
1 centered around the updated coordinate. Thus, if two far enough coordinates are
updated simultaneously, the resulting point Z is the same as if these two coordinates
had been updated sequentially. By splitting the signal into continuous segments over
multiple cores, coordinates can be updated independently on each core up to certain
limits.

5.3.2 Interferences

When two coefficients (k0, t0) and (k1, t1) are updated by two neighboring cores before
receiving the communications of the other update, the updates might not be independ-
ent and cannot be considered sequential. The local version of β used for the second
update does not account for the first update. We say that the updates are interfer-
ing. The cost reduction resulting from these two updates is denoted ∆Ek0,k1 [t0, t1] and
simple computations, detailed in Proposition 5.7.2, show that

∆Ek0,k1 [t0, t1] =

iterative steps︷ ︸︸ ︷
∆Ek0 [t0] + ∆Ek1 [t1]−

interference︷ ︸︸ ︷
Sk0,k1 [t1 − t0]∆Zk0 [t0]∆Zk1 [t1], (5.7)

If |t1− t0| ≥W , then Sk0,k1 [t1− t0] = 0 and the updates can be considered as sequential
as the interference term is zero. When |t1 − t0| < W , the interference term does not
vanish but Section 5.4 shows that under mild assumption, this term is controlled and
does not break the convergence of DICOD.

5.3.3 Randomized Locally Greedy Coordinate Descent (SeqDICOD)

The theoretical analysis in Theorem 5.3 shows that DICOD provides a super-linear ac-
celeration compared to the greedy coordinate descent. This result is backed with the
numerical experiment presented in Figure 5.6. The super-linear speed up results from
a double acceleration, provided by the parallelization of the updates – we update M
coefficients at each iteration – and also by the reduction of the iteration complexity.
Indeed, each core computes greedy updates with linear in complexity on 1/M -th of the
signal. Because the updates are only weakly dependent, choosing the coordinate to
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Algorithm 5.2 Locally greedy coordinate descent SeqDICODM

1: Input: DDD,X, parameter ε > 0, number of segments M
2: Initialize βk[t] and Zk[t] for all (k, t) in C
3: Initialize dZm = +∞ for m ∈ J1,MK
4: repeat
5: Randomly select m ∈ J1,MK
6: ∀(k, t) ∈ Cm, compute Z ′k[t] with (5.5)
7: Choose (k0, t0) = argmax

(k,t)∈Cm
|∆Zk[t]|

8: Update β with (5.6)
9: Update the current point estimate Zk0 [t0](q+1) ← Z ′k0 [t0]

10: Update max updates vector dZm =
∣∣∣Zk0 [t0](q+1) − Z ′k0 [t0]

∣∣∣
11: until for all cores, ‖dZ‖∞ < ε and ‖∆Zk[t]‖∞ < ε

update using the locally greedy scheme instead of the fully greedy one does not funda-
mentally change the convergence rate. This super-linear speed-up means that running
DICOD sequentially will still provide a speed-up compared to the greedy coordinate
descent algorithm.

Algorithm 5.2 presents SeqDICOD. This algorithm is a sequential version of DICOD.
At each step, one segment Cm is selected uniformly at random between theM segments.
The greedy coordinate descent algorithm is applied locally on this segment. This update
is only locally greedy and maximizes

(k0, t0) = argmax
(k,t)∈Cm

|∆Zk[t]|

This coordinate is then updated to its optimal value Z ′k0 [t0]. In this case, there is no
interference as the segments are not updated simultaneously.

Note that if M = T , this algorithm become very close to the randomized coordinate
descent. The coordinate is selected greedily only between the K different channels of
the signal Z at the selected time. So the selection of M depends on a tradeoff between
the randomized coordinate descent and the greedy coordinate descent.

Also, the stopping criterion has to be modified to match the one from the coordinate
descent. Indeed, it is necessary to wait until all the segments have their next update
amplitude below the threshold to declare that SeqDICOD has converged. We define
the vector dZ ∈ RM with dZm the magnitude of the previous update on segment
m ∈ J1,MK . When ‖dZm‖∞ = maxm

∣∣dZm∣∣ decrease below ε, there is a chance that
the algorithm converged and we can check the second condition. This method avoid
the costly check of the second condition at each iteration, with a computational cost
of O

(
KT

)
, using the first condition which only have complexity O

(
M
)
. The first

condition alone does not guarantee convergence as an update in one segment can increase
a coefficient on another segment. The second condition ensures that the convergence is
reached, on all segments.

5.3.4 Existing Distributed Coordinate Descent Algorithms

This algorithm differs from the existing paradigm to distribute CD as it does not rely
on centralized communication. Indeed, other distributed coordinate descent algorithms
rely on a parameter server (PS), which is an extra worker that holds the current value
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Parameter server
accept or reject updates
manage current state Z

Worker 2
Compute updates

dZk2 [t2]

Worker 1
Compute updates

dZk1 [t1]

Worker 3
Compute updates

dZk3 [t3]

send updates
read current state Z

Figure 5.2: Parameter Server with centralized connection. The workers compute inde-
pendently updates, by fetching the necessary information in the parameter server and
then sending back the update to perform. The parameter server can accept or refuse
the update, depending on its validity.

of Z. Figure 5.2 illustrates this concept. The PS can be in charge of avoiding the
interferences. If an update sent by a worker m is in the interfering zone of a "recent"
update by worker m + 1, which has not been transmitted to worker m, the PS can
reject the update. But this parallelization scheme relies on centralized communication.
All workers need to communicate with the PS to send the newly computed updates
and to retrieve the current state. This is difficult to scale, when the number of workers
grows and the communication cost goes up. The PS can be implemented using multiple
processes to increase the communication efficiency but it means more resources are
allocated to handling the updates and it makes the system more complex. The natural
workload split proposed with DICOD allows for more efficient interactions between the
workers and reduces the need for inter-node communications as only updates are sent,
avoiding the communication of the current state. Also, communications are reduced to
direct messages passing between neighboring workers and the necessary bandwidth is
reduced.

Moreover, other distributed settings are designed without taking into account the spe-
cificity of the convolutional operator. Indeed, in most studies, the algorithm need to
account for functions for which changing a coordinate value impacts the update value
that would be used for all the other coordinates. To prevent this inter-dependence from
breaking the convergence of the algorithm, methods designed by Bradley et al. (2011),
Scherrer et al. (2012a) and Yu et al. (2012) use synchronous updates. Each process
computes the update of one coordinate independently and then, all these updates are
applied simultaneously to the current solution estimate, either by using a parameter
server or by broadcasting them. Using this technique, each worker always has an up to
date version of the solution estimate and there can be no interference. Scherrer et al.
(2012b) proposed to improve the performances of these methods by clustering the co-
ordinates into groups that are highly correlated. Then, the updates are computed such
that at most one coordinate in each group is updated, reducing the rejection rate of
the updates by the PS. The necessary synchronization steps of these four algorithms
reduce the speed of the updates as any delay in one node computations impacts all the
other updates. Also, the synchronization mechanism can be hard to scale to multiple
machines over a network. The synchronization step is necessary for vectorial LASSO as
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the change of one coordinate influences all the others and thus, there can be multiple
updates interfering together. But in the convolutional setting, the weak dependency
between time segments can be used to design a fully asynchronous algorithm as the
interference can only happen between two neighbors.

Another approach, taken by Liu et al. (2015) for the randomized coordinate selection,
is to control the size of the steps taken by the coordinate descent to avoid interferences.
In their work, they do not use updates that replace the coordinate by its optimal value
for the single coordinate problem but use a coordinate-wise gradient step described by
(3.27). This update size is controlled by a learning rate parameter α and Liu et al. (2015)
show that setting this parameter low enough guarantees the convergence of parallel and
asynchronous coordinate descent steps to the solution of the LASSO. The actual upper
bound on the learning rate to show convergence of this asynchronous algorithm depends
on the communication delay between the nodes. You et al. (2016) show similar results
with greedy coordinate selection. Once again, the smaller step size is designed to control
interference between more than two workers. This cannot happen in the convolutional
setting when the workers handle disjoint time segments. Thus, it is possible to use
greedy updates that accelerates the algorithm convergence.

5.4 Properties of DICOD

5.4.1 Convergence of DICOD.

The interference magnitude is related to the value of the cross-correlation between
dictionary elements, as shown in Proposition 5.1. Thus, when the interferences have
low probability and small magnitude, the distributed algorithm behaves as if the updates
were applied sequentially, resulting in a large acceleration compared to the sequential
CD algorithm.

Proposition 5.1. For concurrent updates for coefficients (k0, t0) and (k1, t1) of a sparse
code Z, the cost update ∆Ek0k1 [t0, t1] is lower bounded by

∆Ek0k1 [t0, t1] ≥ ∆Ek0 [t0] + ∆Ek1 [t1]− 2
Sk0,k1 [t0 − t1]

‖Dk0‖2‖Dk1‖2

√
∆Ek0 [t0]∆Ek1 [t1]. (5.8)

The proof of this proposition is given in supplementary materials. It relies on the

‖Dk‖22-strong convexity of (5.5), which gives |∆Zk[t]| ≤
√

2∆Ek[t](Z)

‖Dk‖2 for all Z. Using
this inequality with (5.7) yields the expected result.

This proposition controls the interference magnitude using the cost reduction associated
to a single update. When the correlations between the different elements of the diction-
ary are small enough, the interfering update does not increase the cost function. The
updates are less efficient but do not degrade the current estimate. Using this control
on the interferences, we can prove the convergence of DICOD.

Theorem 5.2. If the following hypotheses hold

H1. For all (k0,t0),(k1,t1) such that t0 6=t1,
∣∣∣∣ Sk0,k1 [t0−t1]

‖Dk0‖2‖Dk1‖2

∣∣∣∣ < 1 .

H2. There exists A ∈ N∗ such that all cores m ∈ J1,MK are updated at least once
between iteration i and i+A if the solution is not locally optimal.
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H3. The delay in communication between the processes is inferior to the update time.

Then, the DICOD algorithm converges to the optimal solution Z∗ of (5.2)

Assumption (H1) is satisfied as long as the dictionary elements are not replicated in
shifted positions in the dictionary. It ensures that, at each step, the cost is updated
in the right direction. This assumption can be linked to the shifted mutual coherence
introduced in Papyan et al. (2016).

Hypothesis (H2) ensures that all coefficients are updated regularly if they are not
already optimal. This analysis is not valid when one of the cores fails. As only one core
is responsible for the update of a local segment, if a worker fails, this segment cannot
be updated anymore and thus the algorithm will not converge to the optimal solution.

Finally, under (H3), an interference only results from one update on each core. Multiple
interferences occur when a core updates multiple coefficients in the border of its segment
before receiving the communication from other processes border updates. When T �
W , the probability of multiple interference is low and this hypothesis can be relaxed if
the updates are not concentrated on the borders.

Proof sketch for Theorem 5.2. The full proof can be found in Subsection 5.7.3.
The key point in proving the convergence is to show that most of the updates can
be considered sequentially and that the remaining updates do not increase the cost
of the current point. By (H3), for a given iteration, a core can interfere with at
most one other core. Thus, without loss of generality, we can consider that at each
step q, the variation of the cost E is either ∆Ek0 [t0](Z(q)) or ∆Ek0k1 [t0, t1](Z(q)),
for some (k0, t0), (k1, t1) ∈ J1,KK× J0, T − 1K . Proposition 5.1 and (H1) proves that
∆Ek0k1 [t0, t1](Z(q)) ≥ 0. For a single update ∆Ek0 [t0](Z(q)), the update is equivalent
to a sequential update in CD, with the coordinate chosen randomly between the best
in each segments. Thus, ∆Ek0 [t0](Z(q)) > 0 and the convergence is eventually proved
using results from Osher & Li (2009).

5.4.2 Speedup of DICOD.

We denote Scd(M) the speedup of DICOD compared to the sequential greedy CD. This
quantify the number of iteration that can be run by DICOD during one iteration of CD.

Theorem 5.3. Let α = W
T and M ∈ N∗ . If αM < 1

4 and if the non-zero coefficients
of the sparse code are distributed uniformly in time, the expected speedup E[Scd(M)] is
lower bounded by

E[Scd(M)] ≥M2(1− 2α2M2
(

1 + 2α2M2
)M

2
−1

) .

This result can be simplified when the interference probability (αM)2 is small.

Corollary 5.4. The expected speedup E[Scd(M)] when (Mα)2 → 0 is such that

E[Scd(M)] &
α→0

M2(1− 2α2M2 +O(α4M4)) .

Proof sketch for Theorem 5.3. The full proof can be found in Subsection 5.7.4.
There are two aspects involved in DICOD speedup: the computational complexity
and the acceleration due to the parallel updates. As stated in Subsection 5.2.2, the
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complexity of each iteration for CD is linear with the length of the input signal T .
In DICOD, each core runs on a segment of size T

M . This accelerates the execution
of individual updates by a factor M . Moreover, all the cores compute their update
simultaneously. The updates without interference are equivalent to sequential updates.
Interfering updates happen with probability

(
Mα

)2 and do not degrade the cost. Thus,
one iteration of DICOD with Ni interferences provides a cost variation equivalent to
M−2Ni iterations using sequential CD and, in expectation, it is equivalent toM−2E[Ni]
iterations of DICOD. The probability of interference depends on the ratio between the
length of the segments used for each core and the size of the dictionary. If all the
updates are spread uniformly on each segment, the probability of interference between

2 neighboring cores is
(
MW
T

)2
. E[Ni] can be upper bounded using this probability and

this yields the desired result.

The overall speedup of DICOD is super-linear compared to sequential greedy CD for
the regime where (αM)2 � 1. It is almost quadratic for small M but as M grows,
there is a sharp transition that significantly deteriorates the acceleration provided by
DICOD. Section 5.5 empirically highlights this behavior. For a given α, it is possible
to approximate the optimal number of cores M to solve convolutional sparse coding
problems.

Note that this super-linear speed up is due to the fact that CD is inefficient for long
signals, as its iterations are computationally too expensive to be competitive with the
other methods. The fact that we have a super-linear speed-up means that running
DICOD sequentially will provide an acceleration compared to CD. This is what we did
with SeqDICOD. For SeqDICOD, we have a linear speed-up in comparison to CD, when
M is small enough. Indeed, the iteration cost is divided by M as we only need to find
the maximal update on a local segment of size T

M . When increasing M over T
W , the

iteration cost does not decrease anymore as updating β costs O
(
KW

)
and finding the

best coordinate has the same complexity.

Using the same arguments, we can show that the expected speed-up of DICODM com-
pared to SeqDICODM , denoted Sdicod is sub-linear.

Theorem 5.5. Let α = W
T and M ∈ N∗ . If αM < 1

4 and if the non-zero coefficients of
the sparse code are distributed uniformly in time, the expected speedup E[SSeqDICOD(M)]
of DICODM compared to SeqDICODM is lower bounded by

E[Sdicod(M)] ≥M(1− 2α2M2
(

1 + 2α2M2
)M

2
−1

) .

This theorem has the same proof as Theorem 5.3, but the iteration cost is not decreased
by M . As for E[Scd], it is almost linear for small M but as M grows, there is a sharp
transition that significantly deteriorates the acceleration provided by DICOD, when the
interferences begin to be too frequent.

5.5 Numerical Results

All the numerical experiments are run on five Linux machines with 16 to 24 Intel Xeon
2.70 GHz processors and at least 64 GB of RAM on local network. We use a combination
of Python, C++ and the OpenMPI 1.6 for the algorithm implementation. The code



114 CHAPTER 5. DISTRIBUTED CONVOLUTIONAL SPARSE CODING

100 101 102 103 104 105 106

# iteration q

10 3

10 1

101

103

105

Co
st

 E
(Z

(q
) )

E(
Z

* )

CD
RCD
FCSC
FISTA
DICOD30
DICOD60
SeqDICOD60

Figure 5.3: Evolution of the loss function for DICOD, SeqDICOD, CD, FCSC and Fista
while solving sparse coding for a signal generated with default parameters, relatively to
time. This highlights the speed of the algorithm on the given problem.

to reproduce the figures is available online 1. The run time denotes the time for the
system to run the full algorithm pipeline, from cold start and includes for instance the
time to start the sub-processes.

5.5.1 Long convolutional Sparse Coding Signals

To further validate our algorithm, we generate signals and test the performances of
DICOD compared to state-of-the-art methods proposed to solve convolutional sparse
coding. We generate a signal X of length T in RP following the model described in
(5.1). The K dictionary atoms Dk of lengthW are drawn as a generic dictionary. First,
each entry is sampled from a Gaussian distribution. Then, the pattern is normalized
such that ‖Dk‖2 = 1. The sparse code entries are drawn from a Bernoulli-Gaussian
distribution with Bernoulli parameter ρ = 0.007, mean 0 and standard variation σ = 10
. The noise term E is chosen as a Gaussian white noise with variance 1. The default
values for the dimensions are set to W = 200, K = 25, P = 7, T = 600 ×W and we
used λ = 1.

5.5.2 Performances on Artificial Signals

DICOD is compared to the main state-of-the-art optimization algorithms for convolu-
tional sparse coding: Fast Convolutional Sparse Coding (FCSC) from Bristow et al.
(2013), Fast Iterative Soft Thresholding Algorithm (FISTA) using Fourier domain com-
putation as described in Wohlberg (2016), the greedy convolutional coordinate descent
(CD, Kavukcuoglu et al. 2010) and the randomized coordinate descent (RCD, Nesterov
2012). All these algorithms are described in Section 3.3 of this manuscript and the
specific parameters for these algorithms are fixed based on the authors’ recommenda-
tions. DICODM denotes the DICOD algorithm run using M cores. We also include
SeqDICODM , for M ∈ {60, 600}, the sequential run of the DICOD algorithm using M
segments, as described in Algorithm 5.2. Figure 5.3 presents the evolution of the cost

1The code is made available at https://github.com/tommoral/Dicod.

https://github.com/tommoral/Dicod
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Figure 5.4: Evolution of the loss function for DICOD, SeqDICOD, CD, FCSC and Fista
while solving sparse coding for a signal generated with default parameters relatively to
the number of iterations.

function value relatively to the number of iterations of the algorithms and Figure 5.4
relatively to the running time. To ensure reasonable computation, a timeout is set to
2hours and it was only reached by the CD algorithm. As the stopping criterion of
the different algorithms are not the same, there is a small discrepancy between their
resolution but the curves show the general behavior.

Figure 5.3 shows that the evolution of the performances of SeqDICOD relatively to the
iterations are very close to the performances of CD. The difference between these two
algorithms is that the updates are only locally greedy in SeqDICOD. As there is little
difference visible between the two curves, this means that in this case, the computed
updates are essentially the same. The differences are larger for SeqDICOD600, as the
choice of coordinates are more local in this case. The performance of DICOD60 and
DICOD30 are also close to the iteration-wise performances of CD and SeqDICOD. The
small differences between DICOD and SeqDICOD result from the iterations where there
are interferences. Indeed, if two iterations interfere, the cost does not go down as much
as if the iteration where done sequentially. Thus, it requires more steps to reach the
same accuracy with DICOD60 than with SeqDICOD and with DICOD30, as there are
more interferences when the number of coresM increases. This explain the discrepancy
in the decrease of the cost around the iteration 105. However, the number of extra
steps required is quite low compared to the total number of steps and the performances
are not highly degraded by the interferences. The performances of RCD in terms of
iteration are much slower than the greedy methods. Indeed, as only a few coefficients
are useful, it takes many iterations to draw them randomly. In comparison, the greedy
methods are focused on the coefficients which largely divert from their optimal value,
and are thus most likely to be important. Another observation is that the iteration
wise performances of the global methods FCSC and FISTA are much better than the
methods based on local updates iteration wise. As each iteration can update all the
coefficients for FISTA, the number of iterations needed to reach the optimal solution is
indeed smaller than for CD, where only one coordinate is updated at a time.
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Figure 5.5: Runtime in seconds of the different algorithms averaged over 10 repetitions
for different problem sizes, ranging from 80W to 2000W . A timeout was set to 2h.

In Figure 5.4, the speed of theses algorithms can be observed. Even though it needs
much more iteration to converge, the randomized coordinate descent is faster than
the greedy coordinate descent. Indeed, for very long signals, the iteration complexity of
greedy CD is prohibitive. However, using the locally greedy updates, with SeqDICOD60

and SeqDICOD600, the greedy algorithm can be made more efficient. SeqDICOD600 is
also faster than the other state-of-the-art algorithms FISTA and FCSC. The choice of
M = 600 is a good tradeoff for SeqDICOD as it means that the segments are of the size
of the dictionary W . With this choice for M = T

W , the computational complexity of
choosing a coordinate is O

(
KW

)
and the complexity of maintaining β is also O

(
KW

)
.

Thus, the iterations of this algorithm have the same complexity as RCD but are more
efficient.

The distributed algorithm DICOD is faster compared to all the other sequential al-
gorithms and the speed up increases with the number of cores. Also, DICOD has a
shorter initialization time compared to the other algorithms. The first point in each
curve indicates the time taken by the initialization. For all the other methods, the
computations for constants – necessary to accelerate the iterations – have a computa-
tional cost equivalent to the on of the gradient evaluation. As the segments of signal in
DICOD are smaller, the initialization time is also reduced. This shows that the over-
head of starting the cores is balanced by the reduction of the initial computation for
long signals. For shorter signals, we have observed that the initialization time is of the
same order as the other methods. The spawning overhead is indeed constant whereas
the constants are cheaper to compute for small signals.

5.5.3 Numerical Complexity

Figure 5.5 displays the running time of each algorithm for different problem sizes, av-
eraged over 10 repetitions. All methods were considered to have converged when the
`∞-norm of the updates reached a certain threshold ε = 5e−2. This figure highlights
the speedup obtained with the parallelization. The speed up ratio between DICOD15

and DICOD30 is on average 4.99, and the ratio between DICOD15 and CD is on average
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Figure 5.6: Speedup of DICOD as a function of the number of processes used, averaged
over 10 runs on different generated signals. This highlights a sharp transition between
a regime of quadratic speedups and the regime where the interferences are drastically
slowing down the convergence.

91.59. This corroborates the complexity analysis provided in Corollary 5.4 which states
that the speedup obtained between DICOD and CD is quadratic in M2. This plot also
shows that DICOD is capable of solving problems with large size (T = 400000 samples)
in around 3 minutes, whereas the running time of the other algorithms is above two
hours.

Figure 5.6 displays the speedup of DICOD as a function of the number of cores. We
used 10 generated problems for 2 signal lengths T = 150 ·W and T = 750 ·W and
we solved them using DICODM with a number of cores M ranging from 1 to 75. The
blue dots display the average running time for a given number of workers. For both
setups, the speedup is super-linear up to the point where Mα = 1

2 . For small M the
speedup is very close to quadratic and a sharp transition occurs as the number of cores
grows. The vertical solid green line indicates the approximate position of the maximal
speedup given in Corollary 5.4 and the dashed lined is the expected theoretical run time
derived from the same expression. The transition after the maximum is very sharp.
This approximation of the speedup for small values of Mα is close to the experimental
speedup observed with DICOD. The computed optimal value of M∗ is close to the
optimal number of cores in these two examples.
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5.6 Discussion

In this chapter, we introduced an asynchronous distributed algorithm, DICOD, which
is able to accelerate the solution of the Convolutional Sparse Coding problem for long
signals. This algorithm is guaranteed to converge to the optimal solution of (5.2) and
scales super-linearly with the number of cores used to distribute it, compared to the
greedy coordinate descent. These claims are supported by numerical experiments high-
lighting the performances of DICOD compared to other state-of-the-art methods. This
super-linear speedup results from the inefficiency of the greedy CD for long signals, and
running DICOD iteratively also accelerates the solution of problem (5.2). This sequen-
tial algorithm, called SeqDICOD, make use of locally greedy updates and is effective in
practice.

For the distributed algorithm convergence, our proof relies extensively on the use of
one dimensional convolutions. In this setting, a process m only has two neighbors
m− 1 and m+ 1. This ensures that there are no high order interferences between the
updates. Our analysis does not apply to distributed computation using square patches
of images as the interferences are more complicated. A way to apply our algorithm with
its guarantees to images is to only split the signals along one direction, to avoid higher
order interferences. The development of a distributed algorithm, using locally greedy
updates, for higher order convolution operators is considered for future work. A way to
do that would be to compute in each worker an estimate of the β vector in its neighbors
and to only perform an update in the interfering zone if it is larger than the estimated
updates in the interfering zone of the neighbor. This idea would implement a sort of
"soft" lock for the updates, to reduce the probability of interference.
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5.7 Proofs

5.7.1 Computation for the Cost Updates

When a coefficient Zk[t] is updated to u ∈ R, the cost update is a simple function of
Zk[t] and u.

Proposition 5.7.1. The update of the weight in (k0, t0) from Zk0 [t0] to u ∈ R gives a
cost variation:

∆Ek0 [t0] = ek0,t0(Zk0 [t0])− ek0,t0(u)

=
‖Dk0‖22

2
(Zk0 [t0]2 − u2)− βk0 [t0](Zk0 [t0]− u) + λ(|Zk0 [t0]| − |u|).

with ek,t(u) =
‖Dk‖22

2 u2 − βk[t]u+ λ|u| .

Proof. Let αk0 [t] =
(
X −∑K

k=1 Zk ∗Dk

)
[t] + Dk0 [t − t0]Zk0 [t0] for all t ∈ J0, T − 1K

and

Z
(1)
k [t] =

u, if (k, t) = (k0, t0)

Zk[t], elsewhere
.

ek0,t0(u) =
1

2

T−1∑
t=0

X − K∑
k=1

Zk ∗Dk

2

[t] + λ

K∑
k=1

‖Zk‖1

− 1

2

T−1∑
t=0

X − K∑
k=1

Z
(1)
k ∗Dk

2

[t]− λ
K∑
k=1

‖Z(1)
k ‖1

=
1

2

T−1∑
t=0

(
αk0 [t]−Dk0 [t− t0]Zk0 [t0]

)2
− 1

2

T−1∑
t=0

(
αk0 [t]−Dk0 [t− t0]u

)2

+ λ(|Zk0 [t0]| − |u|)

=
1

2

T−1∑
t=0

Dk0 [t− t0]2(Zk0 [t0]2 − u2)−
T−1∑
t=0

αk0 [t]Dk0 [t− t0](Zk0 [t0]− u)

+ λ(|Zk0 [t0]| − |u|)

=
‖Dk0‖22

2
(Zk0 [t0]2 − u2)− (D̃k0 ∗ αk0)[t]︸ ︷︷ ︸

βk0 [t0]

(Zk0 [t0]− u) + λ(|Zk0 [t0]| − |u|)

This concludes our proof.

Using this result, we can derive the optimal value Z ′k0 [t0] to update the coefficient (k0, t0)
as the solution of the following optimization problem:

Z ′k0 [t0] = argmax
y∈R

ek0,t0(Zk0 [t0])− ek0,t0(u) ∼ argmin
u∈R

‖Dk0‖22
2

(
u− βk0 [t0]

‖Dk0‖22

)2

+ λ|u| .

(5.9)
In the case where two coefficients (k0, t0), (k1, t1) are updated in the same iteration to
values u and Z ′k1 [t1], we obtain the following cost variation.
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Proposition 5.7.2. The update of the weight Zk0 [t0] and Zk1 [t1] to values Z ′k0 [t0] and
Z ′k1 [t1] with ∆Zk[t] = Zk[t]− Z ′k[t] gives an update of the cost:

∆Ek0k1 [t0, t1] = ∆Ek0 [t0] + ∆Ek1 [t1]− Sk0,k1 [t0 − t1]∆Zk0 [t0]∆Zk1 [t1]

Proof. We define Z(1)
k [t] =


Zk0 [t0], if (k, t) = (k0, t0)

Zk1 [t1], if (k, t) = (k1, t1)

Zk[t], otherwise

Let α[t] =
(
X −∑K

k=1 ZkDk

)
[t] +Dk0 [t− t0]Zk0 [t0] +Dk1 [t− t1]Zk1 [t1].

We have α[t] = αk0 [t] +Dk1 [t− t1]Zk1 [t1] = αk1 [t] +Dk0 [t− t0]Zk0 [t0].

∆Ek0k1
[t0, t1] =

1

2

T−1∑
t=0

X − K∑
k=1

Zk ∗Dk

 [t]2 +
1

2

K∑
k=1

λ‖Zk‖1

−
T−1∑
t=0

X − K∑
k=1

Z
(1)
k ∗Dk

2

[t]− λ
K∑

k=1

‖Z(1)
k ‖1

=
1

2

T−1∑
t=0

(
α[t]−Dk0

[t− t0]Zk0
[t0]−Dk1

[t− t1]Zk1
[t1]
)2

− 1

2

T−1∑
t=0

(
α[t]−Dk0

[t− t0]Z ′k0
[t0]−Dk1

[t− t1]Z ′k1
[t1]
)2

+ λ(|Zk0
[t0]| − |Z ′k0

[t0]|) + λ(|Zk1
[t1]| − |Z ′k1

[t1]|)

=
1

2

T−1∑
t=0

Dk0
[t− t0]2(Zk0

[t0]2 − Z ′k0
[t0]

2
) +Dk1

[t− t1]2(Zk1
[t1]2 − Z ′k1

[t1]
2
)


−

T−1∑
t=0

αk0
[t]Dk0

[t− t0]∆Zk0
[t0] + αk1

[t1]Dk1
[t− t]∆Zk1

[t1]

+Dk0
[t− t0]Dk1

[t− t1](∆Zk0
[t0]Z ′k1

[t1] + ∆Zk1
[t1]Z ′k0

[t0])

−Dk0
[t− t0]Dk1

[t− t1](Zk0
[t0]Zk1

[t1]− Z ′k0
[t0]Z ′k1

[t1])


+ λ(|Zk0

[t0]| − |Z ′k0
[t0]|+ |Zk1

[t1]| − |Z ′k1
[t1]|)

=∆Ek0
[t0] + ∆Ek1

[t1]

−
T−1∑
t=0

Dk0
[t− t0]Dk1

[t− t1]

[
Zk0

[t0]Zk1
[t1]− Z ′k0

[t0]Zk1
[t1]

− Zk0
[t0]Z ′k1

[t1] + Z ′k1
[t1]Z ′k0

[t0]

]
=∆Ek0 [t0] + ∆Ek1 [t1]

−
T−1∑
t=0

Dk0
[t]Dk1

[t+ t0 − t1](Zk0
[t0]− Z ′k0

[t0])(Zk1
[t1]− Z ′k1

[t1])

=∆Ek0 [t0] + ∆Ek1 [t1]− D̃k0 ∗Dk1 [t0 − t1]∆Zk0 [t0]∆Zk1 [t1]

By definition of Sk0,k1 [t] = D̃k0 ∗Dk1 [t]. This concludes our proof.
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5.7.2 Intermediate Results

Consider solving a convex problem of the form:

minE(Z) = F (Z) +
L−1∑
t=0

K∑
k=1

gi(Zk[t]) (5.10)

where F is differentiable and convex, and gi is convex. Let us first recall a theorem
stated and proven in Osher & Li (2009).

Theorem 5.7.3. Suppose F (u) is smooth and convex, with
∣∣∣∣ ∂2F
∂ui∂uj

∣∣∣∣
∞
≤ M , and E

is strictly convex with respect to any one variable ui, then the statement that u =
(u1, u2, . . . un) is an optimal solution of (5.10) is equivalent to the statement that every
component ui is an optimal solution of E with respect to the variable ui for any i.

In the convolutional sparse coding problem, the function

F (Z) =
1

2
‖X −

K∑
k=1

Zk ∗Dk‖

is smooth and convex and its Hessian is constant. The following Lemme 5.7.4, can be
used to show that the function E restricted to one of its variables is strictly convex and
thus satisfies the condition of 5.7.3.

Lemme 5.7.4. The function f : R → R defined for α, λ > 0 and b ∈ R by f(x) =
α
2 (x− b)2 + λ|x| is α-strongly convex.

Proof. The property of monotone subdifferential states that a function f is α-strongly
convex if and only if

∀(x, x′), 〈f(x)− f(x′), x− x′〉 ≥ α‖x− x′‖22
Let us define the subdifferential of f :

∂f =

α(x− b) + λsign(x) if x 6= 0

−αb+ λt, for t ∈
[
−1, 1

]
if x = 0

The inequality is an equality for x = x′.
If x′ = 0, we get for |t| ≤ 1:

〈α(x− b) + λsign(x) + αb− λt), x〉 = αx2 + λ (|x| − tx)︸ ︷︷ ︸
≥0

≥ αx2 = α(x− x′)2

If x′ 6= 0, we get:

〈α(x− x′) + λ(sign(x)− sign(x′), x− x′〉 = α(x− x′)2 + λ(|x|+ |x′| − sign(x)x′ − sign(x′)x)

= α(x− x′)2 + λ(1− sign(x)sign(x′))︸ ︷︷ ︸
≥0

(|x|+ |x′|)

≥ α(x− x′)2

Thus f is α-strongly convex.

This can be applied to the function ek, t defined in (5.9), showing that the problem in
one coordinate (k, t) is ‖Dk‖22-strongly convex.
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5.7.3 Proof of Convergence for DICOD (Theorem 5.2)

We define
Ck0,k1 [t] =

Sk0,k1 [t]

‖Dk0‖2‖Dk1‖2
(5.11)

Let us first show how Ck0,k1 controls the interfering cost update.

Proposition 5.1. For concurrent updates for coefficients (k0, t0) and (k1, t1) of a sparse
code Z, the cost update ∆Ek0k1 [t0, t1] is lower bounded by

∆Ek0k1 [t0, t1] ≥ ∆Ek0 [t0] + ∆Ek1 [t1]− 2
Sk0,k1 [t0 − t1]

‖Dk0‖2‖Dk1‖2

√
∆Ek0 [t0]∆Ek1 [t1]. (5.8)

Proof. The problem in one coordinate (k, t) given that all the others are fixed can be
reduced to (5.9). Simple computations show that:

∆Ek[t] = ek,t(Zk[t])− ek,t(Z ′k[t]). (5.12)

We have shown in Lemme 5.7.4 that ek,t is ‖Dk‖22-Strong convex. Thus by definition of
the strong convexity, and using the fact that Z ′k[t] is optimal for ek,t

|ek,t(Zk[t])− ek,t(Z ′k[t])| ≥
‖Dk‖22

2
(Zk[t]− Z ′k[t])2 (5.13)

i.e., |∆Zk[t]| ≤
√

2∆Ek[t]

‖Dk‖2 , and the result is obtained using this inequality with Proposi-
tion 5.7.2.

Theorem 5.2. If the following hypotheses hold

H1. For all (k0,t0),(k1,t1) such that t0 6=t1,
∣∣∣∣ Sk0,k1 [t0−t1]

‖Dk0‖2‖Dk1‖2

∣∣∣∣ < 1 .

H2. There exists A ∈ N∗ such that all cores m ∈ J1,MK are updated at least once
between iteration i and i+A if the solution is not locally optimal.

H3. The delay in communication between the processes is inferior to the update time.

Then, the DICOD algorithm converges to the optimal solution Z∗ of (5.2)

Proof. If several updates (k0, t0), (k1, t1), . . . (km, tm) are updated in parallel without
interference, then the update is equivalent to the sequential updates of each (kq, tq).
We thus consider that for each step q, without loss of generality that

∆E(q) =

∆E
(q)
k0

[t0], if there is no interference
∆E

(q)
k0k1

[t0, t1], otherwise

If ∀(k, t),∆Z(q)
k [t] = 0, then Z(q) is coordinate wise optimal. Using the result from

5.7.3, Z(q) is optimal. Thus if Z(q) is not optimal, ∆E
(q)
k0

[t0] > 0.

Using Proposition 5.1 and (H1)

∆E
(q)
k0k1

[t0, t1] >

(√
∆E

(q)
k0

[t0]−
√

∆E
(q)
k1

[t1]

)2

≥ 0 ,
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so the update ∆E(q) is positive.

The sequence (E(Z(q)))n is decreasing and bounded by 0. It converges to E∗ and
∆E(q)−−−→

q→∞
0. As lim‖Z‖∞→∞E(Z) = +∞, there exist M ≥ 0, q0 ≥ 0 such that

‖Z(q)‖∞ ≤ M for all q > q0. Thus, there exists a subsequence (Zqn)n such that
Zqn −−−→

n→∞
Z̄. By continuity of E, E∗ = E(Z̄)

Then, we show that Z(q) converges to a point Z̄ such that each coordinate is optimal for
the one coordinate problem. By Proposition 5.1, the sequence (Z(q))q is `∞-bounded.
It admits at least a limit point Z(qn) −−−→

n→∞
Z̄. Moreover, the sequence Z(q) is a Cauchy

sequence for the norm `∞ as for n, p > 0

‖Z(p) − Z(n)‖2∞ ≤
2

‖D‖2∞,2

∑
l>n

∆E(l)

=
2

‖D‖2∞,2

(
E(Z(n))− E∗

)
→

n→∞
0

Thus Z(q) converges to Z̄.

Let m denote one of the M cores and (k, t) be coordinates in Cm. We consider the
function hk,t : RK×L → R such that

h(Z) = Z ′k[t] =
1

‖Dk‖22
Sh(βk[t], λ) .

We recall that

βk[t](Z) =

D̃k ∗

X −
K∑
k′=1
k′ 6=k

Zk′ ∗Dk′ − Φt

(
Zk
)
∗Dk


 [t]

The function φ : Z → βk[t](Z) is linear. As Sh is continuous in its first coordinate and
h(Z) = Sh(φ(Z), λ), the function hk,t is continuous. For (k, t) ∈ Cm, the gap between
Z̄k[t] and Z̄ ′k[t] is such that

|Z̄k[t]− Z̄ ′k[t]| = |Z̄k[t]− hk,t(Z̄k[t])|
= lim

q→∞
|Z(q)
k [t]− h(Z

(q)
k [t])|

= lim
q→∞

|Z(q)
k [t]− Y (q)

k [t]| (5.14)

Using (H2), for all q ∈ N, if Z(q)
k [t] is not optimal, there exists iq ∈ [q, q +A] such that

the updated coefficient at iteration iq is (kiq , tiq) ∈ Cm. As no updates are done on Cm
coefficients between the updates q and iq, Z

(q)
k [t] = Z

(iq)
k [t]. By definition of the update,∣∣∣∣Z(q)

k [t]− Y (q)
k [t]

∣∣∣∣ =

∣∣∣∣Z(iq)
k [t]− Y (iq)

k [t]

∣∣∣∣
≤
∣∣∣∣Z(iq)

kiq
[tiq ]− Y

(iq)
kiq

[tiq ]

∣∣∣∣ (greedy updates)

≤
√

2∆E(iq)

‖Dkiq
‖ →

q→∞
0 (Proposition 5.1)
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Using this results with (5.14),
∣∣∣Z̄k[t]− Ȳk[t]∣∣∣ = 0. This proves that Z̄ is optimal in each

coordinate. By 5.7.3, the limit point Z̄ is optimal for the problem (2).

5.7.4 Proof of DICOD Speedup (Theorem 5.3)

Theorem 5.3. Let α = W
T and M ∈ N∗ . If αM < 1

4 and if the non-zero coefficients
of the sparse code are distributed uniformly in time, the expected speedup E[Scd(M)] is
lower bounded by

E[Scd(M)] ≥M2(1− 2α2M2
(

1 + 2α2M2
)M

2
−1

) .

This result can be simplified when the interference probability (αM)2 is small.

Corollary 5.4. The expected speedup E[Scd(M)] when (Mα)2 → 0 is such that

E[Scd(M)] &
α→0

M2(1− 2α2M2 +O(α4M4)) .

Proof. There are two aspects involved in DICOD speedup: the computational complex-
ity and the acceleration due to the parallel updates.

As stated in Section 5.4, the complexity of each iteration for CD is linear with the
length of the input signal T . The dominant operation is the one that finds the maximal
coordinate. In DICOD, each core runs the same iterations on a segment of size T

M .
The hypothesis αM < 1

4 ensures that finding the maxima is the dominant operation.
Thus, when CD runs one iteration, one core of DICOD can run M local iterations as
the complexity of each iteration is divided by M .

The other aspect of the acceleration is the parallel update of Z. All the cores perform
their update simultaneously and each update happening without interference can be
considered as a sequential update. Interfering updates do not degrade the cost. Thus,
one iteration of DICOD with Ni interference is equivalent to M − 2 ∗Ninterf iterations
using CD and thus,

E[Ndicod] = M − 2 ∗ E[Ninterf ] (5.15)

The probability of interference depends on the ratio between the length of the segments
used for each core and the size of the dictionary. If all the updates are spread uni-
formly on each segment, the probability of interference between 2 neighboring cores is(
MW
T

)2
= (Mα)2.

A process can only create one interference with one of its neighbors. Thus, an upper
bound on the probability to get exactly j ∈ [0, M2 ] interferences is

P(Ni = j) ≤
(M

2

j

)
(2α2M2)j

Using this result, we can upper bound the expected number of interferences for the
algorithm

E[Ninterf ] =

M
2∑
j=1

jP(Ninterf = j) , ≤
M
2∑
j=1

j

(M
2

j

)
(2α2M2)j ,

≤ α2M3
(

1 + 2α2M2
)M

2
−1

.
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Plugging this result in (5.15) gives us:

E[Ndicod] ≥ M(1− 2α2M2
(

1 + 2α2M2
)M

2
−1

) ,

&
α→0

M(1− 2α2M2 +O(α4M4)) .
(5.16)

Finally, by combining the two source of speedup, we obtain the desired result.

E[Scd(M)] ≥M2(1− 2α2M2
(

1 + 2α2M2
)M

2
−1

) .
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In this part, we analyze the link between deep learning methods and sparse repres-
entations. We start by recalling the general framework of deep learning in Chapter 6.
Then, Chapter 7 introduces the post-training step for deep neural networks. This extra
learning step can be used after normal training of a network and provides a boost in
performance for neural networks by optimizing the last layer of the network. The main
idea behind this step comes from analysis which splits deep models between the first
layers, learning general representations of the data and the last layers, which solve the
specific task. The post-training ensures that the learned representation is optimally
used for this task. In Chapter 8, we analyze the reason why the Learned ISTA mod-
els (LISTA) are able to accelerate the resolution of the LASSO problem. LISTA is a
model designed to mimic the behavior of ISTA by replacing gradient computations with
general linear operations. It is able to solve the sparse coding problem efficiently when
the gram matrix of the problem admits a certain sparse factorization. Understanding
the theoretical properties is a step to explicit the link between neural networks and
dictionary learning models.





6
Interpretability in Deep Learning Models

“To judge is obviously not to
understand, because if we understood,
we could not judge anymore.”

— André Malraux
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This chapter starts by presenting the general framework for feedforward neural networks
in Section 6.1. These models - very efficient in practice - are often seen as black-boxes
with no guarantees on their performance. We describe in Section 6.2 different theoretical
results which shed light on the directions pursued to understand deep learning models.
Then, in Section 6.3, we review recent research directions aiming to design interpretable
neural networks in order to make their decision process less opaque.

6.1 Feedforward Neural Networks

The foundations for artificial neural network models were introduced in the 40s with
the work of McCulloch & Pitts (1943). Their article proposes a framework based on
computation networks without circles, with non-linear activation of the graph units,
which can be considered as the ancestor of the feedforward networks. Following several
developments during the 70s, Werbos (1982) described the first efficient learning rules
for these models, with backpropagation. With this technique, it became possible to
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efficiently compute the cost derivative for the parameters, in a graph with many layers.
These models with multiple layers are called deep networks. They were appealing
due to their adaptability but because of a lack of large data sets and computational
power, they were judged impractical. With the development of parallel computing, the
popularization of GPUs and the increase in the available data, neural networks have
become more popular in the past decade. Starting with work by Krizhevsky et al.
(2012), many tasks involving signals have seen quick progress thanks to the use of deep
learning methods.

These techniques rely on a parametrization of the function space which allows for effi-
cient search and is expressive enough to handle a lot of different data. The parametriz-
ation is based on the composition of simple parametric functions, arranged in successive
layers. The model is said to be deep when multiple layers are stacked. The number
of layers and their size control the expressiveness of the model. The parameters are
then learned during a training phase with an end-to-end algorithm such as stochastic
gradient descent (SGD). This class of models is efficient due to the possibility of com-
puting gradient with respect to the parameters using the chain rule applied to simple
differentiable functions. The chain rule in this context is named backpropagation and
is described in Subsection 6.1.3.

6.1.1 General Framework

The architecture of a network is defined by specifying the number of layers L ∈ N
and the input space of each of them Xl. Each layer is then specified as an application
φl : Xl 7→ Xl+1, with XL+1 = Y. We denote WWW the parameter of the network and ΦWWW
the mapping from X to Y computed by the network with parametersWWW. The mapping
is defined by composing the φl functions, i.e.

ΦWWW = φL ◦ φL−1 ◦ · · · ◦ φ1 (6.1)

This framework is very general and the functions φl can be chosen in various classes.
The design of the network architecture is mostly empirical, based on the performance
of these layers for this type of data with past experiments or a validation set. Below,
we present two of the most common layer architectures.

Linear Layer with Point-wise Activation. Linear layers are the most basic layers
in the deep learning literature. The output of a layer results from the composition of a
linear operation and an activation function. Let Xl be Rdl for a specified dl ∈ N. The
layer is parametrized with a matrix WWW l ∈ Rdl×dl+1 and the activation function ψl. We
refer the reader to Subsection 6.1.2 for more details about the choice of the activation
function. For x ∈ Rdl , the mapping φl defined by the l-th layer is computed using

φl(x) = ψl(WWW lx) .

The parameter of the full network is WWW =
(
WWW 1, . . . ,WWWL

)
and the parameter space is

ΠL
l=1Rdl×dl+1 . The full network mapping is thus

ΦWWW(x) = ψL

(
WWWL · ψL−1

(
WWWL−1 · . . . ψ1

(
WWW 1x

)))
. (6.2)

When all the layers in a network are linear layers with non-linear activation, the network
can also be called a Multi-Layer Perceptron (MLP).
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Figure 6.1: A convolutional layer with 2D convolution. The output of the layer is
computed with the product of convolution of a linear filterWq of size k×k in dimension
P with the input signal in dimension P . Each of the Q linear filters produces one of
the output channels.

Convolutional Layer. Convolutional layers are particular case of linear layers where
the product operation between matrices is replaced by a convolution product. The most
common one is the 2D convolutional layer, used in convolutional neural networks for
image recognition. This layer takes as an input a signal Xl in dimension dl, of size
wl × hl. It then computes the convolution product of this input with a set of dl+1

linear filters WWW l = {Wq}dl+1

q=1 of size kl × kl in dimension dl. Each of the dl+1 linear
filters produces one channel of the output. Figure 6.1 presents this process. The output
is then computed using an activation function ψl on the result from the convolution
product, as in the linear case. The parameter of this layer is a fourth order tensor. For
x ∈ Rwl×hl×dl , the mapping defined by the l-th layer is

φl(x) = ψl(WWW l ∗ x) ∈ Rwl+1×hl+1×dl+1

The size of the internal representation in the (l+1)-th layer is computed using the size
of the previous layer and the size of the filters, such that wl+1 = wl − kl + 1 and
hl+1 = hl − kl + 1. To keep simple notations, we used squared filters with size kl × kl
although these sizes can be chosen independently.
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Figure 6.2: Three common activation functions for neural networks.

Figure 6.3: The sigmoïd and the step activation function. The sigmoid can be seen as
a smooth version of the hinge activation.

Figure 6.4: RELU activation function and its smooth approximation, the softplus.

6.1.2 Activation Function

Activation functions play an important role in artificial neural networks. Originally, the
idea behind the concept of activation was to mimic the behavior of neurons, which have
binary responses, depending on their stimulation level. This behavior can be modeled
with the step function, which outputs 0 for negative inputs and 1 otherwise. The use
of an activation function is critical for the performances of neural networks. When the
activation is linear, a neural network also becomes linear and loses its expressiveness.

The important characteristics of the activation function are its non-linearity, efficient
gradient or sub-gradient computations and non-null gradients. As stated above, the
non-linearity is necessary for the expressiveness of the model. Then, for computational
reasons, efficient computation of the gradient or sub-gradient ensures that the activation
function can be used in practice on large data sets. Finally, we say that a function has
null gradients when its gradient is 0 almost everywhere. Non-null gradients are required
to be able to train the model. Figure 6.2 displays three of the most commonly used
activation functions: RELU, sigmoïd and hyperbolic tangent (tanh).

Sigmoïd. The step function was the first activation function proposed. It is non-
linear but its sub-gradient is 0 almost everywhere. Thus, the step-function is not a
practical activation function. To avoid this issue, this activation can be approximated
with a smooth and differentiable function called the sigmoïd. The sigmoïd function is
the original function which was used as an activation function for MLP. This function
is defined for x ∈ R as

σ : x 7→ 1

1 + e−x

It projects R on the open segment ]0, 1[. This function is C∞ and it is easy to compute
its derivative in x ∈ R from its value σ(x). Indeed,

σ′(x) = σ(x)
(

1− σ(x)
)
.

Using this formula with the backpropagation described in Subsection 6.1.3, computing
the derivatives of the loss is very efficient.

Rectified Linear Unit (RELU). RELU activation is a piece-wise linear function
defined for x ∈ R by

RELU : x 7→ max(0, x) .
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It was introduced by Hahnloser et al. (2000) based on some symmetry properties of
the neural coactivation (Hahnloser et al., 2003). This function is non-linear and its
sub-gradient can be computed using

RELU′(x) =

1, if x >= 0 ,
0, elsewhere .

This function can thus be used directly as an activation function and there is no need
to rely on an approximation, unlike for the step-function. The advantage of the RELU
activation function over the sigmoïd is that it does not have a vanishing gradient.
Indeed, when the neuron activation is far from 0, the sigmoïd gradient approaches 0
exponentially fast. Using the RELU activation, the gradient for positive activation is
constant and it is easier to learn the parameters of the model. Note that in cases where
the sub-gradient cannot be used, it is possible to approximate the RELU function with
a C∞ function softplus

φ(x) = log
(

1 + ex
)
.

Softmax. Another important activation function is the soft-max function. When
training a classifier, we would like the output of the network to be a discrete probability
vector with value 1 for the coordinate encoding the right class and 0 for the other.
This behavior can be matched with a max activation function, which sets the maximal
output to 1 and the other to 0. But this function is impractical as it has null gradient.
An approximated version of the maximum was proposed with softmax. This activation
function is not point-wise but takes a vector x ∈ Rd and output y ∈ Rd such that for
i ∈ J1, dK,

yi =
exi∑d
j=1 e

xj
.

The output y can be seen as a discrete probability vector, with each coordinate i rep-
resenting the probability that the input is taken in class i. Indeed, its coordinates sum
up to 1. Moreover, the soft-max function tends to make the maximal coordinate in x
even bigger in y, which is the desired behavior. This activation function is often used
for the last layer of a classifier network, in combination with the cross entropy function.

6.1.3 Back-propagation

The efficiency of these methods is dependent on the computational complexity of the
gradient computation. One key element has been the formalization of computation
rules tagged as backpropagation which are easy to implement and require few operations.
Backpropagation relies on the chain rule to compute the gradient in the network. Indeed,
if the derivative of the training cost En relative to the output hl+1 of a given layer l+ 1
is known, it is easy to compute the derivative compared to the previous layer output hl
using the chain rule,

∂En
∂hl

=
∂En
∂hl+1

∂hl+1

∂hl
.

The computation of ∂hl+1

∂hl
depends only on the function φl and the parameter of layer

l. The name backpropagation comes from this backward recursion, which allows com-
puting the gradient of the layer l using the gradient of the layer l + 1.
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Algorithm 6.1 Stochastic Gradient Descent (SGD)

1: Input: D, initial parameterWWW(0), learning rate α > 0
2: repeat
3: Randomly select a pair (xn, yn) in D
4: Compute ∇En(W (q))

5: Update the current parameter: WWW(q+1) =WWW(q) − α∇En
(
WWW(q)

)
6: until convergence

6.1.4 Stochastic Gradient Descent

Supervised training of neural networks is a very complicated task, due to the high
dimension of the parameter space and the fact that the minimization problem involved
is non-convex. When the loss is bounded below, local minimums exist in the loss surface.
Gradient descent can be used in this case to find a local minimum. In the following,
P = (X,Y ) denotes the input distribution of our model in (X ,Y), with X the input
space of the network and Y the labels of the supervised task. D = (xi, yi)

N
i=1 is a training

set drawn from this distribution. The given task is to minimize the following loss

Eo(WWW) = E(x,y)∼P

[
`(ΦWWW(x), y)

]
, (6.3)

for a given function ` : Y × Y 7→ R+, convex and continuous, and for WWW in a given
parameter space Θ, determined by the architecture of the network. In the training
phase, we do not have access to the input distribution P . The stochastic gradient
descent (SGD) estimates the gradient of Eo by randomly selecting a sample (xn, yn) of
the data set D and computing the gradient of

En
(
WWW
)

= `
(

ΦWWW(xn), yn

)
.

The minimization of (6.3) is then performed using Algorithm 6.1. This algorithm es-
timates the gradient of the true oracle function Eo by sampling in the distribution P
using D as a proxy.

Minibatch SGD. The variance of the estimation of ∇Eo with only one point from P
can be high and lead to slow convergence. A way to reduce the variance is to use more
samples to estimate the gradient. The mini-batch SGD selects N̄ samples {xn}n=1..N̄

from D instead of only one and estimates the gradient of Eo by computing the gradient
of

1

N̄

N̄∑
i=1

En
(
WWW
)
.

The gradient computed with this technique is the average of the gradients computed
for each element selected. This effectively reduces the variance of the estimation of the
oracle gradient. Moreover, as the computations for each element is independent, each
gradient can be computed in parallel.

6.2 Theoretical properties of neural networks

In their paper, Bottou & Bousquet (2008) introduce a decomposition of the empirical
risk error for a given task which splits the error between three independent sources.
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We consider a space of input-output pairs (x, y) ∈ X × Y with an input distribution
P. The considered task is given with a loss function ` which measures the discrepancy
between the predicted output ŷ and the ground-truth y. The goal of the model is to
estimate the function f∗ which minimizes the expected risk

f∗ = argmin
f

E(f)
∆
= EP

[
`(f(x), y)

]
The model is usually chosen in a class of function F which might not contain f∗ and
the function which minimizes the expected risk in this class of function is denoted
fF . Moreover, as the input distribution P is unknown, it is not possible to directly
minimize E. As described in Subsection 6.1.4, training is performed using the empirical
risk minimization for the function

EN (f) =
1

N

N∑
n=1

`
(
f(x(n)), y(n)

)
for points (x(n), y(n)) ∈ D. We denote f∗N = argminf∈F EN (f). For a given model f̄N ,
the error made is computed relatively to the best possible model f∗, and can be split
in three parts

E(f̄N )− E(f∗) = E(f̄N )− E(f∗N )︸ ︷︷ ︸
Eopt

+E(f∗N )− E(fF )︸ ︷︷ ︸
Eest

+E(fF )− E(f∗)︸ ︷︷ ︸
Eapp

,

These three sources of error are

• Approximation error Eapp : This error measures the discrepancy between the
class of model F considered and the optimal function f∗. If f∗ is in F , this
error can be zero. Most of the time, due to computational restrictions, the chosen
function class F does not contain the optimal solution and this error measures
how far our model class is from the data generation process. To reduce this error
term, it is necessary to use a larger functional space F , but it will also increase
the computational cost of learning the model. The model class F must be chosen
with the tradeoff between computations and approximation in mind.

• Estimation error Eest : This error measures the effect of the approximation
of E by EN during the training. This error term is directly tied to the size of
the training set N and the class of functions F . For classes of functions linearly
parametrized with parameters in Rd, the error between E and EN scales with

O
(√

d
N

)
. Using this result, it is possible to show the same rate for Eest and thus

the estimation error is reduced when N increases. The growth of N also increases
the computational cost for fitting the model as EN becomes more complex. Also,
if the class of functions F becomes more complex, for instance via an increase in
d, this error term can grow. The tradeoff involved in choosing F must include the
estimation error with the computational complexity.

• Optimization error Eopt : The error of optimization results from the inexact
minimization performed by numerical optimization algorithms. When using a
numerical optimization method with finite computation time, the minimizer of
f̄N is computed up to a precision ρ ≥ 0 such that

EN (f̄N ) < EN (f∗N ) + ρ
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F ↗ N ↗ ρ↗
Eapp (approximation error) ↘
Eest (estimation error) ↗ ↘
Eopt (optimization error) . . . . . . ↗
Q (computational complexity) ↗ ↗ ↘

Table 6.1: Typical variations when F , N and ρ increases.
(adapted from Bottou & Bousquet 2008)

This parameter ρ controls the scale of the optimization error and the computa-
tional cost of the learning process, since the smaller it is, the more computationally
heavy the optimization method is.

Finally, Table 6.1 summarizes the typical variations when the class of function F , the
number of training samples N and the optimization resolution ρ increases. The choice
of these parameters is done by matching the scales of the three error sources, while
maintaining a reasonable computational cost Q < Qmax. Recent theoretical results on
deep learning can be classified according to the error sources they analyze.

6.2.1 Approximation Error

The first theoretical properties of deep learning models have been proposed in the late
80s (Cybenko, 1989; Hornik et al., 1989; Hornik, 1991; Barron, 1993). These results
prove the high expressiveness of deep learning with universal approximation theorems.
Hornik (1991) showed that multilayered feedforward networks are universal approxim-
ators provided that sufficiently many hidden units are available and under very general
conditions on the hidden unit activation function. These results are not constructive,
as they do not quantify the number of hidden units needed to approximate a given
function, and they do not show if the parameter of such a network can be estimated
with end-to-end procedures such as SGD. In recent literature, Telgarsky (2016) showed
the benefit of depth for neural networks. His results show that an exponential number
of hidden units is necessary for a low depth fully connected network to approximate a
deeper fully connected network with O

(
1
)
hidden units. The expressiveness advantage

of deep networks compared to shallower networks are also demonstrated in Montúfar
et al. (2014). Cohen et al. (2017) also show similar results for convolutional neural
networks, and show that these networks are efficient to approximate a large class of
functions. Their results on the effect of depth, widths, pooling, convolution geometry
and interconnectivity provide guidelines for network design. Finally, the study of math-
ematical properties of deep networks as feature extractors, pioneered by Mallat (2012),
showed the invariance properties of the functions learned with deep architectures (Bruna
& Mallat, 2013; Mallat, 2016; Wiatowski & Bölcskei, 2018).

6.2.2 Estimation Error

The estimation error can be controlled with the Vapnik-Chervonenkis (VC) theory
(Vapnik & Chervonenkis, 1971) and Bartlett & Maass (2003) showed that the VC
dimension of a neural network grows polynomially with the number of parameter in the
network. This result fails to explain the fact that neural networks with far more para-
meter than training samples generalize well (Caruana et al., 2001; He et al., 2016). The
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estimation error has received a lot of attention recently, to explain the generalization
properties of the neural networks. The effect of the regularization have been studied
for dropout strategies (Wan et al., 2012; Srivastava et al., 2014). Neyshabur (2017) and
Zhang et al. (2017) show the role of explicit and implicit regularization of the para-
meters in controlling the estimation error. Another line of work study the invariance
properties of the neural networks to explain their generalization (Giryes et al., 2016b;
Sokolic et al., 2017; Liang et al., 2017). The impact of the optimization strategy on the
generalization properties of the resulting network has also been studied. In their paper,
Keskar et al. (2017) explore the sharpness of the local minimizer found using SGD and
empirically demonstrate that using larger batches in the SGD leads to worse perform-
ance on the test sets compared to the same algorithm, with the same initialization, but
smaller batch size. The results in this work are not so clear, as pointed out by Dinh
et al. (2017) which showed that it was possible to arbitrarily change the sharpness of
the minimum using re-parametrization of the network. Using the Information Plane
visualization of the training (Tishby & Zaslavsky, 2015), Schwartz-ziv & Tishby (2017)
highlight the dynamic of the estimation error during the training procedure. Neyshabur
et al. (2015) propose a modified SGD algorithm to improve the generalization properties
of the network.

6.2.3 Optimization Error

Another challenge of the deep learning methods is how to efficiently solve a highly com-
plex and non-convex optimization problem. Learning the network parameters involves
a non-convex optimization problem in very high dimension and Dauphin et al. (2014)
show that the number of critical points grows exponentially with the dimension. Previ-
ous works showed examples of success and failures depending on the characteristics of
the trained network, input distributions or class of estimated functions (Baldi & Hornik,
1989; Brady et al., 1989; Gori & Tesi, 1991; Frasconi et al., 1997; Andoni et al., 2014).
Thus, the choice of an appropriate training strategy is of paramount importance, as
small mistakes can drive the algorithm into a sub-optimal local minimum, resulting in
poor performance (Bengio & LeCun, 2007). Most of the training algorithms are derived
from the SGD and it was recently shown that these algorithms are guaranteed to con-
verge to local minimum of the loss (Lee et al., 2016). Novel studies have highlighted
new characterization of the loss local minima (Choromanska et al., 2015; Chaudhari &
Soatto, 2015; Freeman & Bruna, 2017). In particular Choromanska et al. (2015) show
that the ratio of "bad" local minima decreases with the size of the network in certain
configurations, and Freeman & Bruna (2017) study the connectedness of the loss level
sets for half rectified networks. New training algorithms have been proposed in order
to reduce the optimization error. Chaudhari et al. (2017a,b) modify the training loss
with the local entropy to get an effective training procedure, with connection to par-
tial differential equations, and Janzamin et al. (2015) which derive an effective training
procedure based on the power method for tensor decomposition and give theoretical
guarantees with number of samples polynomial in the input dimension and the number
of neurons. Haeffele & Vidal (2015) also propose a guaranteed learning procedure and
a certificate, to find the global optimum if the size of the network is allowed to vary.
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6.2.4 Variance Reduction Strategies

Several variance reduction techniques have been proposed to improve the estimation
of the gradient and hence reduce the optimization error. But while these techniques
stabilized the convergence of the learning algorithm, their impact on the generalization
property of the network is less clear. It has been shown empirically, due to the finite
data set, the usage of variance reduction can lead to quicker over-fitting and might
increase the estimation error. In practice, these techniques often improve the learning
procedure without large impact on the generalization error. We list here three of the
most commonly used variance reduction strategies.

Adagrad. The adaptive gradient method (Adagrad) is a technique introduced by
Duchi et al. (2011) to reduce the variance of the gradient estimation in SGD. It fixes
the learning rate in SGD independently for each parameter, by considering the history
of previous gradient updates. For parameter coefficient WWW(q+1)

i , we keep an auxiliary
variable

η
(q+1)
i = η

(q)
i +

[
∇En

(
WWW(q)

)
i

]2

and the updates are computed using

WWW(q+1)
i =WWW(q)

i −
α√
η

(q)
i

∇En
(
WWW(q)

)
i
.

The intuition behind this method is that if some parameters are updated very often
with large gradients, the training step is too large.

RMSProp. Hinton et al. (2012) formalized in their online course the Root Mean
Square Propagation (RMSProp). This method is a generalization of Adagrad which
weights the history of the previous gradients differently. The auxiliary variable for
parameter coefficientWWW(q+1)

i is defined as

η
(q+1)
i = γ1η

(q)
i + (1− γ1)

[
∇En

(
WWW(q)

)
i

]2

,

with a forgetting parameter 0 < γ1 < 1, fixed as an input of the algorithm. Then, the
updates are computed using the same formula as Adagrad, i.e.

WWW(q+1)
i =WWW(q)

i −
α√
η

(q)
i

∇En
(
WWW(q)

)
i

The main difference with Adagrad is the computation of η. In the case of RMSprop,
all the gradient history is not given the same weight, as the forgetting factor give more
importance to recent updates. With γ1 = 1, this method is equivalent to Adagrad.

Adam. Both RMSprop and Adagrad use a biased estimate of the first and second
moment of the gradient. In their work, Kingma & Ba (2015) proposed a novel strategy
to correct the bias and improve the variance reduction. This strategy is called Adam
and uses the following auxiliary variables

ν
(q+1)
i = γ2ν

(q)
i + (1− γ2)∇En

(
WWW(q)

)
i
,

η
(q+1)
i = γ1η

(q)
i + (1− γ1)

[
∇En

(
WWW(q)

)
i

]2

,
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for forgetting factors 0 < γ1, γ2 < 1. These two quantities are biased estimates of the
first and second moment of the gradient. The updates for Adam are computed such
that

WWW(q+1)
i =WWW(q)

i − α
√

1− γq1 ν
(q)
i(

1− γq2
)√

η
(q)
i

.

6.3 Interpretability of Deep Learning

6.3.1 Internal Representations in Neural Networks

One of the key aspects for the success of deep learning methods is that the information
extraction process is included in the model and trained using an end-to-end proced-
ure. This ensures that the information relevant to the task is selected. These models
are composed by chaining different operations. The intermediate computation results,
called hidden units, constitute internal representations of the data points in successive
spaces. The internal representation of the data in the model can be linked to some kind
of pattern extraction. For instance, Le et al. (2013) showed that their convolutional
neural networks trained on images had representations in their upper layers which de-
tected cats in the raw images. The properties of the learned patterns highly depends on
the considered task and the model architecture. With convolutional layers, the neural
networks are able to learn and extract local patterns relevant for the application con-
text, from the previous layer. The internal patterns are often hard to retrieve as they
are extracted from a chain of intermediate representation. Other architectures use at-
tention mechanisms, introduced by Cho et al. (2015), which learn to focus on specific
parts of the signal for specific tasks. The model is trained to distinguish and localize
the relevant structures from the raw signal in order to solve a given task. These two
type of layers are designed to highlight the local structure in the signals. However, it
is often not possible to visualize the intermediate representations of the signals learned
by a deep learning model back in the original signal space. These models are often con-
sidered as black-box techniques to solve classification or regression problems, without
really understanding the decision process. The comprehension and interpretation of the
inner representation in neural networks could yield very interesting insights to analyze
signal data.

Different works design networks aiming to get interpretable extracted patterns. The
first attempt to produce interpretable representation using deep learning has been the
development of Deep Belief Networks (DBN), introduced by Hinton et al. (2006). The
deep belief networks are composed by stacking Restricted Bolzman Machine (RBM)
layers to compute internal representations. Each of these layers consists of an encoding
and a decoding part that are trained in an unsupervised manner to try to best recon-
struct the input from the encoded representation. By decoding sequentially with the
previous layers decoding function a hidden unit representation of an input, the patterns
captured by the internal representation can be interpreted in the original input space.
Lee et al. (2009) extended the DBN for the convolutional setting, making the learned
pattern more local and shift invariant. Another work to capture the patterns learned
by neural networks is the Deconvolution Network, designed by Zeiler et al. (2010). This
network architecture aims to produce a hierarchy of convolutional sparse representa-
tions, like we described in Chapter 3. Each layer encodes the coding signal computed
by the previous layer using model (3.1) with a sparsity constraint. The original paper
uses this unsupervised mode to perform image denoising and then in a supervised set-
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ting to classify images, tweaking the dictionary elements to capture patterns relevant
for the task. Also, interpretable networks have been designed using analytic signal pro-
cessing tools. In their work, Bruna & Mallat (2013) introduce the scattering convolution
network. This network uses the wavelet transform to construct successive hierarchical
representations. This network’s internal representations can be studied as we know
their analytical forms and the authors show that this network captures invariant in-
formation which improves image classification. This network achieves state-of-the-art
performance on hand-written digit recognition without training the representation and
for various classification tasks (Sifre, 2014; Andén & Mallat, 2014). The design of new
mother-wavelets allows adapting the invariant properties captured by such networks.

6.3.2 Role of the Layers

Another approach to understand the internal representations in deep models is to ana-
lyze the role of the different layers (Erhan et al., 2010; Montavon et al., 2011). It has
been shown in various cases that the first layers of a deep neural network tend to learn
general feature extractors which can be reused in other architectures with the same type
of data, independently of the solved task. These layers are qualified as general. For
example, in image processing, the first layers of convolutional network tend to exhibit
features similar to Gabor filters and color blob (Krizhevsky et al., 2012). Similarly,
it has been shown that the last layers of the network greatly depend on the chosen
dataset and task, and are referred to as specific layers. The idea of general and specific
layers has been successfully applied to transfer learning. In Yosinski et al. (2014), the
authors study the properties of transferred layers by freezing some layers, i.e. treating
their weights as constants. They show that general layer parameters can be reused as
initialization for the first layers of a different architecture, providing a head start in the
network training. Inversely, reusing specific layers does not help the performance of the
network.

6.3.3 Interpreting the Model

Neural networks can also be considered in the optimization context, as it is shown in
Rozell et al. (2008). In this paper, the authors design a network architecture composed
of linear layers and soft-thresholding activation functions to approximately solve the
sparse coding problem (3.8). The architecture of this network is designed to match
the computation steps of the ISTA algorithm and the weights can be learned to get
good approximation of the sparse code (Gregor & Lecun, 2010). A similar analysis
has been conducted for the block coordinate descent in Sprechmann et al. (2012) and
for ISTA and FISTA applied to convolutional sparse coding (Goroshin, 2015, Chapter
4). While the design of these architectures are specific to the considered optimization
algorithms, the kind of layers used are relatively common. Indeed, convolutional and
linear layers have been the basic layers in neural networks and the non-linearity involved
in these networks are close to RELU for the soft-thresholding and to the max-pooling
for the greedy coordinate descent. This approach of the neural networks, and its link
to sparse coding optimization algorithms, has been used in Eigen et al. (2014) to study
the influence of the network architecture design.

This link between optimization algorithms and neural networks can also be used in order
to link neural networks with sparse representations. Indeed, the LISTA network is close
to the generic architecture of feedforward networks. Thus, the internal representation
of the networks can be interpreted as successive estimates of the solution of a sparse
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coding problem, for a given dictionary. If it is possible to compute such a dictionary,
based on the properties of LISTA, the internal representation can then be interpreted
in the input space. As LISTA architecture can be modified to solve the convolutional
sparse coding by replacing the linear layers by convolutional layers, it is also possible
to make the same link between convolutional neural networks and convolutional sparse
representations.
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In this chapter, we propose an extra training step, called post-training, which only
optimizes the last layer of the network. The goal of this step is to make sure that the
embedding, or representation, of the data is used as well as possible by the model to solve
the considered task. This procedure can be analyzed in the kernel method framework,
with the first layers computing an embedding of the data used by the last layer to
solve the task with a simple statistical model. This idea is then tested on multiple
architectures with various data sets and provides a small boost in performance.

7.1 Training Neural Networks

One of the main challenges of the deep learning methods is to efficiently solve the highly
complex and non-convex optimization problem involved in the training step. Many
parameters influence the performances of trained networks, and small mistakes can
drive the algorithm into a sub-optimal local minimum, resulting into poor performances
(Bengio & LeCun, 2007). Consequently, the choice of an appropriate training strategy
is critical to the usage of deep learning models.
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The most common approach to train deep networks is to use the stochastic gradient
descent (SGD) algorithm described in Subsection 6.1.4. This method selects a few
points in the training set, called a batch, and computes the gradient of a cost function
with respect to all the parameters of all layers and uses this gradient to update the
weights of all layers. Empirically, this method often converges to a local minimum of
the cost function that has good generalization properties. Stochastic updates are used
to estimate the gradient of the error on the input distribution, and variance reduction
techniques such as Adagrap (Duchi et al., 2011), RMSprop (Hinton et al., 2012) or
Adam (Kingma & Ba, 2015) have been proposed to achieve faster convergence (see
Subsection 6.2.4).

While these algorithms converge to a local minima, this minima is often influenced by the
properties of the initialization used for the network weights. A frequently used approach
to find a good starting point is to use pre-training (Larochelle et al., 2007; Hinton et al.,
2006; Hinton & Salakhutdinov, 2006). This method iteratively constructs each layer by
training them as auto-encoders, using continuous extensions of the Restricted Bolzman
Machine (RBM). This unsupervised learning ensures that hidden units capture the
information from the data. The network is then fine-tuned using SGD to solve the task
at hand. Pre-training strategies have been applied successfully to many applications,
such as classification tasks (Bengio & LeCun, 2007; Poultney et al., 2006), regression
(Hinton & Salakhutdinov, 2008), robotics (Hadsell et al., 2008) or information retrieval
(Salakhutdinov & Hinton, 2009). The influence of different pre-training strategies over
the different layers has been thoroughly studied in Larochelle et al. (2009). In addition
to improving the training strategies, these works also shed light onto the role of the
different layers (Erhan et al., 2010; Montavon et al., 2011). The first layers of a deep
neural network, qualified as general, tend to learn feature extractors which can be reused
in other architectures, independently of the solved task. Meanwhile, the last layers of
the network are much more dependent of the task and data set, and are said to be
specific (see Subsection 6.3.2).

The idea of general and specific layers has been successfully applied to transfer learn-
ing (Yosinski et al., 2014; Oquab et al., 2014; Razavian et al., 2014). Yosinski et al.
(2014) study the properties of transferred layers by freezing some layers, i.e. treating
their weights as constants. They show that general layer parameters can be reused as
initialization for the first layers of a different architecture, providing a head start in the
network training. Inversely, reusing specific layers do not help the performance of the
network. Razavian et al. (2014) show that reusing the features learned using the varied
ImageNet data set (Jia Deng et al., 2009) and the Overfeat neural network (Sermanet
et al., 2014) with a Support Vector Machine (SVM) provide a competitive base line for
various classification tasks. These techniques used in transfer learning are the same as
the one used in our study as the main idea is to re-use the representation computed
by early layers to solve a given task. The main difference is the aim of the method.
While transfer learning focuses on the good initialization of networks for novel tasks,
we propose to use the technique to improve the performance of the original network.

Deep architectures generally achieve better results than shallow structures, but the
later are generally easier to train as optimization algorithm are more stable. When the
representation of the data is fixed, the training problem for convex model such as the
logistic regression is also convex. When the representation is learned simultaneously,
for instance with dictionary learning or with EM algorithms, the problem often become
non-convex. The separation between the representation and the model learning is a
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key ingredient to make the model easily trainable. But this coupling between the
representation and the model is critical for end-to-end models. For instance, Hinton
et al. (2006) showed that for networks trained using pre-training, the fine-tuning step
– where all the layers are trained together – improves the performances of the network.
This shows the importance of the adaptation of the representation to the task in end-
to-end models.

Our contribution in this chapter is an additional training step which improves the use
of the representation learned by the network to solve the considered task. This new
step is called post-training. It is based on the idea of separating representation learning
and statistical analysis and it should be used after the training of the network. In
this step, only the specific layers are trained. Since the general layers – which encode
the data representation – are fixed, this step focuses on finding the best usage of the
learned representation to solve the desired task. In particular, we chose to study the
case where only the last layer is trained during the post-training, as this layer is the
most specific one (Yosinski et al., 2014). In this setting, learning the weights of the last
layer corresponds to learning the weights for the kernel associated to the feature map
given by the previous layers. The post-training scheme can thus be interpreted in light
of kernel methods. To summarize our contributions:

• We introduce a post-training step, where all layers except the last one are frozen.
This method can be applied after any traditional training scheme for deep net-
works. Note that this step does not replace the end-to-end training, which co-
adapts the last layer representation with the solver weights, but it makes sure that
this representation is efficiently used by the model to solve the given task.

• We show that this post-training step is easy to use, that it can be effortlessly
added to most learning strategies, and that it is computationally inexpensive.

• We highlight the link existing between this method and the kernel techniques. We
also show numerically that the previous layers can be used as a kernel map when
the problem is small enough.

• We experimentally show that the post-training often produces a small improve-
ment for various architectures and data sets.

The rest of the chapter is organized as follows: Section 7.2 introduces the post-training
step and Section 7.3 discusses its relation with kernel methods. Section 7.4 presents our
numerical experiments with multiple neural network architectures and data sets and
Section 7.5 discusses these results.

7.2 Post-training

In this section, we consider a feedforward neural network with L layers, where X1, . . . ,XL
denote the input space of the different layers, typically Rdl with dl > 0 and Y = XL+1 the
output space of our network. Let φl : Xl 7→ Xl+1 be the applications which respectively
compute the output of the l-th layer of the network, for 1 ≤ l ≤ L, using the output
of the l−1-th layer and ΦL = φL ◦ · · · ◦ φ1 be the mapping of the full network from
X1 to Y . Also, for each layer l, we denote WWW l its weights matrix and ψl its activation
function.
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x y

Features ΦL−1(x) Weights WL

Figure 7.1: Illustration of post-training applied to a neural network. During the post-
training, only the weights of the blue edges are updated. The blue nodes can be seen
as the embedding of x in the feature space XL .

The training of our network is done using a convex and continuous loss function ` : Y ×
Y 7→ R+. The objective of the neural network training is to find weights parametrizing
ΦL that solves the following problem:

min
ΦL

E(x,y)∼P

[
`
(

ΦL(x), y
)]

+ Ω(ΦL) , (7.1)

for a certain input distribution P in (X1,Y) and a regularization function Ω. The
training set is D =

(
xi, yi

)N
i=1

, drawn from this input distribution.

Using these notations, the training objective (7.1) can then be rewritten

min
ΦL−1,WWWL

E(x,y)∼P

[
`

(
ψL

(
WWWLΦL−1(x)

)
, y

)]
+ Ω(ΦL−1,WWWL) . (7.2)

This reformulation highlights the special role of the last layer in our network compared
to the others. When ΦL−1 is fixed, the problem of finding WWWL is simple for several
popular choices of activation function ψL and loss ` . For instance, when the activation
function ψL is the softmax function and the loss ` is the cross entropy, (7.2) is a
multinomial logistic regression. In this case, training the last layer is equivalent to a
regression of the labels y using the embedding of the data x in XL by the mapping
ΦL−1 . Since the problem is convex in WWWL (see Section 7.6), classical optimization
techniques can efficiently produce an accurate approximation of the optimal weights
WWWL – and this optimization given the mapping ΦL−1 is the idea behind post-training.

Indeed, during the regular training, the network tries to simultaneously learn a suitable
representation for the data in the space XL through its L − 1 first layer and the best
use of this representation with WWWL. This joint minimization is a non-convex problem,
therefore resulting in a potentially sub-optimal usage of the learned data representation.

The post-training is an additional step of learning which takes place after the regular
training and proceeds as follows:

1. Regular training: This step aims to obtain interesting features to solve the
initial problem, as in any usual deep learning training. Any training strategy can
be applied to the network, optimizing the empirical loss

argmin
ΦL

1

N

N∑
i=1

`
(

ΦL(xi), yi

)
+ Ω

(
ΦL

)
, (7.3)
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where Ω(ΦL) is a regularization term for the network’s parameters. The stochastic
gradient descent explores the parameter space and provides a solution for ΦL−1

and WWWL. This step is non restrictive: any type of training strategy can be used
here, including gradient bias reduction techniques, such as Adagrad (Duchi et al.,
2011), or regularization strategies Ω, for instance using Dropout (Dahl et al.,
2013) or weight norm regularization. Similarly, any type of stopping criterion can
be used here. The training might last for a fixed number of epochs, or can stop
after using early stopping (Morgan & Bourlard, 1990). Different combinations of
training strategies and stopping criterion are tested in Section 7.4.

2. Post-training: During this step, the first L− 1 layers are fixed and only the last
layer of the network, φL, is trained by minimizing overWWWL the following problem

argmin
WWWL

1

N

N∑
i=1

˜̀
(
WWWLΦL−1(xi), yi

)
+ λ‖WWWL‖22 , (7.4)

where ˜̀(x, y) := `(ψL(x), y). This extra learning step uses the mapping ΦL−1

as an embedding of the data in XL and learn the best linear predictor in this
space. This optimization problem takes place in a significantly lower dimensional
space and since there is no need for back propagation, this step is computationally
faster. To reduce the risk of overfitting with this step, a `2-regularization is added.
Figure 7.1 illustrates the post-training step.

We would like to emphasize the importance of the `2-regularization used during the
post-training (7.4). This regularization is added regardless of the one used in the regu-
lar training, and for all the network architectures. The extra term improves the strong
convexity of the minimization problem, making post-training more efficient, and pro-
motes the generalization of the model. The choice of the `2-regularization is motivated
from the comparison with the kernel framework discussed in Section 7.3 and from our
experimental results.

Remark 7.1 (Dropout). It is important to note that Dropout should not be applied on
the previous layers of the network during the post-training, as it would lead to changes
in the feature function ΦL−1.

7.3 Link with Kernels

In this section, we show that for the case where XL = RdL for some dL > 0 and
XL+1 = R, WWW ∗L can be approximated using kernel methods. We define the kernel k as
follows,

k : X1 ×X1 7→ R

(x1, x2)→
〈

ΦL−1(x1),ΦL−1(x2)
〉
.

(7.5)

Then k is the kernel associated with the feature function ΦL−1. It is easy to see that
this kernel is continuous positive definite and that for WWW ∈ RdL , the function

gWWW : X1 7→ XL+1

x→
〈
WWW,ΦL−1(x)

〉 (7.6)
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belongs by construction to the Reproducing Kernel Hilbert Space (RKHS)Hk generated
by k. The post-training problem (7.4) is therefore related to the problem posed in the
RKHS space Hk, defined by

g∗ = argmin
g∈Hk

1

N

N∑
i=1

˜̀
(
g(xi), yi

)
+ λ‖g‖2Hk , (7.7)

This problem is classic for the kernel methods. With mild hypothesis on ˜̀, the gener-
alized representer theorem can be applied (Schölkopf et al., 2001). As a consequence,
there exists α∗ ∈ RN such that

g∗ := argmin
g∈Hk

1

N

N∑
i=1

˜̀
(
g(xi), yi

)
+ λ‖g‖2Hk ,

=

N∑
i=1

α∗i k(Xi, ·) =

N∑
i=1

〈
α∗iΦL−1

(
xi
)
,ΦL−1(·)

〉
.

(7.8)

Rewriting (7.8) with g∗ of the form (7.6), we have that g∗ = gWWW ∗ , with

WWW ∗ =

N∑
i=1

α∗iΦL−1

(
xi
)
. (7.9)

We emphasize that WWW ∗ is the optimal solution for the problem (7.8) and should not
be confused with WWW ∗L, the optimum of (7.4). However, the two problems differ only in
their regularization, which are closely related (see the next paragraph). Thus WWW ∗ can
thus be seen as an approximation of the optimal value WWW ∗L. It is worth noting that in
our experiments, WWW ∗ appears to be a good estimator of WWW ∗L (see Subsection 7.4.3).

Relation between ‖ · ‖H and ‖ · ‖2. The problems (7.8) and (7.4) only differ in the
choice of the regularization norm. By definition of the RKHS norm, we have

‖gW ‖H = inf
{
‖v‖2

/
∀x ∈ X1, 〈v, ΦL−1(x)〉 = gW (x)

}
. (7.10)

Consequently, we have that ‖gW ‖H ≤ ‖W‖2 , with equality when Vect(ΦL−1(X1)) spans
the entire space XL. In this case, the norm induced by the RKHS is equal to the `2-norm.
This is generally the case, as the input space is usually in a far higher dimensional space
than the embedding space, and since the neural network structure generally enforces
the independence of the features. Therefore, while both norms can be used in (7.4),
we chose to use the `2-norm for all our experiments as it is easier to compute than the
RKHS norm.

Closed-form Solution. In the particular case where `(y1, y2) = ‖y1−y2‖2 and f(x) =
x, (7.8) can be reduced to a classical Kernel Ridge Regression problem. In this setting,
W ∗ can be computed by combining (7.9) and

α∗ =
(

ΦL−1(D)TΦL−1(D) + λIIIN

)−1
Y , (7.11)

where ΦL−1(D) =
[
ΦL−1(x1), . . .ΦL−1(xN )

]
represents the matrix of the input data{

x1, . . . xN
}
embedded in XL, Y is the matrix of the output data

{
y1, . . . , yN

}
and IIIN

is the identity matrix in RN . This result is experimentally illustrated in Subsection 7.4.3.
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Although data sets are generally too large for (7.11) to be computed in practice, it is
worth noting that some kernel methods, such as Random Features (Rahimi & Recht,
2007), can be applied to compute approximations of the optimal weights during the
post-training.

Multidimensional Output. Most of the previously discussed results related to ker-
nel theory hold for multidimensional output spaces, i.e. dim(XL+1) = d > 1, using
multitask or operator valued kernels (Kadri et al., 2015). Hence the previous remarks
can be easily extended to multidimensional outputs, encouraging the use of post-training
in most settings.

7.4 Experimental Results

This section provides numerical arguments to study post-training and its influence on
performances, over different data sets and network architectures. All the experiments
were run using python and Tensorflow. The code to reproduce the figures is available
online1. The results of all the experiments are discussed in depth in Section 7.5.
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Figure 7.2: Illustration of the neural network structure used for CIFAR-10. The last
layer, represented in blue, is the one trained during the post-training. The layers are
composed with classical layers: 5x5 convolutional layers (5x5 conv), max pooling activ-
ation (max pool), local response normalization (lrn) and fully connected linear layers
(fc).

7.4.1 Convolutional Neural Networks

The post-training method can be applied easily to feedforward convolutional neural
network, used to solve a wide class of real world problems. To assert its performance,
we apply it to three classic benchmark datsets: CIFAR10 (Krizhevsky, 2009), MNIST
and FACES (Hinton & Salakhutdinov, 2006).

CIFAR10. This data set is composed of 60, 000 images 32× 32, representing objects
from 10 classes. We use the default architecture proposed by Tensorflow for CIFAR10
in our experiments, based on the original architecture proposed by Krizhevsky (2009).
It is composed of 5 layers described in Figure 7.2. The first layers use various common
tools such as local response normalization (lrn), max pooling and RELU activation. The

1https://github.com/tomMoral/post_training

https://github.com/tomMoral/post_training
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Figure 7.3: Evolution of the performances of the neural network on the CIFAR10 data
set, (dashed) with the usual training and (solid) with the post-training phase. For the
post-training, the value of the curve at iteration q is the error for a network trained for
q− 100 iterations with the regular training strategy and then trained for 100 iterations
with post-training. The top figure presents the classification error on the training set
and the bottom figure displays the loss cost on the test set. The curves have been
smoothed to increase readability.

last layer have a softmax activation function and the chosen training loss was the cross
entropy function. The network is trained for 90k iterations, with batches of size 128,
using stochastic gradient descent (SGD), dropout and an exponential weight decay for
the learning rate. Figure 7.3 presents the performance of the network on the training
and test sets for 2 different training strategies. The dashed line corresponds to classic
training with SGD, with performance evaluated every 100 iterations and the solid line
corresponds to the performance of the same network where the last 100 iterations are
done using post-training instead of regular training. To be clearer, the value of this
curve at iteration q is the error of the network, trained for q − 100 iterations with the
regular training strategy, and then trained for 100 iterations with post-training. For
the dashed line, the value of this curve at iteration q is the error of the network, trained
for q iterations with the regular training strategy. The regularization parameter λ for
post-training is set to 1× 10−3.

The results show that while the training cost of the network mildly increases due to the
use of post-training, this extra step improves the generalization of the solution. The
gain is smaller at the end of the training as the network converges to a local minimum,
but it is consistent. Also, it is interesting to note that the post-training iterations are
4× faster than the classic iterations, due to their inexpensiveness.
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Table 7.1: Comparison of the performances (classification error) of different networks
on different data sets, at different epochs, with or without post-training.

Data set Network Iterations Mean (Std) Error in % Mean (Std) Error with
post-training in %

FACES

Small
5000 21,5 (10) 19,1 (12)
10000 20 (4) 19 (3,5)
20000 18 (0,9) 16,5 (0,8)

Large
5000 25 (15) 24 (15)
10000 15 (5) 12 (5)
20000 11 (0,5) 10 (0,5)

MNIST

Small
1000 10.7 (1) 9.2 (1,1)
2000 7,5 (0,7) 6,7 (0,6)
5000 4,1 (0,2) 3,9 (0,2)

Large
1000 9,1 (1,3) 8,5 (1,4)
2000 4,1 (0,2) 3,5 (0,2)
5000 1,1 (0,01) 0,9 (0,01)

Additional Data Sets. We also evaluate post-training on the MNIST data set (65000
images 27×27, with 55000 for train and 10000 for test; 10 classes) and the pre-processed
FACES data set (400 images 64 × 64, from which 102400 sub-images, 32 × 32, are
extracted, with 92160 for training and 10240 for testing; 40 classes). For each data set,
we train three different convolutional neural networks – to assert the influence of the
complexity of the network over post-training:

• a small network, with one convolutional layer (5 × 5 patches, 32 channels), one
2× 2 max pooling layer, and one fully connected hidden layer with 512 neurons,

• a large network, with one convolutional layer (5 × 5 patches, 32 channels), one
2× 2 max pooling layer, one convolutional layer (5× 5 patches, 64 channels), one
2× 2 max pooling layer and one fully connected hidden layer with 1024 neurons.

We use dropout for the regularization of the large networks, with dropout rate of 0.5, and
we use λ = 1× 10−2 for the post-training regularization. We compare the performance
gain resulting of the application of post-training (100 iterations) at different epochs of
each of these networks. The results are reported in Table 7.1.

As seen in Table 7.1, post-training improves the test performance of the networks with
as little as 100 iterations – which is negligible compared to the time required to train the
network. While the improvement varies depending on the complexity of the network,
of the data set, and of the time spent training the network, it is important to remark
that it always provides an improvement.

7.4.2 Recurrent Neural Network

While the kernel framework developed in Section 7.2 does not apply directly to Recur-
rent Neural Network, the idea of post-training can still be applied. In this experiment,
we test the performances of post-training on Long Short-Term Memory-based networks
(LSTM), using PTB data set (Marcus et al., 1993).
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Figure 7.4: Evolution of the performances of the Recurrent network on the PTB data
set. The top figure presents the train perplexity and the bottom figure displays the test
perplexity. For the post-training, the value of the curve at iteration q is the error for
a network trained for q − 100 iterations with the regular training strategy and then
trained for 100 iterations with post-training.

Penn Tree Bank (PTB). This data set is composed of 929k training words and
82k test word, with a 10000 words vocabulary. We train a recurrent neural network
to predict the next word given the word history. We use the architecture proposed by
Zaremba et al. (2014), composed of 2 layers of 1500 LSTM units with tanh activation,
followed by a fully connected softmax layer. The network is trained to minimize the
average per-word perplexity for 100 epochs, with batches of size 20, using gradient des-
cent, an exponential weight decay for the learning rate, and dropout for regularization.
The performances of the network after each epoch are compared to the results obtained
if the 100 last steps (i.e. 100 batches) are done using post-training. The regularization
parameter for post-training, λ, is set to 1×10−3. The results are reported in Figure 7.4,
which presents the evolution of the training and testing perplexity.

Similarly to the previous experiments, post-training improves the test performance of
the networks, even after the network has converged.

7.4.3 Optimal Last Layer for Deep Ridge Regression

In this subsection we aim to empirically evaluate the closed-form solution discussed in
Section 7.2 for regression tasks. We set the activation function of the last layer to be
the identity fL(x) = x, and consider the loss function to be the least-squared error
`(x, y) = ‖x− y‖22 in (7.1). In in each experiment, (7.11) and (7.9) are used to compute
W ∗ for the kernel learned after the regular training of the neural network, which learn
the embedding ΦL−1 and an estimate WL . In order to illustrate this result, and to
compare the performances of the weights W ∗ with respect to the weights WL, learned
either with usual learning strategies or with post-training, we train a neural network
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Data set Iterations Error with
classic training

Error with
post-training

Error with
optimal last layer

Parkinson 300 1.6 1.35 1.30
Parkinson 600 1.32 1.27 1.27
Parkinson 1000 1.27 1.27 1.27
Simulated 50 0.4 0.2 0.15
Simulated 100 0.2 0.15 0.15
Simulated 200 0.15 0.15 0.15

Table 7.2: Comparison of the performances (RMSE) of fully connected networks on
different data sets, at different epochs, with or without post-training.

on two regression problems using a real and a synthetic data set. 70% of the data are
used for training, and 30% for testing.

Real Data Set Regression. For this experiment, we use the Parkinson Telemon-
itoring data set (Tsanas et al., 2010). The input consists of 5, 875 instances of 24
dimensional data, and the output is a one dimensional real number. For this data set, a
neural network made of two fully connected hidden layers of size 24 and 10, is trained for
300, 600 and 1, 000 iterations, with batches of size 50, using a `2-regularization. Then,
for each network, 50 iterations of post-training are used and the performances are com-
pared to the closed-form solutions computed using (7.11) for each saved network. The
results are presented in Table 7.2.

Simulated Data Set Regression. For this experiment, we use a synthetic data set.
The inputs were generated using a uniform distribution on

[
0, 1
]10. The outputs are

computed as follows:
Y = tanh(XW1)W2

where W1 ∈
[
−1, 1

]10×5 and W2 ∈
[
−1, 1

]5 are randomly generated using a uniform
law. In total, the data set is composed of 10, 000 pairs (xi, yj). For this data set, the
same neural network as with the Parkinson Telemonitoring data set is used. Due to
the simpler nature of the data, the model is trained for 50, 100 and 200 iterations, with
batches of size 50. We use the same protocol with 50 extra post-training iterations.
The results are presented in Table 7.2.

For these two experiments, the post-training quickly converges to a near optimal solu-
tion, for several choices of stopping times. It is worth noting that the performances of
these nearly optimal solutions are very similar to the ones obtained using the closed
form solution presented in Section 7.3.

7.5 Discussion

The experiments presented in Section 7.4 show that post-training improves the per-
formances of all the networks considered – including recurrent, convolutional and fully
connected networks. There is a small gain, regardless of the time at which the regular
training is stopped and the post-training is done. In both the CIFAR10 and the PTB ex-
periment, the gap between the losses with and without post-training is more pronounced
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if the training is stopped early, and tends to be smaller as the network converges to a
better solution (see Figure 7.4 and Figure 7.3). The reduction of the gap between the
test performances with and without post-training is made clear in Table 7.1. For the
FACES data set, with a large-size convolutional neural network, while the error rate
drops by nearly 4% when post-training is applied after 5000 iterations, this same error
rate only drops by 0.4% when it is applied after 20000 iterations. This same observation
can be done for the other results reported in Table 7.1. However, while the improve-
ment is larger when the network did not fully converge prior to the post-training, it
still seems to improve the performance when the network has reached its minimum: for
example in PTB the final test perplexity is 81.7 with post-training and 82.4 without;
in CIFAR10 the errors are respectively 0.147 and 0.154. If the networks are allowed
to reach a local minima, for instance by training them with a regular algorithm for a
very large number of iterations, the advantage provided by post-training vanishes. For
example in PTB, the test perplexity after 2000 iterations (instead of 400) is 83.2 re-
gardless of post-training. This is coherent with the intuition behind the post-training:
once the training reaches a local minima, the last layer weights are already optimal for
the learned representation and additional optimization steps will not improve the per-
formance. But the local minima are usually avoided as they tend to result in networks
which overfit and the features learned become less appropriate to the general problem.
This is for instance the case when early stopping is used as a stopping criterion for the
training.

It is important to note that the post-training computational cost is very low compared
to the full training computations. For instance, in the CIFAR10 experiment, each
iteration for post-training is 4× faster on the same GPU than an iteration using the full
gradient. Also, in the different experiments, post-training produces a performance gap
after using as little as 100 batches. There are multiple reasons behind this efficiency:
first, the system reaches a local minimum relatively rapidly for post-training as the
problem (7.4) has a small number of parameters compared to the dimensionality of the
original optimization problem. Second, the iterations used for the resolution of (7.4) are
computationally cheaper, as there is no need to chain high dimensional linear operations,
contrarily to regular backpropagation used during the training phase. Finally, since the
post-training optimization problem is generally convex, the optimization is guaranteed
to converge rapidly to the optimal weights for the last layer.

Another interesting point is that there is no evidence that the post-training step leads to
overfitting. In CIFAR10, the test error is improved by the use of post-training, although
the training loss is similar. The other experiments do not show signs of overfitting either
as the test error is mostly improved by our additional step. This stems from the fact that
the post-training optimization is much simpler than the original problem as it lies in a
small-dimensional space – which, combined with the added `2-regularization, efficiently
prevents overfitting. The regularization parameter λ plays an important role in post-
training. Setting λ to be very large reduces the explanatory capacity of the classifiers
whereas if λ is too small, the capacity can become too large and lead to overfitting.
Overall, our experiments highlighted that the post-training produces significant results
for any choice of λ reasonably small (i.e 10−5 ≤ λ ≤ 10−2 ). This parameter is linked
to the regularization parameter of the kernel methods, as stated in Section 7.3.

Overall, these results show that the post-training step can be applied to most trained
networks, without prerequisites about how optimized they are since post-training does
not degrade their performances, providing a consistent gain in performances for a very
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low additional computational cost.

In Subsection 7.4.3, numerical experiments highlight the link between post-training
and kernel methods. As illustrated in Table 7.2, using the optimal weights derived from
kernel theory immediately gives minimal errors for the considered network once the first
layers weights are sufficiently trained. After 50 iterations for the simulated data and
600 for the Parkinson data set, the optimal weights for the kernel embedding reach the
minimal test error we were able to achieve with the full training. However, computing
the optimal weights for the last layer is only achievable for small data set due to the
required matrix inversion. Moreover, the closed form solution is known only for specific
problems, such as kernelized least square regression. But post-training approaches the
same performance in these cases solving (7.4) with gradient-based methods.

While these preliminary results show that post-training might be of practical use, there
is no clear evidence of its performances. We were not able to show the significance of the
performance boost it provides as the performances of our networks on classical datasets
do not reach state of the art results and experiments on modern network architectures
would also be required to confirm its usefulness. Finally, it remains to be proven that
post-training reaches a local minima with improved performances compare to regular
training which might overfit. The link to kernel methods proposed in Section 7.3 only
suggests this procedure provides good parameter for the last layer but it is not sufficient
to guarantee that the last layer weight computed with post-training will be optimal.
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7.6 Proofs

We show here, for the sake of completeness, that the post-training problem is convex
for the softmax activation in the last layer and the cross entropy loss. This result is
shown using classic arguments to show the convexity of a function.

Proposition 7.2 (convexity). ∀N,M ∈ N, ∀X ∈ RN , ∀j ∈
[
1,M

]
, the following

function F is convex:

F :RN×M 7→ R

W → log

 M∑
i=1

exp(XWi)

− M∑
i=1

δij log
(

exp(XWi)
)
.

where δ is the Dirac function, and Wi denotes the i-th row of a W .

Proof 1. Let

Pi(W ) =
exp(XWi)∑M
j=1 exp(XWj)

.

then
∂Pi

∂Wm,n
=

− xnPi(W )Pm(W ) if i 6= m

− xnP 2
m(W ) + xnPm(W ) otherwise

Noting that

F (W ) = −
M∑
i=1

δij log
(
Pi(W )

)
,

we have

∂F (W )

∂Wm,n
= −

M∑
i=1

δij
1

Pi(W )

∂Pi
∂Wm,n

= xn

 M∑
i=1

δijPm(W )− δmj


= xn

(
Pm(W )− δmj

)
,

hence

∂2F (W )

∂Wm,n∂Wp,q
= xn

(
∂Pm
∂Wp,q

)
,

= xnxqPm(W )
(
δm,p − Pp(W )

)
.

Hence the following identity

H(F ) = P(W )⊗ (XXT)

where⊗ is the Kronecker product, and the matrixP(W ) is defined byPm,p = Pm(W )
(
δm,p − Pp(W )

)
.

Now since ∀1 ≤ m ≤M ,
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M∑
p=1,p 6=m

∣∣∣Pm,p

∣∣∣ = Pm(W )
M∑

p=1,p 6=m
Pp(W )

= Pm(W )
(

1− Pm(W )
)

= Pm,m

P(W ) is thus a diagonally dominant matrix. Its diagonal elements are positive

Pm,m = Pm(W )
(

1− Pm(W )
)
≥ 0, as Pm(W ) ∈ [0, 1]

and thus P(W ) is positive semidefinite. Since XXT is positive semidefinite too, their
Kronecker product is also positive semidefinite, hence the conclusion.
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Recent work has revisited traditional optimization algorithms for sparse coding in light
of the recent literature in deep learning. In particular, recent work shows that one
can design trainable networks that provide accelerated solutions to the optimization
problem. But the reasons for such acceleration remain unclear.

This chapter intends to provide elements that explain why the acceleration is possible
in the case of ISTA. We show that ISTA can be solved faster when the design matrix
admits a quasi-diagonal factorization with sparse eigenspaces. The resulting algorithm
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has the same convergence rate with constant factors potentially improved. Then, we
derive the conditions under which the constant factors of the adaptive algorithm are
better than the ones of ISTA in expectation over generic Gaussian dictionary. Finally,
we design neural networks which are able to compute this algorithm and show that they
are a re-parametrization of LISTA, and thus performance of LISTA are at least as good
as this algorithm. We conclude by designing adverse examples for our factorization
based algorithm and show that LISTA also fails to accelerate on these cases.

As stated in Subsection 6.3.3, understanding the properties of optimization algorithms
adapted through neural networks highlights the link between deep learning and sparse
representations. Indeed, the architectures used in LISTA networks are very close to
those used for feedforward dense neural networks. The properties of the LISTA net-
work can thus be used to link the dense networks to sparse representations, in order to
make their internal representations more interpretable. Moreover, the LISTA architec-
ture can be modified to solve the convolutional sparse coding problem by replacing the
fully connected layers by convolutional layers. Properties of these networks shed light
on the link between convolutional neural networks and convolutional sparse representa-
tions. We focus on the non convolutional case in this chapter as it is easier to analyze.
Moreover, the results can also be applied to the vector form of the convolutional LASSO
(cf Subsection 3.1.3). Extending these results in the particular case of band circulant
matrices is kept for future work.

8.1 Learning to Optimize

Feature selection is essential for high dimensional data analysis. Different techniques
have been developed to tackle this problem efficiently, and among them sparsity has
emerged as a leading paradigm. In statistics, the LASSO estimator (Tibshirani, 1996)
provides a reliable way to select features and has been extensively studied in the last
two decades (Hastie et al. 2015 and references therein). In machine learning and signal
processing, sparse coding has made its way into several modern architectures, includ-
ing large scale computer vision (Coates & Ng, 2011) and biologically inspired models
(Cadieu & Olshausen, 2012). Also, dictionary learning is a generic unsupervised learn-
ing method to perform nonlinear dimensionality reduction with efficient computational
complexity (Mairal et al., 2010). All these techniques heavily rely on the resolution of
`1-regularized least squares.

The `1-sparse coding problem is defined as solving, for a given input x ∈ Rp and
dictionary D ∈ Rp×K , the following problem:

z∗(x) = argmin
z∈RK

Fx(z)
∆
=

1

2
‖x−Dz‖2 + λ‖z‖1 . (8.1)

This problem is very close from the convolutional sparse coding problem presented
in Section 3.1. The main difference is that the sum of convolutions is here replaced
by a matrix multiplication. As stated in Subsection 3.1.3, the convolutional problem
can be rewritten in a vector form with a band circulant matrix D. Problem (8.1) is
convex and can therefore be solved using convex optimization machinery. Proximal
splitting methods (Beck & Teboulle, 2009) alternate between the minimization of the
smooth and differentiable part using the gradient information and the minimization of
the non-differentiable part using a proximal operator (Combettes & Bauschke, 2011).
These methods can also be accelerated by considering a momentum term, as it is done
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in FISTA (Beck & Teboulle, 2009; Nesterov, 2005). Coordinate descent (Friedman
et al., 2007; Osher & Li, 2009) leverages the closed formula that can be derived for
optimizing the problem (8.1) for one coordinate zi given that all the others are fixed.
At each step of the algorithm, one coordinate is updated to its optimal value, which
yields an inexpensive scheme to perform each step. The choice of the coordinate to
update at each step is critical for the performance of the optimization procedure. Least
Angle Regression (LARS) (Hesterberg et al., 2008) is another method that computes
the whole LASSO regularization path. These algorithms all provide an optimization
procedure that leverages the local properties of the cost function iteratively. They
can be shown to be optimal among the class of first-order methods for generic convex,
non-smooth functions (Bubeck, 2015).

But all these results are given in the worst case and do not use the distribution of the
considered problem. One can thus wonder whether a more efficient algorithm to solve
(8.1) exists for a fixed dictionary D and generic input x drawn from a certain input data
distribution. In Gregor & Lecun (2010), the authors introduced LISTA, a trained version
of ISTA that adapts the parameters of the proximal splitting algorithm to approximate
the solution of the LASSO using a finite number of steps. This method exploits the
common structure of the problem to learn a better transform than the generic ISTA
step. As ISTA is composed of a succession of linear operations and piece-wise non
linearities, the authors use the neural network framework and the back-propagation
to derive an efficient procedure solving the LASSO problem. In Sprechmann et al.
(2012), the authors extended LISTA to more generic sparse coding scenarios and showed
that adaptive acceleration is possible under general input distributions and sparsity
conditions.

In this chapter, we are interested in the following question: Given a finite computa-
tional budget, what is the optimum estimator of the sparse coding? This question
belongs to the general topic of computational tradeoffs in statistical inference. Ran-
domized sketches (Alaoui & Mahoney, 2015; Yang et al., 2015) reduce the size of convex
problems by projecting expensive kernel operators into random subspaces, and reveal
a tradeoff between computational efficiency and statistical accuracy. Agarwal (2012)
provides several theoretical results on performing inference under various computational
constraints, and Chandrasekaran & Jordan (2013) considers a hierarchy of convex re-
laxations that provide practical tradeoffs between accuracy and computational cost.
More recently, Oymak et al. (2015) provides sharp time-data tradeoffs in the context of
linear inverse problems, showing the existence of a phase transition between the num-
ber of measurements and the convergence rate of the resulting recovery optimization
algorithm. Giryes et al. (2016a) builds on this result to produce an analysis of LISTA
that describes acceleration in conditions where the iterative procedure has linear con-
vergence rate. Finally, Xin et al. (2016) also studies the capabilities of Deep Neural
networks at approximating sparse inference. The authors show that unrolled iterations
lead to better approximation if the weights are allowed to vary at each layer, contrary to
standard splitting algorithms. Whereas their focus is on relaxing the convergence hypo-
thesis of iterative thresholding algorithms, we study a complementary question, namely
when is speedup possible, without assuming strongly convex optimization. Their results
are consistent with ours, since our analysis also shows that learning shared layer weights
is less effective.
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Inspired by the LISTA architecture, our mathematical analysis reveals that adaptive
acceleration is related to a specific matrix factorization of the Gram matrix of the dic-
tionary B = DTD as B = ATSA−R ,where A is unitary, S is diagonal and the residual
is positive semidefinite: R � 0. Our factorization balances between near diagonaliz-
ation by asking that ‖R‖ be small and that small perturbation of the `1 norm, i.e.
‖Az‖1 − ‖z‖1 be small. When this factorization succeeds, we prove that the resulting
splitting algorithm enjoys a convergence rate with improved constants with respect to
the non-adaptive version. Moreover, our analysis also shows that acceleration is mostly
possible at the beginning of the iterative process, when the current estimate is far from
the optimal solution, which is consistent with numerical experiments. We also show
that the existence of this factorization is not only sufficient for acceleration, but also
necessary. This is shown by constructing dictionaries whose Gram matrix diagonalizes
in a basis that is incoherent with the canonical basis, and verifying that LISTA fails to
accelerate with respect to ISTA in that case.

In our numerical experiments, we design a specialized version of LISTA called FacNet,
with more constrained parameters, which is then used as a tool to show that our theoret-
ical analysis captures the acceleration mechanism of LISTA. Our theoretical results can
be applied to FacNet and as LISTA is a generalization of this model, it always performs
at least as well, showing that the existence of the factorization is a sufficient certificate
for acceleration by LISTA. Reciprocally, we show that for cases where no acceleration
is possible with FacNet, the LISTA model also fails to provide acceleration, linking the
two speedup mechanisms. This numerical evidence suggests that the existence of our
proposed factorization is sufficient and somewhat necessary for LISTA to show good
results.

The rest of this chapter is structured as follows. Section 8.2 presents our mathematical
analysis and proves the convergence of the adaptive algorithm as a function of the quality
of the matrix factorization. In Section 8.3, we highlight under which the conditions on
the problem design, it is possible to accelerate the resolution of the LASSO with our
algorithm, in expectation over generic dictionaries, drawn uniformly on the `2 unit
sphere. Finally, Section 8.4 describe the generic architectures that will enable the usage
of such schemes and Section 8.5 present the numerical experiments, which validate our
analysis over a range of different scenarios.

8.2 Accelerating Sparse Coding with Sparse Matrix
Factorization

8.2.1 Unitary Proximal Splitting

In this section we describe our setup for accelerating sparse coding based on the Proximal
Splitting method. Let Ω ⊂ Rp be the set describing our input data, and D ∈ Rp×K
be a dictionary, with K > p. We wish to find fast and accurate approximations of the
sparse coding z∗(x) of any x ∈ Ω, defined in (8.1). For simplicity, we denote B = DTD
and y = D†x to rewrite (8.1) as

z∗(x) = arg min
z
Fx(z) =

1

2
(y − z)TB(y − z)︸ ︷︷ ︸

E(z)

+λ‖z‖1︸ ︷︷ ︸
G(z)

. (8.2)
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For clarity, we will refer to Fx as F and to z∗(x) as z∗ when there is no ambiguity. The
classic proximal splitting technique finds z∗ as the limit of sequence (z(q))q, obtained
by successively constructing a surrogate loss Fq(z) of the form

Fq(z) = E(z(q)) + (z(q) − y)TB(z − z(q)) + Lq‖z − z(q)‖22 + λ‖z‖1 , (8.3)

satisfying Fq(z) ≥ F (z) for all z ∈ RK . Since Fq is separable in each coordinate of
z, z(q+1) = argminz Fq(z) can be computed efficiently. This scheme is based on a
majorization of the quadratic form (y − z)TB(y − z) with an isotropic quadratic form
Lq‖z(q)− z‖22. The convergence rate of the splitting algorithm is optimized by choosing
Lq as the smallest constant satisfying Fq(z) ≥ F (z), which corresponds to the largest
singular value of B.

The computation of z(q+1) remains separable by replacing the quadratic form LqIIIK by
any diagonal form. However, the Gram matrix B = DTD might be poorly approx-
imated via diagonal forms for general dictionaries. Our objective is to accelerate the
convergence of this algorithm by finding appropriate factorizations of the matrix B such
that

B ≈ ATSA , and ‖Az‖1 ≈ ‖z‖1 ,

where A is unitary and S is diagonal positive definite. Given a point z(q) at iteration
q, we can rewrite F (z) as

F (z) = E(z(q)) + (z(q) − y)TB(z − z(q)) +QB(z, z(q)) , (8.4)

with QB(v, w) :=
1

2
(v−w)TB(v−w)+λ‖v‖1 . For any diagonal positive definite matrix

S and unitary matrix A, the surrogate loss

F̃ (z, z(q)) := E(z(q)) + (z(q) − y)TB(z − z(q)) +QS(Az,Az(q))

can be explicitly minimized, since

argmin
z

F̃ (z, z(q)) = AT argmin
u

(
(z(q) − y)TBAT(u−Az(q)) +QS(u,Az(q))

)
= AT argmin

u
QS

(
u,Az(q) − S−1AB(z(q) − y)

)
(8.5)

where we use the variable change u = Az. As S is diagonal positive definite, (8.5) is
separable and can be computed easily, using a linear operation followed by a point-wise
non-linear soft-thresholding. Thus, any couple (A,S) ensures a computationally cheap
scheme. The question is then how to factorize B using S and A in an optimal manner,
that is, such that the resulting proximal splitting sequence converges as fast as possible
to the sparse coding solution.

8.2.2 Non-asymptotic Analysis

We will now establish convergence results based on the previous factorization. These
bounds will inform us on how to best choose the factors Aq and Sq in each iteration.

For that purpose, let us define

δA(z) = λ
(
‖Az‖1 − ‖z‖1

)
, and R = ATSA−B . (8.6)
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The quantity δA(z) thus measures how invariant the `1 norm is to the unitary operator
A, whereas R corresponds to the residual of approximating the original Gram matrix
B by our factorization ATSA . Given a current estimate z(q), we can rewrite

F̃ (z, z(q)) = F (z) +
1

2
(z − z(q))TR(z − z(q)) + δA(z) . (8.7)

By imposing that R is a positive semidefinite residual, one immediately obtains the
following bound.

Proposition 8.1. Suppose that R = ATSA−B is positive definite, and define

z(q+1) = argmin
z

F̃ (z, z(q)) . (8.8)

Then F (z(q+1))− F (z∗) ≤ 1

2
‖R‖‖z(q) − z∗‖22+δA

(
z∗
)
− δA

(
z(q+1)

)
. (8.9)

Proof. By definition of z(q+1) and using the fact that R � 0 we have

F (z(q+1))− F (z∗) ≤ F (z(q+1))− F̃ (z(q+1), z(q)) + F̃ (z∗, z(q))− F (z∗)

= −1

2
(z(q+1) − z(q))TR(z(q+1) − z(q))− δA(z(q+1))

+
1

2
(z∗ − z(q))TR(z∗ − z(q)) + δA(z∗)

≤ 1

2
(z∗ − z(q))TR(z∗ − z(q)) +

(
δA(z∗)− δA(z(q+1))

)
.

where the first line results from the definition of z(q+1) and the third line makes use of
R positiveness.

This simple bound reveals that to obtain fast approximations to the sparse coding it
is sufficient to find S and A such that ‖R‖ is small and that the `1 commutation term
δA is small. These two conditions will be often in tension: one can always obtain
R ≡ 0 by using the Singular Value Decomposition of B = AT

0 S0A0 and setting A = A0

and S = S0. However, the resulting A0 might introduce large commutation error δA0 .
Similarly, as the absolute value is non-expansive, i.e.

∣∣∣|a| − |b|∣∣∣ ≤ ∣∣a− b∣∣, we have that

|δA(z)| = λ
∣∣∣‖Az‖1 − ‖z‖1∣∣∣ ≤ λ‖(A− IIIK)z‖1 (8.10)

≤ λ
√

2 max(‖Az‖0, ‖z‖0) · ‖A− IIIK‖ · ‖z‖2 ,

where we have used the Cauchy-Schwartz inequality ‖x‖1 ≤
√
‖x‖0‖x‖2 in the last

equation. In particular, (8.10) shows that unitary matrices in the neighborhood of IIIK
with ‖A− IIIK‖ small have small `1 commutation error δA but can be inappropriate to
approximate general B matrix.

The commutation error also depends upon the sparsity of z and Az . If both z and Az
are sparse then the commutation error is reduced, which can be achieved if A is itself a
sparse unitary matrix. Moreover, since

|δA(z)− δA(z′)| ≤ λ|‖z‖1 − ‖z′‖1|+ λ|‖Az‖1 − ‖Az′‖1|

and |‖z‖1 − ‖z′‖1| ≤ ‖z − z′‖1 ≤
√
‖z − z′‖0‖z − z′‖2 ,
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it results that δA is Lipschitz with respect to the Euclidean norm; let us denote by
LA(z) its local Lipschitz constant in z, which can be computed using the norm of the
sub-gradient in z1. A uniform upper bound for this constant is (1 + ‖A‖1)λ

√
m, but it

is typically much smaller when z and Az are both sparse.
Equation (8.8) defines an iterative procedure determined by the pairs {(Aq, Sq)}q. The
following theorem uses the previous results to compute an upper bound of the resulting
sparse coding estimator.

Theorem 8.2. Let Aq, Sq be the pair of unitary and diagonal matrices corresponding
to iteration q, chosen such that Rq = AT

q SqAq −B � 0. It results that

F (z(q))− F (z∗) ≤ (z∗ − z(0))TR0(z∗ − z(0)) + 2LA0(z(1))‖z∗ − z1‖2
2q

+
α− β

2q
, (8.11)

with α =

q−1∑
i=1

(
2LAi(z

(i+1))‖z∗ − z(i+1)‖2 + (z∗ − z(i))T(Ri−1 −Ri)(z
∗ − z(i))

)
,

β =

q−1∑
i=0

(i+ 1)
(

(z(i+1) − z(i))TRi(z
(i+1) − z(i)) + 2δAi(z

(i+1))− 2δAi(z
(i))
)
,

where LA(z) denotes the local lipschitz constant of δA at z.

Remark. If one sets Aq = IIIK and Sq = ‖B‖IIIK for all q ≥ 0, (8.11) corresponds to
the bound of the ISTA algorithm (Beck & Teboulle, 2009).

The proof is deferred to Subsection 8.7.1. We can specialize the theorem in the case
when A0, S0 are chosen to minimize the bound (8.9) and Aq = IIIK , Sq = ‖B‖IIIK for
q ≥ 1.

Corollary 8.3. If Aq = IIIK , Sq = ‖B‖IIIK for q ≥ 1 then

F (z(q))− F (z∗) ≤ (z∗ − z(0))TR0(z∗ − z(0)) + (z∗ − z(1))TR0(z∗ − z(1))T

2q

+
LA0(z1)(‖z∗ − z(1)‖+ ‖z(1) − z(0)‖)

q
.

(8.12)

This corollary shows that by simply replacing the first step of ISTA by the modified
proximal step detailed in (8.5), one can obtain an improved bound at fixed q as soon as

2‖R0‖max(‖z∗ − z(0)‖22, ‖z∗ − z(1)‖22)

+ 4LA0(z(1)) max(‖z∗ − z(0)‖2, ‖z∗ − z(1)‖2) ≤ ‖B‖‖z∗ − z(0)‖22 ,

which, assuming ‖z∗ − z(0)‖2 ≥ ‖z∗ − z(1)‖2, translates into

‖R0‖+ 2
LA0

(
z(1)
)

‖z∗ − z(0)‖2
≤ ‖B‖

2
. (8.13)

More generally, given a current estimate z(q), searching for a factorization (Aq, Sq) will
improve the upper bound when

‖Rq‖+ 2
LAq

(
z(q+1)

)
‖z∗ − z(q)‖2

≤ ‖B‖
2

. (8.14)

1This quantity exists as δA is a difference of convex. See proof of Proposition 8.7.1 in proofs section
for details.



168 CHAPTER 8. UNDERSTANDING TRAINABLE SPARSE CODING

We emphasize that this is not a guarantee of acceleration, since it is based on improving
an upper bound. However, it provides a simple picture on the mechanism that makes
non-asymptotic acceleration possible.

8.2.3 Interpretation

In this section we analyze the consequences of Theorem 8.2 in the design of fast sparse
coding approximations, and provide a possible explanation for the behavior observed
numerically.

“Phase Transition” and Law of Diminishing Returns

(8.14) reveals that the optimum matrix factorization in terms of minimizing the upper
bound depends upon the current scale of the problem, that is, of the distance ‖z∗−z(q)‖.
At the beginning of the optimization, when ‖z∗− z(q)‖ is large, the bound (8.14) makes
it easier to explore the space of factorizations (A,S) with A further away from the
identity. Indeed, the bound tolerates larger increases in LA(z(q+1)), which is dominated
by

LA(z(q+1)) ≤ λ(
√
‖z(q+1)‖0 +

√
‖Az(q+1)‖0) ,

i.e. the sparsity of both z(1) and A0(z(1)). On the other hand, when we reach interme-
diate solutions z(q) such that ‖z∗ − z(q)‖ is small with respect to LA(z(q+1)), the upper
bound is minimized by choosing factorizations where A is getting closer and closer to
the identity, leading to the non-adaptive regime of standard ISTA (A = Id).

This is consistent with the numerical experiments, which show that the gains provided
by learned sparse coding methods are mostly concentrated in the first iterations. Once
the estimates reach a certain energy level, section 8.5 shows that LISTA enters a steady
state in which the convergence rate matches that of standard ISTA.

The natural follow-up question is to determine how many layers of adaptive splitting
are sufficient before entering the steady regime of convergence. A conservative estimate
of this quantity would require an upper bound of ‖z∗ − z(q)‖ from the energy bound
F (z(q)) − F (z∗). Since in general F is convex but not strongly convex, such bound
does not exist unless one can assume that F is locally strongly convex (for instance for
sufficiently small values of F ).

Improving the Factorization to Particular Input Distributions

Given an input data set D = (xi, z
(0)
i , z∗i )i≤N , containing examples xi ∈ Rn, initial

estimates z(0)
i and sparse coding solutions z∗i , the factorization adapted to D is defined

as

min
A,S; ATA=IIIK ,ATSA−B�0

1

N

∑
i≤N

1

2
(z

(0)
i − z∗i )T(ATSA−B)(z

(0)
i − z∗i ) + δA(z∗i )− δA(z1,i) .

(8.15)
Therefore, adapting the factorization to a particular data set, as opposed to enforcing
it uniformly over a given ball B(z∗;R) (where the radius R ensures that the initial
value z(0) ∈ B(z∗;R)), will always improve the upper bound (8.9). Studying the gains
resulting from the adaptation to the input distribution is kept for future work.
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8.3 Generic Gap Control

In this section, we consider the problem of accelerating the resolution of (8.1) in the
case where D is a generic dictionary, i.e. its elements Di are draw uniformly over the
`2 unit-sphere.

Definition 8.4 (Generic dictionary). A dictionary D ∈ Rp×K is a generic dictionary
when its columns Di are drawn uniformly over the `2 unit sphere Sp−1.

The results by Song & Gupta (1997) show that such dictionaries emerge when the atoms
are drawn independently from normal distributions N (0, IIIp) and then normalized on
the unit sphere. Thus, Di = di

‖di‖2 with di ∼ N (0, IIIp) for all i ∈ J1,KK. In this context,
we consider the matrices A which are perturbations of the identity and highlight the
conditions under which it is possible to find a perturbation of the identity A which is
more advantageous than the identity to resolve (8.1). For a fixed integer i ∈ J1,KK, ei
denotes the i-th canonical direction and we introduce Eδ,i , the ensemble such that

Eδ,i =

{
u ∈ RK : ∃µ < δ, ∃hi ∈ Span(ei)

⊥ ∩ SK−1 s.t u =
√

1− µ2ei + µhi

}
,

This ensemble contains the vectors which are mainly supported by one of the canonical
directions. Indeed, ∪Ki=1Eδ,i =

{
u ∈ RK : ‖u‖2 = 1, ‖u‖∞ >

√
1− δ2

}
We will denote

A ⊂ Eδ when a matrix A is such that each of its columns Ai are in Eδ,i. These matrices
are diagonally dominant and are close to the identity when δ is close to 0, as ‖A−I‖F =
Kδ .

8.3.1 Controlling the Sparse Diagonalization for the Gram Matrix

First, we analyze the possible gain of replacing B by an approximate diagonalization
A−1SA for a diagonally dominant matrix A ⊂ Eδ . We choose to study the case where
S is chosen deterministicaly when A is fixed. For A,B fixed, we choose the matrix S
which minimizes the frobenius norm of the diagonalization error, i.e.

S = argmax
S′diagonal

‖B −ATS′A‖F (8.16)

This matrix S can easily be computed as Si,i = AT
i BAi .

Lemma 8.5. For a generic dictionary D and a diagonally dominant matrix A ⊂ Eδ,

ED

[
min
Ai∈Eδ,i

∥∥∥A−1SA−B
∥∥∥2

F

]
≤K(K − 1)

p
− 4δ(K − 1)

√
K

p

+ δ2

(
8ED

[
‖B‖4F

]
− 6

K(K − 1)

p

)
+ O
δ→0

(
δ3
)
.

Proof. sketch for Lemma 8.5. (The full proof can be found Subsubsection 8.7.2.2)
Using the properties of the matrix A ⊂ Eδ we can show that

∥∥∥A−1SA−B
∥∥∥2

F
≤
∥∥B∥∥2

F
(1 + 8δ2K)−

K∑
i=1

‖DAi‖42 + O
δ→0

(
δ3
)
. (8.17)
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The first term is the squared Frobenius norm of a Wishart matrix and we can show

ED
[
‖B‖2F

]
=
K(K − 1)

p
+K .

The columns Ai are chosen in Eδ,i, we can thus show that

ED

[
max
u∈Eδ,i

‖Du‖42

]
≥ 1 + 4δED

[√
‖DTdi‖22 − 1

]
+ 6δ2ED

[
‖DTdi‖22 − 1

]
+ O
δ→0

(
δ3
)
.

(8.18)

Denoting Yi the random variable such that pY 2
i = p(‖DTdi‖22− 1), we can compute the

lower bounds

ED
[
Yi
]

=

√
2

p

Γ
(
K
2

)
Γ
(
K−1

2

) ≥ K − 1√
pK

and ED
[
Y 2
i

]
=
K − 1

p

Combining these results with (8.18) yields the following lower bound when δ → 0 ,

ED

[
max
u∈Eδ,i

‖DTu‖42

]
& 1 + 4δ

K − 1√
pK

+ 6δ2K − 1

p
+ O
δ→0

(
δ3
)

The final bound is obtained using these results with (8.17).

8.3.2 Controlling the Rotation of the `1-norm

In this subsection, we analyze the deformation of the `1-norm due to a rotation of the
code space with a diagonally dominant matrix A ⊂ Eδ .
Lemma 8.6. Let A ⊂ Eδ be a diagonally dominant matrix and let z be a random
variable in RK with iid coordinates zi. Then

Ez,D
[
δA(z)

]
≤ λEz

[
‖z‖1

](
δ
√
K − 1− δ2

2
+ O
δ→0

(
δ4
))

Proof. sketch for Lemma 8.6. (The full proof can be found Subsubsection 8.7.2.3)
First, we show that if z is a random variable in RK with iid coordinates zi, then

Ez,D

[
‖Az‖1
‖z‖1

∣∣∣∣∣‖z‖1
]
≤

ED
[
‖A‖1,1

]
K

.

This decouples the expectations and we obtain the following upper bound

Ez
[
δA(z)

]
≤ λEz

[
‖z‖1

]ED [‖A‖1,1]− ‖IIIK‖1,1
K

.

Then, for A ⊂ Eδ, the `1-norm of the columns Ai is

ED
[
‖Ai‖1

]
≤
√

1− δ2 + δ
√
K − 1 .

Basic computations allow to show that

ED
[
‖A‖1,1

]
− IIIK

K
≤ δ
√
K − 1− δ2

2
+ O
δ→0

(
δ4
)

δ→0

.
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8.3.3 Acceleration Conditions for Generic Dictionaries

The two previous results are used to control the upper bound of the cost update defined
in Proposition 8.1 for generic dictionaries. It is interesting to see when this upper bound
becomes smaller than the upper bound obtained using the identity IIIK .

Theorem 8.7 (Acceleration certificate). In expectation over the generic dictionary D,
the factorization algorithm using a diagonally dominant matrix A ⊂ Eδ, has better
performance for iteration q+1 than the normal ISTA iteration – which uses the identity
– to solve (8.1) when

λEz
[
‖z(q+1)‖1 + ‖z∗‖1

]
≤
√
K(K − 1)

p
Ez
[
‖z(q) − z∗‖22

]
We recall here thatK denotes the number of atoms in the dictionary and p the dimension
of the input space.

Proof. sketch for Theorem 8.7. (The full proof can be found Subsubsection 8.7.2.4)
We denote v = z(q)− z∗. For A ⊂ Eδ with columns chosen greedily in Eδ,i, using results
from Lemma 8.5 and Lemma 8.6,

ED

[
min
A⊂Eδ

∥∥∥A−1SA−B
∥∥∥2

F
‖v‖22 + λδA(z∗)− δA(z(q+1))

]
≤

(K − 1)K

p
‖v‖22 + δ

√
K − 1

λ(‖z(q+1)‖1 + ‖z∗‖1)−
√
K(K − 1)

p
‖v‖22


+ O
δ→0

(
δ2
)

(8.19)
Starting from the bound in Proposition 8.1, and using the results from (8.19), we obtain

ED
[
F (z(q+1))− F (z∗)

]
≤ (K − 1)K

p
‖z(q) − z∗‖22

+ δ
√
K − 1

λ(‖z(q+1)‖1 + ‖z∗‖1
)
−
√
K(K − 1)

p
‖z(q) − z∗‖22


︸ ︷︷ ︸

≤0

+ O
δ→0

(
δ2
)

For small δ > 0, this bound is better than with δ = 0. Thus, in expectation, the
performances of the algorithm based on the factorization with A ⊂ Eδ are better than
the one of ISTA on this iteration.

From this theorem, we derive a bound on the maximal resolution where the factorization
algorithm can provide an acceleration compared to ISTA. This bound only depends on
the parameters of the problem.

Corollary 8.8 (Resolution gap). If the input distribution and the regularization para-
meter λ verify

λ
√
p

8
≤ Ez

[
‖z∗‖1

]
,
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Then for any resolution Ez
[
‖z(q) − z∗‖2

]
= ε > 0 at iteration q, the performance of our

factorization algorithm is better than the performance of ISTA, in expectation over the
generic dictionaries.

Proof. We denote the expected resolution at iteration q by ε = Ez
[
‖z(q) − z∗‖2

]
. We

first remark that for z∗ ∈ RK and z(q+1) ∈ RK ,

‖z(q+1)‖1 ≤ ‖z∗‖1 + ‖z(q+1) − z∗‖1 ≤ ‖z∗‖1 +
√
K‖z(q+1) − z∗‖2

Assuming that Ez
[
‖z(q+1) − z∗‖2

]
≤ Ez

[
‖z(q) − z∗‖2

]
, we have

Ez
[
‖z(q+1)‖1

]
≤ Ez

[
‖z∗‖1

]
+
√
Kε

Using this in the condition of Theorem 8.7, we obtain the condition

0 ≤
√
K(K − 1)

p
ε2 − λ

√
Kε− 2λEz

[
‖z∗‖1

]
(8.20)

If

λ2K ≤ 8λEz
[
‖z∗‖1

]√K(K − 1)√
p

,

then the condition (8.20) is verified for all ε ∈ R. Simplifying the expression, we obtain
the result as

√
K√
K−1

≥ 1 .

8.4 Network Architectures for Adaptive Optimization

8.4.1 Learned ISTA

In Gregor & Lecun (2010), the authors introduced LISTA, a neural network constructed
by considering ISTA as a recurrent neural net. At each step, ISTA performs the following
2-step procedure:

1. u(q+1) = z(q) − 1

L
DT(Dz(q) − x) = (IIIK −

1

L
DTD)︸ ︷︷ ︸

Wg

z(q) +
1

L
DT︸ ︷︷ ︸
We

x ,

2. z(q+1) = Sh

(
u(q+1),

λ

L

)
where Sh(u, θ) = sign(u)(|u| − θ)+ ,


step q of ISTA

(8.21)
This procedure combines a linear operation to compute u(q+1) with an element-wise non-
linearity. It can be summarized as a recurrent neural network, presented in Figure 8.1a.,
with tied weights. The authors in Gregor & Lecun (2010) considered the architecture
ΦQ

Θ with parameters Θ = (W
(q)
g ,W

(q)
e , θ(q))q=1...Q obtained by unfolding Q times the

recurrent network, as presented in Figure 8.1b. The layers φqΘ are defined as

z(q+1) = φqΘ(z(q)) := Sh
(
W (q)
g z(q) +W (q)

e x, θ(q)
)
. (8.22)

IfW (q)
g = IIIK−DTD

L ,W (q)
e = DT

L and θ(q) = λ
L are fixed for all the Q layers, the output of

this neural net is exactly the vector z(Q) resulting from Q steps of ISTA. With LISTA,
the parameters Θ are learned using back propagation to minimize the cost function:
f(Θ) = Ex

[
Fx(ΦQ

Θ(x))
]
.
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WeX Z
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(a) ISTA - Recurrent Neural Network

X

W
(0)
e

W
(1)
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W
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g

W
(2)
e

Z

(b) LISTA - Unfolded network

Figure 8.1: Network architecture for ISTA/LISTA. The unfolded version (b) is trainable
through backpropagation and approximates the sparse coding solution efficiently.

8.4.2 Learned FISTA

A similar algorithm can be derived from FISTA, the accelerated version of ISTA to
obtain LFISTA (see Figure 8.2 ). The architecture is very similar to LISTA, now with
two memory taps: it introduces a momentum term to improve the convergence rate of
ISTA as follows:

1. y(q) = z(q) +
tq−1 − 1

tq
(z(q) − z(q−1)) ,

2. z(q+1) = Sh

(
y(q) − 1

L
∇E(y(q)),

λ

L

)
= Sh

(
(IIIK −

1

L
B)y(q) +

1

L
DTx,

λ

L

)
,

3. tq+1 =
1 +

√
1 + 4t2q

2
.

By substituting the expression for y(q) into the first equation, we obtain a generic
recurrent architecture very similar to LISTA, now with two memory taps, that we
denote by LFISTA:

z(q+1) = Sh
(
W (q)
g z(q) +W (q)

m z(q−1) +W (q)
e x, θ

)
.

This model is equivalent to runningK-steps of FISTA when its parameters are initialized
with

W (q)
g =

(
1 +

tq−1 − 1

tq

)(
IIIK −

1

L
B

)
,

W (q)
m =

(
1− tq−1

tq

)(
IIIK −

1

L
B

)
,

W (q)
e =

1

L
DT .

The parameters of this new architecture, presented in Figure 8.2 , are trained analog-
ously as in the LISTA case.

8.4.3 Factorization Network

Our analysis in Section 8.2 suggests a re-factorization of LISTA in a more structured
class of parameters. Following the same basic architecture, and using (8.5), the network
FacNet, ΨK

Θ is formed using layers such that:

z(q+1) = ψqΘ(z(q)) := AT
q Sh

(
Aqz

(q) − S−1
q Aq(D

TDz(q) −DTx), λS−1
Q

)
, (8.23)
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Figure 8.2: Network architecture for LFISTA. This network is trainable through back-
propagation and approximates the sparse coding solution efficiently.

with Sq diagonal and Aq unitary, the parameters of the q-th layer. The parameters
obtained after training such a network with back-propagation can be used with the
theory developed in Section 8.2. Up to the last linear operation AT

q of the network, this
network is a re-parametrization of LISTA in a more constrained parameter space. Thus,
LISTA is a generalization of this proposed network and should have performances at
least as good as FacNet, for a fixed number of layers.

The optimization can also be performed using backpropagation. To enforce the unitary
constraints on Aq, the cost function is modified with a penalty:

f(Θ) = Ex
[
Fx(ΨQ

Θ(x))
]

+
µ

Q

Q∑
q=1

∥∥∥IIIK −AT
q Aq

∥∥∥2

2
, (8.24)

with Θ = (Aq, Sq)q=1...Q the parameters of the Q layers and µ a scaling factor for the
regularization. The resulting matrix A(q) is then projected on the Stiefel Manifold using
a SVD to obtain final parameters, coherent with the network structure.

8.4.4 Linear Model

Finally, it is important to distinguish the performance gain resulting from choosing a
suitable starting point and the acceleration resulting from our algorithm. To highlights
the gain obtained by changing the starting point, we considered a linear model with
one layer such that zout = A(0)x. This model is learned with SGD and the convex
cost function f(A(0)) = ‖(IIIP −DA(0))x‖22 + λ‖A(0)x‖1. It computes a tradeoff between
starting from the sparsest point 000 and a point with minimal reconstruction error y.
Then, we observe the performance of the classical iteration of ISTA using zout as a
starting point instead of 000 .

8.5 Numerical Experiments

This section provides numerical arguments to analyze adaptive optimization algorithms
and their performances, and relates them to the theoretical properties developed in the
previous section. All the experiments were run using Python and Tensorflow. For all
the experiments, the training is performed using Adagrad (Duchi et al., 2011). The
code to reproduce the figures is available online2.
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Figure 8.3: Evolution of the cost function F (z(q))−F (z∗) with the number of layers or
the number of iterations q for different sparsity level.

8.5.1 Acceleration for Generic Dictionaries

In order to disentangle the role of dictionary structure from the role of data distribution
structure, the minimization problem is tested using a synthetic generative model with
no structure in the weights distribution. First, K atoms dk ∈ Rp are drawn iid from a
multivariate Gaussian with mean 0 and covariance IIIp and the dictionary D is defined
as
(
dk/‖dk‖2

)
k=1...K

. The data points are generated from its sparse codes following
a Bernoulli-Gaussian model. The coefficients z = (z1, . . . , zK) are constructed with
zi = biai, where bi ∼ B(ρ) and ai ∼ N (0, σIIIK) , where ρ controls the sparsity of the
data. The values are set to K = 100, p = 64 for the dictionary dimension, ρ = 5/K for
the sparsity level and σ = 10 for the activation coefficient generation parameters. The

2The code can be found at https://github.com/tomMoral/AdaptiveOptim

https://github.com/tomMoral/AdaptiveOptim
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sparsity regularization is set to λ=0.01. The batches used for the training are generated
with the model at each step and the cost function is evaluated over a fixed test set, not
used in the training.

Figure 8.3 displays the cost performance for methods ISTA/FISTA/Linear relatively
to their iterations and for methods LISTA/LFISTA/FacNet relatively to the number
of layers used to solve our generated problem. Linear has performances comparable to
learned methods with the first iteration but a gap appears as the number of layers in-
creases, until a point where it achieves the same performances as non adaptive methods.
This highlights that the adaptation is possible in the subsequent layers of the networks,
going farther than choosing a suitable starting point for iterative methods. The first
layers achieve a large gain over the classical optimization strategy, by leveraging the
structure of the problem. This appears even with no structure in the sparsity patterns
of input data, in accordance with the results in the previous section. We also observe
diminishing returns as the number of layers increases. This results from the phase
transition described in Section 8.2.3, as the last layers behave as ISTA steps and do not
speed up the convergence. The 3 learned algorithms are always performing at least as
well as their classical counterpart, as it was stated in Theorem 8.2. We also explored
the effect of the sparsity level in the training and learning of adaptive networks. In the
denser setting, the arbitrage between the `1-norm and the squared error is easier as the
solution has a lot of non-zero coefficients. In this setting, the approximate method is
more precise than in the very sparse setting where the approximation must perform a
fine selection of the coefficients. But it also yields lower gain at the beggining as the
sparser solution can move faster.

There is a small gap between LISTA and FacNet in this setup. This can be explained
from the extra constraints on the weights that we impose in the FacNet, which effectively
reduce the parameter space by half. Also, we implement the unitary constraints on the
matrix A by a soft regularization (see (8.24)), involving an extra hyper-parameter µ
that also contributes to the small performance gap. In any case, these experiments
show that our analysis accounts for most of the acceleration provided by LISTA, as the
performance of both methods are similar, up to optimization errors.

8.5.2 Adverse Dictionary

In this experiment, we would like to show that the limits of FacNet are also limits
for LISTA. The idea is thus to design a dictionary for which we know that FacNet
will fail, and see if LISTA is able to accelerate the resolution of (8.1). The results
from Section 8.2 show that problems with a gram matrix composed of large eigenvalues
associated to non sparse eigenvectors are harder to accelerate. Indeed, it is not possible
in this case to find a quasi diagonalization of the matrix B that does not distort the
`1 norm. It is possible to generate such a dictionary using Harmonic Analysis. The
Discrete Fourier Transform (DFT) distorts a lot the `1 ball, since a very sparse vector
in the temporal space is transformed in widely spread spectrum in the Fourier domain.
We can thus design a dictionary for which FacNet performances should be degraded.
D =

(
dk/‖dk‖2

)
k=1...K

is constructed such that dk,j = e−2πikζj , with
(
ζj

)
j≤p

randomly

selected from
{

1/K, . . . ,K/2/K
}

without replacement.
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Figure 8.4: Evolution of the cost function F (z(q))−F (z∗) with the number of layers or
the number of iterations q for a problem generated with an adversarial dictionary.

The resulting performances are reported in Figure 8.4. The first layer provides a big
gain by changing the starting point of the iterative methods. It realizes an arbitrage
of the tradeoff between starting from 000 and starting from y . But the next layers do
not yield any extra gain compared to the original ISTA algorithm. After 4 layers, the
cost performance of both adaptive methods and ISTA are equivalent. It is clear that in
this case, FacNet does not accelerate efficiently the sparse coding, in accordance with
our result from Section 8.2. LISTA also displays poor performances in this setting.
This provides further evidence that FacNet and LISTA share the same acceleration
mechanism as adversarial dictionaries for FacNet are also adversarial for LISTA.
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8.5.3 Sparse Coding with Over Complete Dictionary on Images

Wavelet Encoding for Natural Images. A highly structured dictionary composed
of translation invariant Haar wavelets is used to encode 8x8 patches of images from the
PASCAL VOC 2008 data set. The network is used to learn an efficient sparse coder
for natural images over this family. 500 images are sampled from data set to train
the encoder. Training batches are obtained by uniformly sampling patches from the
training image set to feed the stochastic optimization of the network. The encoder is
then tested with 10000 patches sampled from 100 new images from the same data set.

Learned Dictionary for MNIST. To evaluate the performance of LISTA for dic-
tionary learning, LISTA was used to encode MNIST images over an unconstrained dic-
tionary, learned a priori using classical dictionary learning techniques. The dictionary
of 100 atoms was learned from 10000 MNIST grayscale images, scaled to 17x17 using the
implementation of Mairal et al. (2010) proposed in scikit-learn, with λ = 0.05. Then,
the networks were trained through backpropagation using all the 60000 images from the
training set of MNIST. Finally, the performance of these encoders were evaluated with
the 10000 images of the training set of MNIST.

The Figure 8.5 displays the cost performance of the adaptive procedures compared to
non-adaptive algorithms. In both scenario, FacNet has performances comparable to
the one of LISTA and their behavior are in accordance with the theory developed in
Section 8.2. The gains become smaller for each added layer and the initial gain is
achieved for dictionary either structured or unstructured. The MNIST case presents a
much larger gain compare to the experiment with natural images. This results from the
difference of structure of the input distribution, as the MNIST digits are much more
constrained than patches from natural images and the network is able to leverage it to
find a better encoder. In the MNIST case, a network composed of 12 layers is sufficient
to achieve performance comparable to ISTA with more than 1000 iterations.

8.6 Conclusion

In this chapter we studied the problem of finite computational budget approximation
of sparse coding. Inspired by the ability of neural networks to accelerate over splitting
methods on the first few iterations, we have studied which properties of the dictionary
matrix and the data distribution lead to such acceleration. Our analysis reveals that one
can obtain acceleration by finding approximate matrix factorizations of the dictionary
which nearly diagonalize its Gram matrix, but whose orthogonal transformations leave
approximately invariant the `1 ball. By appropriately balancing these two conditions,
we show that the resulting rotated proximal splitting scheme has an upper bound which
improves over the ISTA upper bound under appropriate sparsity.

In order to relate this specific factorization property to the actual LISTA algorithm, we
have introduced a re-parametrization of the neural network that specifically computes
the factorization, and incidentally provides reduced learning complexity (fewer para-
meters) from the original LISTA. Numerical experiments of Section 8.5 show that such
re-parametrization recovers the same gains as the original neural network, providing
evidence that our theoretical analysis is partially explaining the behavior of the LISTA
neural network. Our acceleration scheme is inherently transient, in the sense that once
the iterates are sufficiently close to the optimum, the factorization is not effective any-
more. This transient effect is also consistent with the performance observed numerically,



8.6. CONCLUSION 179

(a) Pascal VOC 2008
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Figure 8.5: Evolution of the cost function F (zk) − F (z∗) with the number of layers or
the number of iterations k for two image data sets.

although the possibility remains open to find alternative models that further exploit the
particular structure of the sparse coding. Finally, we provide evidence that successful
matrix factorization is not only sufficient but also necessary for acceleration, by showing
that Fourier dictionaries are not accelerated.

Despite these initial results, a lot remains to be understood on the general question of
optimal trade offs between computational budget and statistical accuracy. Our analysis
did not take into account any probabilistic consideration so far, e.g. obtain approxima-
tions that hold with high probability for a given model. Another area of further study is
the extension of our analysis to the FISTA case, and more generally to other inference
tasks that are currently solved via iterative procedures compatible with neural network
parametrization, such as inference in Graphical Models using Belief Propagation or
other ill-posed inverse problems. Finally, specializing this results for the convolutional
sparse coding would be a very interesting research direction. The convolutional case
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is a specific case of our study and the results can be applied directly but they may be
pessimistic as they do not account for the band-circulant structure of the dictionary.
Thus, the analysis of this specific case could lead to improved bounds, which would
better explain the acceleration in the convolutional case.
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8.7 Proofs

8.7.1 Proofs for the Convergence Rate of FacNet

Proposition 8.7.1. Suppose that R = ATSA−B is positive definite, and define

z(q+1) = argmin
z

F̃ (z, z(q)) , and (8.25)

δA(z) = ‖Az‖1 − ‖z‖1. Then we have

F (z(q+1))− F (z∗) ≤1

2

(
(z∗ − z(q))TR(z∗ − z(q))− (z∗ − z(q+1))TR(z∗ − z(q+1))

)
+ 〈∂δA(z(q+1)), z(q+1) − z∗〉 .

(8.26)

Proof. We define
f(t) = F

(
tz(q+1) + (1− t)z∗

)
, t ∈ [0, 1] .

Since F is convex, f is also convex in [0, 1]. Since f(0) = F (z∗) is the global minimum,
it results that f ′(t) is increasing in (0, 1], and hence

F (z(q+1))− F (z∗) = f(1)− f(0) =

∫ 1

0
f ′(t)dt ≤ f ′(1) ,

where f ′(1) is any element of ∂f(1). Since δA(z) is a difference of convex functions, its
subgradient can be defined as a limit of infimal convolutions Hiriart-Urruty (1991). We
have

∂f(1) = 〈∂F (z(q+1)), z(q+1) − z∗〉 ,
and since

∂F (z) = ∂F̃ (z, z(q))−R(z − z(q))− ∂δA(z) and 0 ∈ ∂F̃ (z(q+1), z(q))

it results that
∂F (z(q+1)) = −R(z(q+1) − z(q))− ∂δA(z(q+1)) ,

and thus

F (z(q+1))−F (z∗) ≤ (z∗−z(q+1))TR(z(q+1)−z(q))+〈∂δA(z(q+1)), (z∗−z(q+1))〉 . (8.27)
(8.10) is obtained by observing that

(z∗−z(q+1))TR(z(q+1)−z(q)) ≤ 1

2

(
(z∗ − z(q))TR(z∗ − z(q))− (z∗ − z(q+1))TR(z∗ − z(q+1))

)
,

(8.28)
thanks to the fact that R � 0.

Theorem 8.2. Let Aq, Sq be the pair of unitary and diagonal matrices corresponding
to iteration q, chosen such that Rq = AT

q SqAq −B � 0. It results that

F (z(q))− F (z∗) ≤ (z∗ − z(0))TR0(z∗ − z(0)) + 2LA0
(z(1))‖z∗ − z1‖2

2q
+
α− β

2q
, (8.11)

with α =

q−1∑
i=1

(
2LAi

(z(i+1))‖z∗ − z(i+1)‖2 + (z∗ − z(i))T(Ri−1 −Ri)(z
∗ − z(i))

)
,

β =

q−1∑
i=0

(i+ 1)
(

(z(i+1) − z(i))TRi(z
(i+1) − z(i)) + 2δAi

(z(i+1))− 2δAi
(z(i))

)
,

where LA(z) denotes the local lipschitz constant of δA at z.



182 CHAPTER 8. UNDERSTANDING TRAINABLE SPARSE CODING

Proof. The proof is adapted from (Beck & Teboulle, 2009, Theorem 3.1).
From Proposition 8.7.1, we start by using (8.26) to bound terms of the form F (z(n))−
F (z∗):

F (z(n))− F (z∗) ≤〈∂δAn(z(n+1)), (z∗ − z(n+1))〉

+
1

2

(
(z∗ − z(n))TRn(z∗ − z(n))− (z∗ − z(n+1))TRn(z∗ − z(n+1))

)
.

Adding these inequalities for n = 0 . . . k − 1 we obtainq−1∑
n=0

F (z(n))

− qF (z∗) ≤
q−1∑
n=0

〈∂δAn(z(n+1)), (z∗ − z(n+1))〉 (8.29)

+
1

2

(
(z∗ − z(0))TR0(z∗ − z(0))− (z∗ − z(q))TRq−1(z∗ − z(q))

)
+

1

2

q−1∑
n=1

(z∗ − z(n))T(Rn−1 −Rn)(z∗ − z(n)) .

On the other hand, we also have

F (z(n))− F (z(n+1)) ≥ F (z(n))− F̃ (z(n), z(n)) + F̃ (z(n+1), z(n))− F (z(n+1))

= −δAn(z(n)) + δAn(z(n+1)) +
1

2
(z(n+1) − z(n))TRn(z(n+1) − z(n)) ,

which results in
q−1∑
n=0

(n+ 1)(F (z(n))− F (z(n+1))) ≥ 1

2

q−1∑
n=0

(n+ 1)(z(n+1) − z(n))TRn(z(n+1) − z(n))

+

q−1∑
n=0

(n+ 1)
(
δAn(z(n+1))− δAn(z(n))

)
(8.30)q−1∑

n=0

F (z(n))

− qF (z(q)) ≥
q−1∑
n=0

(n+ 1)

(
1

2
(z(n+1) − z(n))TRn(z(n+1) − z(n))

+δAn(z(n+1))− δAn(z(n))

)
.(8.31)

Combining (8.29) and (8.30) we obtain

F
(
z(q)
)
− F (z∗) ≤ (z∗ − z(0))TR0(z∗ − z(0)) + 2〈∇δA0(z(1)), (z∗ − z(1))〉

2q

+
α− β

2q

(8.32)

with

α =

q−1∑
n=1

(
2〈∇δAn(z(n+1)), (z∗ − z(n+1))〉+ (z∗ − z(n))T(Rn−1 −Rn)(z∗ − z(n))

)
,

β =

q−1∑
n=0

(n+ 1)
(

(z(n+1) − z(n))TRn(z(n+1) − z(n)) + 2δAn(z(n+1))− 2δAn(z(n))
)
.
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Corollary 8.3. If Aq = IIIK , Sq = ‖B‖IIIK for q ≥ 1 then

F (z(q))− F (z∗) ≤ (z∗ − z(0))TR0(z∗ − z(0)) + (z∗ − z(1))TR0(z∗ − z(1))T

2q

+
LA0

(z1)(‖z∗ − z(1)‖+ ‖z(1) − z(0)‖)
q

.

(8.12)

Proof. We verify that in that case, Rn−1 − Rn ≡ 0 and for n > 1 and δAn ≡ 0 for
n > 0 .

8.7.2 Existence of a Gap for Generic Dictionaries.

8.7.2.1 Properties of Eδ
Proposition 8.7.2. If a matrix A has its columns in Eδ,i, then it is almost unitary for
small value of δ. More precisely, denoting ν = ATA− IIIK , when δ → 0

‖ν‖F = O
(
δ
)

Proof. Let ν = ATA− IIIK . As Ai are in Eδ,i,

νi,i = AT
i Ai − 1 = 0

We can verify that for i 6= j

νi,j = AT
i Aj = δ

√
1− δ2(eTi hj + eTj hi) + δ2hTi hj

= δ(eTi hj + eTj hi) +O
(
δ2
)

This permits to bound the Frobenius norm of ν i.e.

‖ν‖2F =
∑

1≤i,j≤K
ν2
i,j = δ2

∑
1≤i,j≤K
i 6=j

(eTi hj + eTj hi)
2 +O

(
δ3
)
.

‖ν‖2F =
∑

1≤i,j≤K
ν2
i,j = δ2

∑
1≤i,j≤K
i 6=j

(eTi hj + eTj hi)
2 +O

(
δ3
)
,

= δ2
∑

1≤i,j≤K
(hi,j + hj,i)

2 +O
(
δ3
)
,

= δ2‖H +HT‖2F +O
(
δ3
)
,

= 4δ2‖H‖2F +O
(
δ3
)

= 4δ2K +O
(
δ3
)
. as ‖hi‖22 = 1

Proposition 8.7.3. For A ⊂ Eδ, and for any symmetric matrix U ∈ RK×K , when
δ → 0, ∥∥∥A−1UA

∥∥∥2

F
≤ ‖U‖2F +O

(
δ3
)
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Proof. For U ∈ RK×K symmetric, as A is quasi unitary,∥∥∥A−1UA
∥∥∥2

F
= Tr

[
ATU(A−1)TA−1UA

]
= Tr

[
U(ATA)−1UAAT

]
= Tr

[
U(IIIK + ν)−1U(IIIK + ν)

]
= Tr

[
U(IIIK − ν + ν2 +O

(
ν3
)

)U(IIIK + ν)

]
= Tr

[
UU + Uν2U − UνUν +O

(
ν3
)

)

]
= ‖U‖2F + ‖νU‖2F − ‖ν

1
2Uν

1
2 ‖2F +O

(
‖ν3/2‖2F

)
Notice that

‖ν 1
2Uν

1
2 ‖F = ‖(Uν)

1
2
T(Uν)

1
2 ‖F = ‖(Uν)

1
2 ‖2F ≥ ‖Uν‖F

Thus ‖νU‖2F − ‖ν
1
2Uν

1
2 ‖2F ≤ 0 and by submultiplicativity of ‖ · ‖2F ,

‖ν3/2‖2F ≤ ‖ν‖3F = O
(
δ3
)
⇒ O

(
‖ν3/2‖2F

)
= O

(
δ3
)
.

By combining all these results, we get:∥∥∥A−1UA
∥∥∥2

F
≤ ‖U‖2F +O

(
δ3
)

Proposition 8.7.4. For a matrix A ⊂ Eδ and any matrices X,Y ∈ RK×K , when
δ → 0 , ∥∥∥A−1XA− Y

∥∥∥2

F
≤
∥∥∥X −AY AT

∥∥∥2

F
+
∥∥Y ∥∥2

F
‖ν‖2F +O

(
δ3
)
.

Proof. First, we split the error of replacing
∥∥∥A−1XA− Y

∥∥∥2

F
by
∥∥∥X −AY AT

∥∥∥2

F
in two

terms. Both are linked to the quasi unitarity of A. The first term arises as we replace
A−1 by AT,

∥∥∥A−1XA− Y
∥∥∥2

F
=

∥∥∥∥A−1
(
X −AY A−1

)
A

∥∥∥∥2

F

=

∥∥∥∥∥∥∥∥∥A
−1

X −AY (ATA− ν)︸ ︷︷ ︸
IIIK

A−1

A

∥∥∥∥∥∥∥∥∥
2

F

=

∥∥∥∥A−1
(
X −AY AT +AY νA−1

)
A

∥∥∥∥2

F

≤ 2

∥∥∥∥A−1
(
X −AY AT

)
A

∥∥∥∥2

F

+ 2

∥∥∥∥A−1
(
AY νA−1

)
A

∥∥∥∥2

F
(use (a+ b)2 < 2a2 + b2)

≤ 2
∥∥∥X −AY AT

∥∥∥2

F
+ 2

∥∥Y ν∥∥2

F
+O

(
δ3
)

(Proposition 8.7.3)

≤ 2
∥∥∥X −AY AT

∥∥∥2

F
+ 2

∥∥Y ∥∥2

F
‖ν‖2F +O

(
δ3
)

(submultiplicativity ‖ · ‖F )

≤ 2
∥∥∥X −AY AT

∥∥∥2

F
+ 8δ2K

∥∥Y ∥∥2

F
+O

(
δ3
)

(Proposition 8.7.2)
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Proposition 8.7.5. For A ⊂ Eδ, and for any matrix U ∈ RK×K , when δ → 0,∥∥∥ATUA
∥∥∥2

F
= ‖U‖2F

(
1 + ‖ν‖2F

)
+O

(
δ3
)

Proof.

‖AUAT‖F = ‖AXATAA−1‖2F = ‖AU(IIIK + ν)A−1‖2F
= ‖U + Uν‖2F +O

(
δ3
)

(Proposition 8.7.3)

= 2‖U‖2F + 2‖Uν‖2F +O
(
δ3
)

(triangular inequality)

= 2‖U‖2F + 2‖U‖2F ‖ν‖2F +O
(
δ3
)

(‖ · ‖F is sub multiplicative)

≤ 2‖U‖2F + 8δ2K‖U‖2F +O
(
δ3
)

(Proposition 8.7.2)

8.7.2.2 Controling the Deviation of ‖ · ‖B
Lemma 8.5. For a generic dictionary D and a diagonally dominant matrix A ⊂ Eδ,

ED

[
min
Ai∈Eδ,i

∥∥∥A−1SA−B
∥∥∥2

F

]
≤K(K − 1)

p
− 4δ(K − 1)

√
K

p

+ δ2

(
8ED

[
‖B‖4F

]
− 6

K(K − 1)

p

)
+ O
δ→0

(
δ3
)
.

Proof. First, we use the results from Proposition 8.7.4 to remove the inverse matrix
A−1 ∥∥∥A−1SA−B

∥∥∥2

F
≤
∥∥∥S −ABAT

∥∥∥2

F
+
∥∥B∥∥2

F
‖ν‖2F +O

(
δ3
)
.

Using Proposition 8.7.2 with A ⊂ Eδ,

‖ν‖2F = 4δ2K +O
(
δ3
)

and ∥∥∥A−1SA−B
∥∥∥2

F
≤
∥∥∥S −ABAT

∥∥∥2

F
+ 4δ2K‖B‖2F +O

(
δ3
)
.

Then, we only need to control
∥∥∥S −ABAT

∥∥∥2

F
. First we note that this can be split into

2 terms∥∥∥S −ABAT
∥∥∥2

F
=

K∑
i=1

K∑
j=1
j 6=i

(AT
i BAj)

2 =
K∑
i=1

K∑
j=1

(AT
i BAj)

2 −
K∑
i=1

(AT
i BAi)

2

=
∥∥∥ABAT

∥∥∥2

F
−

K∑
i=1

‖DAi‖42

=
∥∥B∥∥2

F
(1 + 4δ2K)−

K∑
i=1

‖DAi‖42 +O
(
δ3
)

(Proposition 8.7.5)
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The first term is the squared Frobenius norm of a Wishart matrix and can be controlled
by

ED
[
‖B‖2F

]
= ED

 K∑
i=1

K∑
j=1

B2
i,j

 =

K∑
i=1

K∑
j=1

ED


 p∑
l=1

di,kdj,k

2


=
K∑
i=1

K∑
j=1
i 6=j

ED


 p∑
l=1

di,ldj,l

2
+

K∑
i=1

ED
[
‖di‖42

]

=
K∑
i=1

K∑
j=1
i 6=j


p∑
l=1

ED
[
d2
j,ld

2
i,l

]
+

p∑
l=1

p∑
m=1
m6=l

ED
[
di,ldi,mdj,ldj,m

]
︸ ︷︷ ︸

=0

+K

=

K∑
i=1

K∑
j=1
i 6=j

p∑
l=1

Edj
[
d2
j,l

]
Edi
[
d2
i,l

]
+K (di are independent)

=

K∑
i=1

K∑
j=1
i 6=j

p∑
l=1

1

p2
+K =

K(K − 1)

p
+K . (Ed

[
d2i,j

]
= 1

p
, (Song & Gupta, 1997))

For the second term, consider u ∈ Eδ,i , such that u =
√

1− µ2ei + µh for 0 < µ < δ,
h ∈ Span(ei)

⊥. Given i ∈ [K], Bei can be decomposed as z1ei + z2hi, with hi ∈
Span(ei)

⊥ ∩ SK−1. Using basic algebra, z1 and z2 are:

z1 = eTi Bei = ‖Dei‖22 = ‖di‖22 = 1 . (8.33)

z2
2 = ‖Bei‖22 − z2

1 = ‖DTdi‖22 − 1 (8.34)

Also, for all i, j ∈ [K], if i 6= j then hTi ej =

0 if ‖DTdi‖22 = 1
dTi dj

‖DTdi‖22−1
elsewhere

.

Then

‖Du‖22 = uTDTDu = uTBu

= (1− µ2) ‖Dei‖22︸ ︷︷ ︸
‖di‖2=1

+µ2‖Dh‖22 + 2µ
√

1− µ2 hTBei︸ ︷︷ ︸
z2hThi

Thus, with the notation from (8.34), hTBei = z2h
Thi and

‖Du‖22 = (1− δ2) + δ2‖Dh‖22 + 2δ
√

1− δ2

√
‖DTdi‖22 − 1hThi (8.35)

Now we can use this to derive a lower bound on maxu∈Eδ,i ‖DTu‖22 when δ → 0 ,

max
u∈Eδ,i

‖Du‖22 ≥ 1 + 2δ
√
‖DTdi‖22 − 1 + δ2

(
‖DTdi‖22 − 1

)
+O

(
δ3
)

(u=Âi)



8.7. PROOFS 187

Taking the square of this relation yields

max
u∈Eδ,i

‖Du‖42 ≥ 1 + 4δ
√
‖DTdi‖22 − 1 + 6δ2

(
‖DTdi‖22 − 1

)
+O

(
δ3
)

Taking the expectation yields

ED

[
max
u∈Eδ,i

‖Du‖42

]
≥ 1 + 4δED

[√
‖DTdi‖22 − 1

]
+ 6δ2ED

[
‖DTdi‖22 − 1

]
+O

(
δ3
)
.

The random variable pY 2
i = p(‖DTdi‖22−1) are distributed as χ2

K−1. Indeed, the atoms
di are uniformly distributed over SK−1. As this distribution is rotational invariant,
without loss of generality, we can take di = e1. Then Yi is simply sum of K− 1 squared
normal gaussians rv with variance 1

p ,

Y 2
i = ‖DTe1‖22 − 1 =

K∑
j=2

d2
j,1 ,

and √pYi is distributed as χK−1. A lower bound for its expectation is

ED
[
Yi
]

=

√
2

p

Γ
(
K
2

)
Γ
(
K−1

2

) ≥ K − 1√
pK

and ED
[
Y 2
i

]
=
K − 1

p

We derive a lower bound for the second term when δ → 0 ,

ED

[
max
u∈Eδ,i

‖DTu‖42

]
& 1 + 4δ

K − 1√
pK

+ 6δ2K − 1

p
+O

(
δ3
)

Using these results, we derive an upper bound for the expected distortion of B with A
with columns in Eδ,i,

ED

[
min
Ai∈Eδ,i

∥∥∥S −ABAT
∥∥∥2

F

]
≤ ED

[∥∥B∥∥2

F

]
−

K∑
i=1

ED

[
max
Ai∈Eδ

‖DAi‖42

]
+ C1δ

2 +O
(
δ3
)

≤ K +
K(K − 1)

p
−

K∑
i=1

1 + 4δ
K − 1√
pK

+ C2δ
2 +O

(
δ3
)

≤ K(K − 1)

p
− 4δ(K − 1)

√
K

p
+ C ′δ2 +O

(
δ3
)

And

C ′ = δ2

(
4KED

[
‖B‖2F

]
− 6

K(K − 1)

p

)
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This concludes our proof as

ED

[
min
Ai∈Eδ,i

∥∥∥A−1SA−B
∥∥∥2

F

]
= ED

[
min
Ai∈Eδ,i

∥∥∥S −ABAT
∥∥∥2

F

]
+ 4δ2KED

[
‖B‖2F

]
(Proposition 8.7.4)

+O
(
δ3
)

≤ K(K − 1)

p
− 4δ(K − 1)

√
K

p
+ Cδ2 +O

(
δ3
)
.

(Lemma 8.5)

And

C = 8KED
[
‖B‖2F

]
− 6

K(K − 1)

p

8.7.2.3 Controling Ez∼Z
[
δA(z)

]
Lemma 8.6. Let A ⊂ Eδ be a diagonally dominant matrix and let z be a random
variable in RK with iid coordinates zi. Then

Ez,D
[
δA(z)

]
≤ λEz

[
‖z‖1

](
δ
√
K − 1− δ2

2
+ O
δ→0

(
δ4
))

Proof. For any random variable z = (z1, . . . , zK) ∼ Z ∈ RK s.t. the zi are rotational
invariant, then

1 = Ez∼Z
[
1
]

= Ez∼Z

[
‖z‖1
‖z‖1

∣∣∣∣∣‖z‖1
]

=
K∑
i=1

Ez∼Z

[
|zi|
‖z‖1

∣∣∣∣∣‖z‖1
]

= KEz∼Z

[
|z1|
‖z‖1

∣∣∣∣∣‖z‖1
]

Thus we get:

Ez∼Z

[
|z1|
‖z‖1

∣∣∣∣∣‖z‖1
]

=
1

K
. (8.36)

Let z =
(
z1, . . . zK

)
be a vector of RK . Then

‖Az‖1 =

K∑
i=1

∣∣∣∣∣∣∣
K∑
j=1

Ai,jzj

∣∣∣∣∣∣∣ ≤
K∑
i=1

K∑
j=1

∣∣∣Ai,j∣∣∣ ∣∣∣zj∣∣∣ ≤ K∑
j=1

∥∥Ai∥∥1

∣∣∣zj∣∣∣

Using (8.36), we can compute an upper bound for Ez∼Z

[
|Az|

1
‖z‖1

]
:

Ez∼Z

[
‖Az‖1
‖z‖1

∣∣∣∣∣‖z‖1
]
≤

K∑
i=1

‖Ai‖1Ez∼Z
[
|zi|
‖z‖1

∣∣∣∣∣‖z‖1
]

=
‖A‖1,1
K
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Finally, we can get an upper bound on Ez∼Z
[
‖Az‖1

]
:

Ez∼Z
[
‖Az‖1

]
= Ez∼Z

Ez∼Z [‖A z

‖z‖1
‖1
∣∣∣∣∣‖z‖1

]
‖z‖1


≤ Ez∼Z

[
‖A‖1,1
K
‖z‖1

]

≤ ‖A‖1,1
K

Ez∼Z
[
‖z‖1

]

This permits to control Ez∼Z
[
δA(z)

]
with

Ez∼Z
[
δA(z)

]
= Ez∼Z

[
‖Az‖1 − ‖z‖1

]
≤ ‖A‖1,1 − ‖IIIK‖1,1

K
Ez∼Z

[
‖z‖1

]

Then, for A ∈ Eδ, the `1-norm of the columns Ai is

‖Ai‖1 ≤
√

1− δ2 + δ
√
K − 1

We can derive an expression of ‖A‖1,1−‖IIIK‖1,1K for δ → 0,

‖A‖1,1
K

− 1 =
1

K

K∑
i=1

‖Ai‖1 − 1 ≤
√

1− δ2 + δ
√
K − 1− 1

≤ δ
√
K − 1− δ2

2
+O

(
δ4
)

δ→0

(8.37)

8.7.2.4 Acceleration Conditions for Generic Dictionaries

Proposition 8.7.6. For A with columns chosen greedily in Eδ,i and for v, z ∈ RK ,

ED

[
min
A⊂Eδ

∥∥∥A−1SA−B
∥∥∥2

F
‖v‖22 + λδA(z)

]
≤

(K − 1)K

p
‖v‖22 + δ

√
K − 1

λ‖z‖1 −
√
K(K − 1)

p
‖v‖22


+O

(
δ2
)
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Proof. Let A ⊂ Eδ be a unitary matrix with each column i chosen greedily in Eδ,i. Using
results from Lemma 8.5 and Lemma 8.6, we show

ED

[∥∥∥A−1SA−B
∥∥∥2

F
‖v‖22 + λδA(z)

]
≤‖v‖22

K − 1√
p

(
K√
p
− 4δ
√
K

)
+O

(
δ2
)

+ λ‖z‖1
(
δ
√
K − 1 +O

(
δ2
))

≤(K − 1)K

p
‖v‖22

+ δ
√
K − 1

λ‖z‖1 −
√
K(K − 1)

p
‖v‖22


+O

(
δ2
)

Theorem 8.7 (Acceleration certificate). In expectation over the generic dictionary D,
the factorization algorithm using a diagonally dominant matrix A ⊂ Eδ, has better
performance for iteration q+1 than the normal ISTA iteration – which uses the identity
– to solve (8.1) when

λEz
[
‖z(q+1)‖1 + ‖z∗‖1

]
≤
√
K(K − 1)

p
Ez
[
‖z(q) − z∗‖22

]
Proof. Let A ⊂ Eδ be a unitary matrix with columns chosen greedily in Eδ,i. We start
from Proposition 8.1,

ED
[
F (z(q+1))− F (z∗)

]
≤ ED

[
‖A−1SA−B‖F ‖z(q) − z∗‖22 + δA(z∗)− δA(z(q+1))

]
Using the results from Proposition 8.7.6, with v = z(q) − z∗, we can write

ED
[
F (z(q+1))− F (z∗)

]
≤(K − 1)K

p
‖z(q) − z∗‖22

+ δ
√
K − 1

λ(‖z‖1 + ‖z∗‖
)
−
√
K(K − 1)

p
‖z(q) − z∗‖22


︸ ︷︷ ︸

≤0

+ O
δ→0

(
δ2
)
.

Taking the expectation over the input distribution of z, we get the desired result.
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During my PhD, I collaborated with medical doctors for clinical research purposes,
developing tools to help them analyze their physiological signal data. This collaboration
has been centered around two projects, the study of the walk for adults and the study
of the eye movements for young infants. This part presents results obtained as part of
this collaboration.
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In clinical context, gait assessment is usually performed by visual examination. Ex-
tracting the information relevant to the doctors from inertial sensors would change the
way patients are followed, as it would improve the comparison of their gait in time
and with other patients. In this chapter, we present the gait signals collected with the
Cognac-G group and show that convolutional representations – described in Chapter 3
– can be applied to these signals to extract step like patterns and to summarize the
signals. Finally, we introduce a novel algorithm to identify steps in gait signal. This
algorithm relies on template matching between the signals and a set of chosen steps.

9.1 Context

Pathologies affecting posture, balance, and gait control are threatening the autonomy of
patients not to mention the risk of fall and therefore require rehabilitation intervention
as early as possible. However, it remains difficult to accurately evaluate the various spe-
cific interventions during the rehabilitation process and the optimal content of exercise
interventions they should involve. If only for these reasons, it would be interesting to
learn how to monitor sensorimotor behavior at large and locomotion in particular which
is a growing area in medical engineering science (Mariani, 2012; Marschollek et al., 2008;
Willemsen et al., 1990; Dijkstra et al., 2008; Han et al., 2006; Ayachi et al., 2016; Wil-
liamson & Andrews, 2000). It requires several steps: first, we wish to investigate how
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to monitor sensorimotor behaviors for patients in the doctor office and the resulting
cognitive load it implies. Second, we want to learn how to construct databases with the
quantitative variables recorded in that process, in order to make longitudinal studies
of behaving individuals. Third, we would like to merge these individual databases in
large data banks to define statistical norms, which is mandatory to detect dysfunc-
tions or pathologies at the earliest stage possible. In that process we encounter at least
three main challenges: the need for pervasive or ubiquitous computation to collect data;
handling large inter-individual variability in the studied Human motion captures; and
aggregating highly heterogeneous data to build the data bank.

There exist many software applications on the market that use wearable sensors –
namely accelerometers, gyroscopes, magnetometers and/or GPS – and are useful for
rehabilitations. They calculate the number of steps made in a day (Tran et al., 2012;
Naqvi et al., 2012), the distance traveled in a day (Renaudin et al., 2012; Kim et al.,
2004), the average speed or the daily amount of time spent walking, running, sitting,
standing, laying (Oner et al., 2012; Brajdic & Harle, 2013). Most of the algorithms
published in this context are either dedicated to one specific terminal or mobile phone,
or they are copyrighted and not freely available for research.

This chapter is organized as follows: Section 9.2 describes the gait data used in this
chapter. Section 9.3 presents the application of convolutional dictionary learning to
these signals. Section 9.4 introduces a novel step detection algorithm, discusses the
influence of the parameters and compares it to state-of-the-art methods. In Section 9.5,
we briefly summarize a medical study, done with these signals and Section 9.6 concludes
this chapter.

9.2 Gait Signals

9.2.1 What is a step ?

Locomotion is a hierarchical and complex phenomenon composed of different entities
such as strides, steps, and phases (Auvinet et al., 2002; Mariani, 2012).

• Considering one foot, the stride is the succession of two phases: the swing phase
(when the foot is in the air), and the stance phase (when the foot is in contact with
the ground). The stance phase occurs between the heel-strike (moment when the
foot hits the ground) and the toe-off (moment when the toes go off the ground),
while the swing phase occurs between the toe-off and the next heel-strike.

• A stride is defined as the event that occurs between two heel-strikes of the same
foot.

• A step is defined as the event that occurs between successive heel strikes of op-
posite feet. A step is therefore composed of two strides: one for the right foot,
one for the left foot.

In the formal medical definition, a step is supposed to start when the heel strikes the
ground and to finish somewhere in the end of the stance phase. It is not related to
the foot activity since the foot is also moving in the swing phase. We choose in this
chapter another definition: a step is defined in the following as the whole period of
activity of a foot (when the foot is moving). The beginning of the step is defined as
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Group Number
of exer-
cises

Number
of sub-
jects

Sex
(M/F)

Age
(yr)

Height
(cm)

Weight
(kg)

Healthy subjects 242 52 35/17 36.4
(20.6)

173.4
(10.8)

70.7
(12.2)

Orthopedic dis-
eases

243 53 26/27 60.1
(19.3)

169.2
(10.2)

77.4
(16.8)

Neurologic dis-
eases

535 125 80/45 61.6
(13.2)

169.8
(8.7)

72.7
(15.5)

Total 1020 230 141/89 55.5
(19.6)

170.5
(9.7)

73.4
(15.3)

Table 9.1: Subjects’ characteristics. For the age, height and weight, the mean and the
standard deviations are displayed.

the heel-off (moment when the heel leaves the floor) and end of the step is defined as
the foot-flat (moment when the foot is stabilized on the floor). This new definition
allows considering the whole period of activity of a foot as a step, which makes it more
adapted to step detection. Note that it does not change the number of steps and that it
is easy to switch back to the medical definition once the heel-off and foot-flat instants
have been detected.

9.2.2 Data Acquisition and First Observations

z

x

y

v

(a) Definition of the
axis for the XSensTM

sensor located at the
left foot
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(b) Healthy patient
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(c) Hip affected patient

Figure 9.1: (a) XSensTM sensor - (b,c) Vertical acceleration, Z-axis acceleration and
the Y-axis angular velocity recorded from the right foot. The vertical lines display the
different possibilities for start/end times.

The data used for the conception and testing of the method presented in this chapter has
been provided by the following medical departments: Service de chirurgie orthopédique
et de traumatologie de l’Hôpital Européen Georges Pompidou, Assistance Publique
des Hôpitaux de Paris, Service de médecine physique et de réadaptation de l’Hôpital
Fernand Widal, Assistance Publique des Hôpitaux de Paris, Service de neurologie de
l’Hôpital d’Instruction des Armées du Val de Grâce, Service de Santé des Armées.
The study was validated by a local ethic comity (Comité de Protection des Personnes
Ile de France II, CPP 2014-10-04 RNI) and both patients and control subjects gave
their written consent to participate. All signals have been acquired at 100 Hz with
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Figure 9.2: Clinical protocol for the walk study

wireless XSens MTwTM sensors located at the right and left foot and fixed using a velcro
band designed by XSensTM. The signals obtained with both sensors were automatically
synchronized by the acquisition software. All subjects were asked to:

1. stand quiet for 6 seconds

2. Walk 10 meters at preferred walking speed on a level surface

3. Make a U turn

4. Walk back

5. Stand quiet 2 seconds

Figure 9.2 illustrates this protocol. For practical reasons, patients kept their own shoes.
The database is composed of 230 subjects who performed the protocol between 1 and
10 times, which leads to 1020 recordings. The subjects’ characteristics are presented in
Table 9.1. Healthy subjects had no known medical impairment. The orthopedic group
is composed of 2 cohorts of distinct pathologies: lower limb osteoarthrosis and cruciate
ligament injury. The neurologic group is composed of 4 cohorts: hemispheric stroke,
Parkinson’s disease, toxic peripheral neuropathy and radiation induced leukoencephalo-
pathy.

The protocol includes 2 sensors (left and right foot), and each of them records a 9-
dimensional signal (3D accelerations, 3D angular velocities, 3D magnetic fields), pos-
sibly with some recalibrated data provided by the XSensTM software (such as the vertical
acceleration in the direction of the gravity). Instead of considering all these dimensions,
we decided to only use a subset of them, and select the most relevant in the context
of step detection. This decision has been made based on observations of real data and
physiological reasons provided by doctors. We decided to select only the components
that are the most reflective of the locomotion process (see Figure 9.1a for the defini-
tion of the axis): the Z-axis acceleration, the recalibrated vertical acceleration (vertical
movements of the foot) and the Y-axis angular velocity (swing in the direction of the
walk). We expect these components to strongly react to the steps, making them iden-
tifiable.
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Figure 9.3: Vertical acceleration of the right foot for an healthy subject walking. The
vertical dashed line represent the beginning of the steps, annotated by a medical doctor.

Examples of these 3 components (Z-axis acceleration, vertical acceleration and Y-axis
angular velocity) recorded for the right foot are presented on Figure 9.1b and Figure 9.1c
for respectively a healthy and hip-injured patient. It appears on these figures that the
amplitudes of the signals are clearly different and it is likely that classical threshold-
based methods would hardly perform well on both subjects. However, the structure and
shape of the step is roughly the same for both subjects so it might be relevant to use a
template-based method. Nevertheless, these examples also display the main difficulties
in conceiving an automatic algorithm for step detection:

• The uncertainties in the definition of the starts and ends of the steps. Indeed, we
can see on Figure 9.1b, that many choices would be acceptable: depending on the
considered definition, the results may be different.

• The variability of the step patterns according to the pathology, the age, the weight,
etc. For example, on Figure 9.1c, the subject is dragging his feet, causing an
abrupt change in the step pattern (noisy part at the end of the step).

9.3 Convolutional Representations for Gait Signals

In this section, we use the convolutional representation, described in Chapter 3, to test
the capacity of the model to extract step patterns. We focus on the vertical acceleration
of the right foot. An example of a vertical acceleration signal during walking is given
in Figure 9.3. All the experiments are run using a basis of 100 recordings of healthy
subjects and split between a train set of 50 recordings denoted Xtrain and a test set
Xtest with 50 recordings from healthy subjects that are not in the train set.

9.3.1 Encoding a Signal with a Dictionary of Steps

To test the encoding capacity of the convolutional sparse coding, we computed the
embedding of signals from human walking on a dictionaryDDDm of steps. To construct this
dictionary, we select 25 recordings in Xtrain where the steps are annotated manually by
a medical doctor and draw one step uniformly in each of these signals. These patterns
are them normalized and zero-padded such that p is the k-th pattern in P, i.e. the
vertical acceleration of the step selected in the k-th recording, then

DDDm
k [t] =


p[t]
‖p‖2 ∀t ∈ J0, |p| − 1K

0 ∀t ∈ J|p|,W − 1K

with W = maxp∈P |p| . The blue curves in Figure 9.4 present these step patterns used
in DDDm. Then, the activation for the signals in Xtest are computed using SeqDICOD,
presented in Algorithm 5.2, with M = 5. We fixed the regularization parameter to
λ = 5 for this experiment.

Figure 9.5 presents the activation signal computed for one signal X. Unsurprisingly,
the activation coefficients are concentrated around the beginning of the steps. The
activated coefficients are not unique for each step, but the steps are a linear combination
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Figure 9.4: (blue) Initial steps in DDDm . (orange) Patterns in DDD(50) learned with convo-
lutional dictionary learning on a set of 50 walk exercises with healthy subjects, starting
from the steps patterns DDDm .
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Figure 9.5: Convolutional sparse coding for the right foot vertical acceleration signal
with the dictionary DDDm composed of steps randomly selected from different subjects’
exercises. The vertical dashed lines represent the beginning of each step, annotated by
a medical doctor in the original signal.
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of multiple patterns, sometimes slightly shifted in time.The slight shifts in time result
from annotation imprecision for the steps patterns. Indeed, from the signal, there is
no clear definition of the start of the step in the signal and the uncertainty of this
annotation is evaluated to less than 0.2 s (20 samples) for each step. This explains that
the coefficients might be spread out around the step boundaries. To be able to use
convolutional sparse coding as a step detection algorithm, an extra pattern alignment
step would be required. No pattern seems to be dominant to encode the signal as all
patterns are activated for some signals. In Figure 9.5, three steps are not encoded by
the method: the steps at the beginning and at the end of the walk and the central step.
The first and last steps play a specific role in the recording as they capture the transition
between the stand still phase and the walking phase. In our specific protocol, the central
step is associated with the about turn of the exercise (cf Figure 9.2). These three steps
have specific shapes and amplitudes and are different from other steps. The dictionary
DDDm being drawn uniformly, it contains steps from the edge and turn-about but as they
are more specific, the convolutional sparse coding is not able to summarize the three
missed steps using the given step patterns. Another issue is that the amplitudes of
these three steps are smaller than the amplitude of other steps. Lower amplitude steps
are not captured by the convolutional sparse coding because encoding them does not
reduce the reconstruction cost as much as for the other steps. The tradeoff between
the reconstruction cost and the sparse regularization is controlled by the regularization
parameter λ which is fixed for the whole signal X. If λ is lowered, convolutional sparse
coding encodes these specific steps but also add more coefficients for the other steps.
This example illustrates an open problem for sparse coding: how can convolutional
sparse coding capture local variations in the signals adaptively to the local amplitude.
For step detection, we designed a robust algorithm based on the Pearson coefficient
to detect steps in recordings of human walking which handle theses problems with the
amplitude (see Section 9.4 and Appendix A). This algorithm can be seen as a greedy
sparse coding algorithm with an amplitude normalization.

9.3.2 Updating the Dictionary for a Set of Signals

Then, we use convolutional dictionary learning (CDL) to update the dictionary DDDm

with Xtrain. The signal used for the unsupervised learning of the dictionary DDD(50) are
thus the 25 recordings from which the original steps in DDDm are extracted plus 25 extra
recordings. The patterns are updated with 50 iterations of alternate minimization with
SeqDICOD5 for sparse coding steps and accelerated proximal gradient descent (APGD)
to update the dictionary elements (see Subsection 3.4.1 and Algorithm 3.9 for details
on APGD).

Figure 9.6: Evolution of the cost function for the train set relatively of the number of
CDL iteration q run. (dashed) Cost for dictionaryDDDm. (blue) Cost for the CDL starting
fromDDDm. (orange) Cost for the CDL starting with the SSA initialization. (green) Cost
for the CDL with 5 random initializations.

Figure 9.6 shows the evolution of the cost function for the train set relatively of the
number of convolutional dictionary learning iteration q run. The CDL improves the
encoding cost on the train set compared to the initial dictionary of steps DDDm. This
procedure also improves the cost function value on the test set. Figure 9.4 presents in
orange the patterns obtained after the dictionary learning, ordered using the `1-norm of
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Figure 9.7: Convolutional sparse coding for the right foot vertical acceleration signal
with a dictionary of steps randomly extracted from other patients exercises.

the associated coding signals on the test set. Thus, the first pattern is the one which is
used the most to encode the test signals. The first observation is that the final patterns
are not very different from the original steps and the local structure of the steps is
preserved. The original steps are smoothed in their final version as it can be seen with
the first pattern where the final oscillations are attenuated and the central part is more
regular. Some other local variations are amplified. For instance the vibration at the
beginning of the sixteenth learned pattern is stronger than in the original step. Finally,
the last pattern is equal to the original ones. This pattern is not updated because it is
not used to encode any part of the train sample signals.

The patterns learned with CDL improve the signal representation computed with this
model. Figure 9.7 illustrates the coding signal obtained with this new dictionary for the
same signal X as in Figure 9.5. Compared to the codes obtained withDDDm, the activated
coefficients are more concentrated around the steps and fewer coefficients are activated.
The signal is summarized in a sparser way using the new dictionary. However, no pattern
is adapted by the algorithm to capture the three steps that were missed usingDDDm. This
can be explained by the amplitude issue discussed in Subsection 9.3.1. Indeed, these
type of steps are not encoded by the sparse coding step as for the given regularization,
the coding coefficients are estimated to be null in these areas. Thus, the dictionary
updates cannot adapt the patterns to better capture these local variations and this part
of the signal is ignored when updating the dictionary elements. This behavior is linked
to the regularization level adaption problem for convolutional sparse coding. The design
of an algorithm which could adapt the regularization level to the local amplitude of the
signal, up to certain levels, would improve the usage of this technique for time series
representation.
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Figure 9.8: (top) Examples of generic dictionary patterns in DDD(0), drawn from (9.1).
(bottom) Top five patterns learn with 50 iterations of CDL. These patterns captures the
step local structures.

9.3.3 Learning a Dictionary of Steps from Accelerometer Signals

In the previous experiments, the structure of the steps is given in the initial dictionary
DDDm. An interesting question is to see if the CDL is able to learn the local structure
of the steps without supervision, i.e. starting from an initial dictionary computed
automatically. Here, we will compare two initialization approaches to learn a set of
patternsDDD with 50 iterations of CDL: the random initialization with a generic dictionary
and the initialization with the PCA.

For the random initialization, we draw uniformly generic atoms in the unit sphere of
RW . The elements DDD(0)

k of the dictionary are generated using a normalized Gaussian
distribution, such that

DDD
(0)
k =

uk
‖uk‖2

with uk ∼ NW
(
0, IIIW

)
(9.1)

The top part of Figure 9.8 presents 5 examples of generic atoms. These atoms do not
have any structure, contrarily to the initial dictionary used in the previous experiment.
The CDL alternate minimization is used, starting with this random dictionary, with a
set Xtrain of 50 recordings of healthy patients walking. The final dictionary elements
are displayed in the bottom part of Figure 9.8. Out of the 25 learned patterns, only six
are used to encode the signals in Xtrain. The other ones are not updated as they are
never activated. The six patterns learned are similar to step patterns from Figure 9.4.
The general shape of the patterns are very similar. The main differences are located
at the end of the steps, when the foot is touching the ground. Also, the patterns are
not aligned. The first pattern starts with a small phase delay and is faster compared to
the second one. This experiment shows that convolutional dictionary learning is able
to learn patterns which capture the local dynamic of a step in an unsupervised setting
starting from random initialization.

For signal encoding, these patterns are also able to summarize the walk in interpretable
way. Figure 9.9 displays the encoding of the same walk signal presented in Figure 9.3
and encoded in the previous figures with the patterns learned with CDL from generic
initialization. The activation coefficients are also concentrated around the beginning of
the steps but there is a bit more variations. Indeed, as no annotations were given at
the beginning, some patterns such as the 4th and 5th ones capture a part of either one
(the 4th) or two steps (the 5th). These random shifts are selected by the initialization
of the dictionaries and the delays between the localization of the components are linked
to the delay observed in the learned patterns. A nice way to resolve this would be to
design a dictionary updates which tries to compute aligned dictionaries by trying to
regroup the activated coefficients at the same time in the activation signal. Indeed, a
dictionary and its associated activated coefficient can both be shifted by an inverse lag
τ without changing the value of the reconstruction cost. With this idea, the patterns
with a zero part such as the 4th one could be shifted back to learn more interesting
part of the signal during the dictionary update.
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Figure 9.9: Activation signal for the right foot vertical acceleration signal with a dic-
tionary learned from a set of 50 exercises by healthy patient. Each color corresponds to
one activation signal.

Figure 9.10: (top) Examples of initial patterns in the dictionary DDD(0) computed using
SSA. (bottom) Top five patterns learn with 50 iterations of CDL. These patterns captures
the step local structures.

Figure 9.11: Activation signal for the right foot vertical acceleration signal with a
dictionary learned from a set of 50 exercises by healthy patient. (red) first pattern,
(orange) second pattern.

A second experiment makes use of the SSA to initialize the patterns. The idea is to make
a PCA on all subseries of length W = 100 in the train set. The initial dictionary D(0)

is constructed by taking the K first singular vectors (or principal components). The
top part of Figure 9.10 presents 5 examples of generic atoms. These atoms do not have
any structure, in contrary with the initial dictionary used in the previous experiment.
The CDL alternate minimization is used, starting with this random dictionary, with a
set Xtrain of 50 recordings of healthy patients walking. The final dictionary elements
are displayed in the bottom part of Figure 9.10. In this case, the learned patterns can
also be linked to step patterns. The same remarks can be made as for the random
initialization. Out of the 25 learn patterns, only 15 are used to encode the signals
from Xtrain and 10 are not updated from their original value. The patterns are not
aligned and some of them capture the end of a step and the beginning of another one.
Figure 9.11 presents the encoding of the same signal presented before. The encoding is
less concentrated compared to random initialization. Indeed, the patterns are selected
to capture the variance in all shifted position to they are not well localized with SSA.
But this method is also the only one to be able to capture the last step patterns in the
signal. The first and middle patterns are not encoded by any of the learned dictionary
we tried.

As the CDL problem is non-convex, the initialization plays a tremendous role in the
capacity of the method to compute a good representation of the signals in the basis.
To assess the impact of the initialization, we look at the function error for Xtrain

and Xtest. Figure 9.6 displays the training cost function evolution during the CDL for
initialization with the dictionary of manually annotated patternsDDDm, with the SSA and
with 5 random dictionary drawn from (9.1). We can see that the manual initialization
gives better results than all the other initialization methods. But with the number of
iteration growing, CDL obtains dictionaries which have similar error level as the initial
dictionaryDDDm. The dictionary obtained with CDL starting fromDDDm beats all the other
for the other dictionaries. However, the error levels are not very different and random
initialization gives results that can be compared to manual initialization. The same
observations can be done with the test error, displayed in Table 9.2 and the order of the
different methods is preserved. The best test error is obtained for manual initialization
with CDL but random and SSA initialization are able to reach levels lower than the
initial manual dictionary after few iterations. The SSA initialization does not seem to
provide a big advantage compared to the random initialization but it is better than the
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Initialization Manual Manual SSA best random mean on 5 random
initialization

# iteration 0 50 50 50 50

Train Error 0.1882 (0.08) 0.1802 (0.07) 0.1832 (0.07) 0.1820 (0.07) 0.1837 (0.07)

Test Error 0.1806 (0.05) 0.1777 (0.05) 0.1791 (0.05) 0.1786 (0.05) 0.1792 (0.05)

Table 9.2: Value of the cost function for Xtrain and Xtest for various initialization and
number of iterations. The last column is the performance averaged over 5 random
iterations.

mean random initialization.

Finally, one parameter which is hard to fix is the regularization parameter. Indeed,
this parameter controls the sensitiviy of the method and the quality of the extracted
patterns. To see the effect of this parameter, Figure 9.12 displays the ratio between the
cost function value on Xtrain for dictionaries learned with CDL and the one obtained
with a generic dictionary drawn at random relatively to the regularization parameter
value λ. We clearly see on this plot that there is a trade off for this parameter. If it
is set too high, a lot of information in the signal is discarded as noise and possibly no
patterns are learned. If it is too low, the learned patterns are not be informative as
the different set of patterns have the same reconstruction error. Around the optimal λ,
there is little difference between the manual initialization and unsupervised strategies
but as λ gets lower, the manual strategy seems to lead to a better dictionary.

Figure 9.12: Ratio between final training cost for a dictionary learned with CDL ; from
an initialization (blue) manual to DDDm, (orange) with SSA and (green) with a generic
dictionary; compared to the training cost for a random dictionary as a function of the
regularization parameter λ.

These preliminary results are very encouraging on the usefulness of convolutional repres-
entation method to capture the same information as the step detection in walk signals.
Indeed, the activation coefficients indicate the approximate localization of the steps. An
extra step of pattern alignment is necessary to get a unique coefficient localized in time.
This concentration of the coefficients could be obtained using group sparsity technique
which would penalize activated coefficients that are close to be grouped on the same
time step.

9.4 Robust Step Detection

This section quickly describes an algorithm developed using our signal basis to robustly
detect the steps in humane walk signals. The full study can be found in Appendix A.

In the context of dynamic equilibrium quantification, it is important to be able to
robustly extract the steps from inertial sensor recording of a human walking. In our
study, we present a method for step detection from accelerometer signals based on
template matching. Due to the constraints from the considered medical application,
our algorithm has not been directly developed using the convolutional sparse coding
as this method does not robustly detect the steps with various amplitude from our
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data base. The principle of our step detection algorithm is to recognize the start and
end times of the steps in the signal thanks to a predefined set of templates (library of
steps). The algorithm is tested on a database of 1020 recordings, composed of healthy
patients and patients with various neurological or orthopedic troubles. Simulations on
more than 40000 steps show that even with a library of only 5 templates, our method
achieves remarkable results with a 98% recall and a 98% precision. The method is
robust to parameter changes, adapts well to pathological subjects and can be used in a
medical context for robust step estimation and gait characterization.

9.5 An Automated Recording Method in Clinical
Consultation to Rate the Limp in Lower Limb
Osteoarthritis

This section quickly describes a study performed using our signal basis to rate the Limp
in Lower Limb Osteoarthritis. The full study can be found in Appendix B.

For diagnosis and follow up, it is important to be able to quantify limp in an objective,
and precise way adapted to daily clinical consultation. The purpose of this exploratory
study was to determine if an inertial sensor-based method could provide simple features
that correlate with the severity of lower limb osteoarthritis evaluated by the WOMAC
index without the use of step detection in the signal processing. Forty-eight patients
with lower limb osteoarthritis formed two severity groups separated by the median of the
WOMAC index (G1, G2). Twelve asymptomatic age-matched control subjects formed
the control group (G0). Subjects were asked to walk straight 10 meters forward and 10
meters back at self-selected walking speeds with inertial measurement units (IMU) (3-D
accelerometers, 3-D gyroscopes and 3-D magnetometers) attached on the head, the lower
back (L3-L4) and both feet. Sixty parameters corresponding to the mean and the root
mean square (RMS) of the recorded signals on the various sensors (head, lower back and
feet), in the various axes, in the various frames were computed. Parameters were defined
as discriminating when they showed statistical differences between the three groups. In
total, four parameters were found discriminating: mean and RMS of the norm of the
acceleration in the horizontal plane for contralateral and ipsilateral foot in the doctor’s
office frame. No discriminating parameter was found on the head or the lower back.
No discriminating parameter was found in the sensor linked frames. This study showed
that two IMUs placed on both feet and a step detection free signal processing method
could be an objective and quantitative complement to the clinical examination of the
physician in everyday practice. Our method provides new automatically computed
parameters that could be used for the comprehension of lower limb osteoarthritis. It
may not only be used in medical consultation to score patients but also to monitor the
evolution of their clinical syndrome during and after rehabilitation. Finally, it paves the
way for the quantification of gait in other fields such as neurology and for monitoring
the gait at a patient’s home.

9.6 Conclusion

In this chapter, we showed that sparse convolutional representation can be used to
summarize walk signals. A library of patterns can be used to encode the signal and by
optimizing it, it is possible to get information about the step localization. In addition,
steps patterns can be learned from a set of signals in an unsupervised setting, capturing
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the common shape of the patterns in the different exercises for different initialization
strategies.

Despise these promising initial results, certain questions should be addressed to improve
the practicality of this method. The question of the local adaption of the regularization
to capture patterns with different amplitude in the signal is critical to enable the usage
of such technique on non-segmented signals, with different intensity due to variation in
the speed of the walk or to different phases in the protocol. Another question is the
cleaning of the obtained representations. The different patterns shifted, with activation
coefficient localized at different time and the grouping of such coefficients would greatly
improve the interpretability of the method and its results. Finally, the question of
pattern balance is also an open problem. Indeed, some patterns are less frequent than
the other, such as the boundaries steps or the steps performed during a turn-about.
The capacity to learn such patterns greatly depends on the capacity to learn patterns
that are under-represented in the signal.

We also described in this chapter a template-based method for step detection. This
method, based on a greedy algorithm and a library of annotated step templates, achieves
good and robust performances even with a small number of templates. When used on
a large database composed of healthy and pathological subjects walking at different
speeds, the method obtains a 98% recall and 98% precision. This method shows that it is
possible to improve the pattern detection for specific application but the automatization
of such process would be of tremendous interest for many applications.
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The eye movements result from a set of complex interactions between different parts of
the nervous system. Indeed, the eyes move to adapt to what they look at but also to
stabilize the vision during movements, or to react to other inputs. Through the study of
eye movements, it is thus possible to understand the normal and pathological behavior
of many other parts in the human body. The development of cheap sensors to record
eye movements opened the field to new opportunities to quantify these movements.

In this chapter, we focus on a particular eye movement, the nystagmus. This movement
– which can hinder the vision of young infants – is not clearly understood by ophthal-
mologists. In this chapter, we suggest using the SSA to remove the normal movement of
the eye – resulting from the gaze movement. With this method, it is possible to study
a cleaner movement resulting from the nystagmus. This method is then used in a study
of the nystagmus associated to optic pathway gliomas.

10.1 Context

The eye movements are the set of voluntary or involuntary movements of the eyes,
used to accommodate the vision. They are involved in many visual tasks, like target-
tracking, reading or stabilizing the gaze during movement. The control mechanisms
involved are complex and come from different parts of the nervous system. The study
of these movements and their pathologies helps researchers better understand these
mechanisms.

The nystagmus is a specific movement of the eyes, which is normally observed while the
head is rotating. With a coupling from the vestibular area, the eyes move in the opposite
direction slowly – matching the rotation speed – and then perform a saccadic movement
– or high speed movement – in the sense of rotation. This movement stabilizes distant
images while the head moves, by keeping the eye in a fix direction long enough to see
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Pendular Jerk: slow phase+saccade

Only slow phases Constant velocity Increasing velocity Decreasing velocity

• Spasmus Nutans
(SN)

• Certain neurolo-
gical nystagmus

• Certain neurolo-
gical nystagmus

• Certain neurolo-
gical nystagmus

• Infantile Nys-
tagmus Syndrome
(INS)

• Optokinetic nys-
tagmus

• Infantile Nys-
tagmus Syndrome
(INS)

• Fusional Maldevel-
opment Nystagmus
Syndrome (FMNS)

Table 10.1: Classification of the nystagmus shapes

the scene clearly. This type of nystagmus – associated to the head rotation – is called
the optokinetic nystagmus.

In some cases, unwanted nystagmus movements develop in infancy – and sometime
later in life – with the infant’s eyes constantly moving, and his visual perception is
hindered. The reasons behind the appearance of such movements are not clear but this
condition can be associated to congenital disorders, central nervous system disorders
or retinal dysfunction. The causes of the nystagmus are linked to the characteristics
of the movements, like their frequency, their shapes and their variations when the gaze
moves. The general principles to classify nystagmus are given in Table 10.1. The focus
is on the presence of slow phases, with varying velocity, or saccades. These movements
do not result from the same controlling mechanism and it is important to distinguish
them. Then, inside each class, the type of movement can also be sub-classified. The
eye movements in INS can take specific shapes which are sorted in different categories,
as described in Figure 10.1.

If some classes of nystagmus, like the INS, have been largely studied, we have less
information about other classes of nystagmus. The Spasmus Nutans (SN) is difficult to
study as it is a condition which appears early in the childhood and can then disappear or
change into another class of nystagmus. This forces researchers to work with very young
children, from 3 months to 10 years old. The design of adequate protocols to record the
infant eye movements in various settings is challenging in itself. As this condition is not
very well-known, it is often misdiagnosed and treated as another type of nystagmus.
In collaboration with Matthieu Robert, from the Hôpital universitaire Necker-Enfants
malades, we designed a protocol to record and study eye movement from early childhood.
The stimuli were adapted to get the children attention using cartoons and we used a
device specially designed for young infants. We used the Eyefant sensor, developed with
Ober consulting (Poland), which tracks the binocular eye movements using infrared
photoreflectometry with a sampling rate of 1000Hz. The sensor was designed to be very
light, in order not to affect the behavior of the child during recording.

The aim of these recordings is to quantify the eye movement properties. With the
extracted information, the medical doctor is able to better understand the nystagmus
and to classify it in the right category, from the previous classification. Indeed, char-
acteristics like the frequency or the shape are easy to infer on specific signals. But
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Figure 10.1: Sixteen possible waveforms in INS, among which 12 pathognomonic of INS
(adapted from Hertle & Dell’Osso 2013).

these quantified characteristics also highlight some behaviors not well documented in
the nystagmus literature.

The rest of this chapter is organized as follows. In Section 10.2, we describe the tools
used to study the recorded nystagmus movements. These tools have been used for two
clinical studies around the nystagmus, one of which is briefly described in Section 10.3.
Section 10.4 concludes this chapter with some remarks on this clinical research collab-
oration.

10.2 Extracting Movement Properties with SSA

The Eyefant recorder needs a calibration phase to correctly identify the horizontal and
vertical axis. This calibration relies on a sequence, where the recorded subject needs
to look at green dots moving on the screen. This is not possible with infants in early
childhood. The calibration is thus made a posteriori, using the movements of the eyes
doing saccades from a central cue to four to eight eccentric locations. Saccades are
provoked using a moving cartoon and this approach gives good results in practice.

To study the nystagmus, a detrending step is necessary to separate the wide eye move-
ments – provoked by the gaze movement – from the ones associated to the nystagmus.
The eyes are not looking in a fix position but scanning the visual field, with slow move-
ment, and reaching some precise target point with saccadic movement. These two types
of movement are produced without a specific structure and form the trend of the series.
The movements linked to the nystagmus are more structured, in the sense that they are
repeated and have a characteristic shape.

In this context, the usage of the Singular Spectrum Analysis (SSA) reliably removes
the trend and facilitates the characterization of the signal. This technique is efficient
to decompose signals composed of a trend and periodic components. We propose to
use it to determine the gaze movement as the trend of the series and substract it from
the signal to recover the nystagmus movement. As mentioned in Chapter 4, the quality
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Figure 10.2: (top) Oculographic signal and its estimated trend. (bottom) Detrended
signal. The SSA preserves the characteristic local patterns but discards the large vari-
ations. The result is visually satisfying, with minor overshoot, for instance on the large
saccade between 2.5s and 3s.

of the components is tied to the grouping strategy chosen. The experimental results
show that (GG3)-(HM) is a good method to estimate precisely the trend of the signals.
The critical parameter for this method is the window length W . If too small, all the
variations are included in the trend and if too big, the trend is not estimated correctly,
because it is spread on too many components. A good choice is W = 500, as it gives a
resolution high enough (around 0.5Hz) to correctly separate the trend and it is not too
large for the computation to be unmanageable but the trend is correctly estimated.

The signals for the nystagmus movement are then analyzed using traditional signal
processing tools. We estimate for each eye the main frequency of the movement using
the maximum of the correlogram. Then to compute the phase delay of the movements
of the eyes, we use the same principle based on the maximum of the cross-correlation
function between the two movement signals. We use this processing tools with sliding
windows selection of the signal in order to highlights the temporal variations of the
frequency and delays.

The results are presented using two visualizations. The first one uses heatmaps to
present the results relatively to the direction of the gaze. Figure 10.3 presents such
representations for four characteristics of the nystagmus. This representation highlights
the calm zone that the infant has in the right gaze. One possible treatment for the
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Figure 10.3: Spatial presentation of the nystagmus characteristics: (from top-left to
bottom-right) Amplitude, peak velocity, frequency and NAFX). These maps highlight a
calm zone for the nystagmus in the right gaze.

nystagmus is to perform a surgery to move the eye, such that this calm zone is located in
the central gaze of the patient. This heatmap could be used to help the ophthalmologist
decide of such interventions and then follow the evolution of the nystagmus in the
different gaze directions.

The second visualization, presented in Figure 10.4, presents the delay between the two
eyes as a function of time. This visualization is important as it indicates to the ophthal-
mologist the variation in the phase between the two eyes. On the signal presented, it
can be seen that the two eyes are moving with a phase shift of around 180 degrees most
of the time. But in some parts of the signal, the movements of both eyes are in-phase
again. This behavior is typical of a Spasmus Nutans and it can only be seen by study-
ing this quantity relatively to time. This type of visualization helps the practitioner
understand the characteristics of the eye movement.

10.3 Nystagmus Associated to Optic Pathway Gliomas

This section quickly describes the Optic pathway gliomas-associated nystagmus study
which can be found in Appendix C.

Nystagmus associated with optic pathway gliomas (OPG) are of crucial interest, both
from a clinical point of view –they are possibly the only type of nystagmus in infants to
lead to the diagnosis of a potentially lethal tumor– and from a theoretical perspective.
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Figure 10.4: (top) Delay between the eyes movement (bottom) Frequency of each eye.
The temporal representation shows that while the frequency is very stable, around 2Hz,
the delay between the eyes can vary. This is typical of the SN nystagmus.

However, the precise characteristics and mechanism of OPG-associated gliomas remain
unknown. Cases of nystagmus having led to a diagnosis of OPG seen in the pediatric
neuro-ophthalmology clinic of a tertiary referral hospital between 2009 and 2014 were
identified. Cases with reproducible nystagmus recordings available (video recordings
and/or infrared photoreflectometry using the Eyefant*, Ober consulting, Poland) were
included. Eleven cases were identified; eight were included. Age at nystagmus onset
was 2.5-10 months (mean=5.8, median=5.5, SD=2.4). The associated OPG always in-
volved the chiasm, always exhibited post-gadolinium enhancement –either peripheral or
global–; in seven cases the OPG was big (from 28x28x20 to 51x30x47mm); in two cases it
was metastatic. Clinically, the nystagmus was always classified as Spasmus Nutans (SN)
type (always pendular, medium or high-frequency, low-amplitude, possibly multidirec-
tional and possibly dissociated); it could never be mistaken for an Infantile Nystagmus
Syndrome (INS) or a Fusion Maldevelopment Nystagmus Syndrome (FMNS); it was
associated with head tilt and head oscillations in one case, with head tilt alone in two
cases and with head oscillations alone in two cases. Analyses from oculographic record-
ings showed frequencies of 2.7-5 Hz (mean=3.7 Hz, median=3.6, SD=0.8), sinusoidal
waveforms, dissociation and a special type of disconjugacy, both eyes oscillating with
a 180 degree horizontal phase shift and no vertical phase shift, therefore exhibiting a
“convection-like” movement pattern, close to the convergent-divergent pendular variety
of nystagmus. Rarely and for short periods of time, the phase shift could change. These
characteristics point towards oscillations in the vergence system, which could possibly
result from the specific disruption of the vergence centers afferences in the brainstem,
induced by the OPG during the sensitive period of visual development. This is the first
study to provide a systematic description of the specific type of nystagmus associated
with OPG. Its clinical and oculographic characteristics are unique among nystagmus in
infanthood and cast light on its still incompletely elucidated mechanisms.

10.4 Conclusion

The collaboration with medical doctors requires to develop comprehensive tools to ex-
plore the signals. As there is no ground truth for the results, they need to be validated
by an expert. The expert needs to be able to understand the limitations of the obtained
results, in order to give a feedback, which can subsequently be used to improve the tool.
The usage of the SSA to remove the gaze movement in the oculometric signals has been
discussed with the clinician in order to ensure we did not add any artefact to the signal
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which would hinder the following treatments. Also, comprehensive tools helped the
expert to understand the issues of signal processing. While discussing the re-calibration
issues for the signal, a change in the protocol was introduced in order to improve our
capacity to validate the results. The representations of the quantified properties in the
signal have been developed in order to link them to clinical observation. The heatmaps
highlight the calm zone of the subject’s nystagmus and the temporal presentation of
the delay is a critical information for the identification of Spasmus Nutans. For clinical
research, the goal is less to classify the data between categories than to combine the
right information in order to understand the signal characteristics. The development
of data driven signal representations for physiological signals is an exciting direction to
tackle this challenge.





Conclusion and Perspectives

The most exciting phrase to hear in
science, the one that heralds new
discoveries, is not ‘Eureka!’ but
‘That’s funny...’.”

— Isaac Asimov

Convolutional representations are data-driven tools which can be used to summarize
time series and to study their local structures. These methods emerge naturally when
trying to understand physiological signals which are often formed with repetitive pat-
terns such as the steps in human locomotion. The first part of this manuscript studies
computational aspects of these representations for time series. We showed that for
unitary dictionary, it is possible to compute such a representation using the Singular
Spectrum Analysis. The decomposition computed with SSA can be used to compute a
solution of a convolutional representation problem with dense activations and orthonor-
mal patterns. Since this solution is dense, an extra step is necessary to ensure a good
interpretability of the representation. We proposed a general framework to automat-
ize this step which is usually done manually and we presented novel metrics to group
the components with this step. Another way to improve the interpretability of this
representation is to use sparse activation signals. In this context, we proposed a novel
algorithm to solve the convolutional sparse coding. This algorithm runs in both distrib-
uted and sequential setting, and it accelerates the resolution of the optimization prob-
lem. We proved that this algorithm converges to the optimal solution of the considered
problem and that it has a super-linear speed up compared to the greedy coordinate
descent. This acceleration is sub-linear compared to the proposed sequential algorithm.
The theoretical results were confirmed with numerical experiments. These two works
described efficient algorithms to compute interpretable convolutional representations.

In the second part of this manuscript, we explored the link between deep learning models
and signal representations. We first proposed an extra training step, which relies on the
idea that the first layers of a network compute a representation of the dataset, to improve
the training strategy. This step can be used after the training of a network. The weights
of the first layers are fixed and we train the weights of the last layer for a small number
of iterations. This improves the way the internal representation – computed with the
first layers – is used to solve the considered task. This step is connected with results
from kernel methods and we showed that this extra step provides consistent performance
boost for multiple architectures. Then, we focus on recent works which presented certain
optimization algorithms as neural network (Gregor & Lecun, 2010). These studies show
that some common algorithms for sparse representation can be accelerated using trained
neural networks. We presented a theoretical analysis of this acceleration for Learned
ISTA (LISTA) networks and linked the acceleration to a quasi-diagonalization of the
Gram matrix of the dictionary in a sparse basis. We showed that using this basis, we
can derive an efficient algorithm, with same convergence rate than ISTA but potentially
better constant factors. This algorithm can be shown to be a re-parametrization of
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the LISTA network. Thus, LISTA is also able to accelerate the resolution when this
factorization exists. Moreover, we designed an adverse example where the factorization
was not possible and showed that LISTA also failed to accelerate the resolution on these
examples. We also highlight under which conditions the performance of our factorization
could be better than those of ISTA, in expectation over the generic dictionaries. With
this second part, we study the deep learning models as two parts models, where first
layers map the input to internal representations and the last layers compute a statistical
model. The post-training ensures that the task-driven representations computed by the
first layers are used optimally to solve the considered task. And the aim of the study of
LISTA is to highlight the properties of dictionaries for which it is possible to efficiently
compute sparse codes with neural networks. Combining these two ideas could help bring
more interpretability for deep models.

Finally, we illustrated in the third part some of the results obtained on physiological
signals. Robustly extracting the steps from a walk signal is a core block to automatize
walk quantification. The early experiments with sparse convolutional dictionary learn-
ing for walk signal show that this technique is able to highlight local patterns with an
unsupervised algorithm. The computed representation summarizes the signals in an
interpretable way: on one side, patterns that look similar to steps and on the other
side, activation signals which describe the regularity of the steps taken by the patient.
We also presented a novel algorithm to detect steps robustly in walk signals. This al-
gorithm is based on template matching with a step library and was evaluated on over
1000 walk signals, for both healthy and pathological subjects. The walk signal study
was used in a medical publication. For eye movement quantification, we developed
various tools to help the doctor study the nystagmus movement. We showed that the
SSA could be used to remove the trend component from the registered signals and
presented two representations which helped the ophthalmologist characterize the type
of movement which was recorded. These tools were used to write a communication
about the relationship between certain nystagmus and optical path-way gliomas. These
two illustrations showed that convolutional representations can be used to highlight
interpretable information in a signal.

These different works shed light on the properties of convolutional representations. This
model is able to extract local structure in signal with unsupervised methods. All the
presented results were produced using an `2-norm to compare the original signal with
the reconstruction. For some applications, it is not the best way to compare the signals,
for instance when the additive noise has some known structure. The recent work of
Jas et al. (2017) proposed a model using an alpha-stable noise model instead of the
Gaussian model, and showed that it was possible to solve it using an EM algorithm.
Developing efficient algorithms for other types of noise is an interesting direction for
future work. Another issue with the `2-norm is that all the channels of the original
signal have the same weight. When learning a dictionary for signals with heterogeneous
channels, parts of the signal are ignored. Finding the proper way to handle such signals
would broaden the possibilities of convolutional dictionary learning. Also, the length
of the extracted patterns is chosen manually, by selecting the shapes of the dictionary
elements. With the `2 norm, small changes in the pattern scales can lead to large
distances. Finding a way to extract scale invariant patterns would be useful for studies
of unconstrained recording of physiological signals. A possible solution would be to
introduce an extra parameter in the model to encode a scaling of the pattern used when
it is activated. Using coordinate descent, a greedy algorithm can be used to solve the
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resulting optimization problem in an efficient manner.
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A.1 Introduction

Pathologies affecting posture, balance, and gait control are threatening the autonomy
of patients not to mention the risk of fall and therefore require rehabilitation inter-
vention as early as possible. However, it remains difficult to accurately evaluate the
various specific interventions during the rehabilitation process and the optimal content
of exercise interventions they should involve. If only for these reasons, it would be in-
teresting to learn how to monitor motor sensorimotor behavior at large and locomotion
in particular which is a growing area in medical engineering science (Mariani, 2012;
Marschollek et al., 2008; Willemsen et al., 1990; Dijkstra et al., 2008; Han et al., 2006;
Ayachi et al., 2016; Williamson & Andrews, 2000). It requires several steps: first, we
wish to investigate how to monitor sensorimotor processing in behaving patients in the
doctor office and the resulting cognitive load it implies. Second, we want to learn how to
construct databases with the quantitative variables recorded in that process, in order to
make longitudinal studies of behaving individuals. Third, we would like to merge these
individual databases in large data banks to define statistical norms, which is mandatory
to detect dysfunctions or pathologies at the earliest stage possible. In that process we
meet at least three main problems: using pervasive or ubiquitous computing to collect
data; facing large inter-individual variability in the studied HMCs; aggregating highly
heterogeneous data to build the databank.

There exist many software applications on the market that use wearable sensors (namely
accelerometers, gyroscopes, magnetometers and/or GPS) to calculate the number of
steps made in a day (Tran et al., 2012; Naqvi et al., 2012), the traveled distance in a
day (Renaudin et al., 2012; Kim et al., 2004), the average speed, the daily amount of
time spent in walking, running, sitting, standing, laying (Oner et al., 2012; Brajdic &
Harle, 2013), useful for rehabilitation. Most of the algorithms published in this context
are either dedicated to one specific terminal or mobile phone, or they are copyrighted
and not freely available for research.

The main idea behind the algorithm presented in this paper is to automatically detect
the steps from inertial sensor signals thanks to a library of templates extracted from
real signals. It provides a novel, robust and precise step detection method which allows
the user not only to count the steps, but also to locate when they occurred, how long
they lasted, etc. These features can be useful either for personal or medical use. In
particular, the algorithm has been tested on a large database containing 1020 walk
exercises performed by healthy and pathological subjects at unconstrained speeds, which
confirms the robustness of the presented method.

This article is organized as follows: Section A.2 defines the task of step detection and
gives an overview of state-of-the-art methods. Section A.3 describes the data used for
training and testing, the method, and the evaluation metrics. Section A.4 presents the
results of our method, the influence of the parameters and compares the algorithm to
state-of-the art methods. Section A.5 provides a discussion on the robustness of the
method and several insights for the possible use of this algorithm in a clinical context.
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A.2 Background

A.2.1 What is a step ?

Locomotion is a hierarchical and complex phenomenon composed of different entities
such as strides, steps, and phases (Auvinet et al., 2002; Mariani, 2012).

• Considering one foot, the stride is the succession of two phases: the swing phase
(when the foot is in the air), and the stance phase (when the foot is in contact with
the ground). The stance phase occurs between the heel-strike (moment when the
foot hits the ground) and the toe-off (moment when the toes go off the ground),
while the swing phase occurs between the toe-off and the next heel-strike.

• A stride is defined as the event that occurs between two heel-strikes of the same
foot.

• A step is defined as the event that occurs between successive heel strikes of op-
posite feet. A stride is therefore composed of two steps: one for the right foot,
one for the left foot.

In the formal medical definition, a step is supposed to start when the heel strikes the
ground and to finish somewhere in the end of the stance phase. It is not related to the
foot activity since the foot is also moving in the swing phase. We choose in this article
another definition: a step is defined in the following as the whole period of activity of
a foot (when the foot is moving). The beginning of the step is defined as the heel-off
(moment when the heel leaves the floor) and end of the step is defined as the foot-flat
(moment when the foot is stabilized on the floor).This new definition allows to consider
the whole period of activity of a foot as a step, which makes it more adapted to step
detection. Note that it does not change the number of steps and that it is easy to
switch back to the medical definition once the heel-off and foot-flat instants have been
detected.

A.2.2 Existing methods

Current algorithms can be classified in two categories:

• Step counting algorithms: the aim is only to know the number of steps performed
by the subject

• Step detection algorithms: the aim is to locate when the step occurred, and
eventually to give specific timings (heel-strike, toe-off, etc.). These algorithms
can also be used for step counting.

Among step detection algorithms, two main approaches have been proposed: the use
of filtering/thresholding/peak detection techniques and the use of template matching.
The former aims to recognize one specific event, supposedly characteristic of the step
(such as a local maximum or the time when the signal exceeds a threshold). Most of
the time, these algorithms include a preprocessing step where the signal is filtered so
as to emphasize the event that they seek to detect or to remove other events. The
most well-known pre-processing stage was designed by Pan & Tompkins (1985) and is
composed of several signal processing blocks (bandpass filtering, derivation, squaring,
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etc.). Designed at first for ECG signals, this pre-precessing has been used in various
step detection methods (Ying et al., 2007; Libby, 2012; Marschollek et al., 2008; Thüer
& Verwimp, 2008). After this possible processing stage, the steps are detected with
empirical or dynamic thresholds, peak detection methods, of a combination of both
(Mladenov & Mock, 2009; Dijkstra et al., 2008; Fortune et al., 2012). Other methods
seek to detect each phase of the walking process by using dedicated signal processing
techniques (such as peak detection, zero-crossing, etc.) (Willemsen et al., 1990; Han
et al., 2006). Unfortunately, these methods heavily rely on the calibration of several
parameters (width of the bandpass filter, window length, thresholds, etc.) (Ying et al.,
2007; Libby, 2012; Marschollek et al., 2008; Thüer & Verwimp, 2008) which are difficult
to estimate and thus set according to empirical experience. Moreover, these methods
often assume some prior knowledge on the shape of a step (Willemsen et al., 1990; Han
et al., 2006), which significantly limits the detection of unconventional patterns found
with mobility-impaired patients.

For these reasons, we have decided in this article to focus on the second type of step
detection methods, based on template matching. The main intuition behind this is
that there are several types of steps (according to interpersonal variability, age, speed
and pathology). Therefore, it is irrelevant to try to detect steps with one specific
model (which is basically what is done with other methods since they only consider
one set of parameters, thresholds, detection criteria, etc.). In order to overcome this
issue, it is necessary to use a library of models (in our case a library of patterns)
which represent typical step cycles. Hopefully, the use of this library can improve the
robustness of the detection and paradoxically, prevent the overfitting induced by the
choice of many parameters. Note that while commonly used in several other fields,
this approach is novel in the context of step detection. We are aware of only one
article mentioning the use of templates for step detection. Ying et al. (2007) is using
one single template automatically extracted with filtering/thresholding/peak detection
methods (thus relying on many parameters) and not from raw data. Also, in their
paper, a different template is extracted for each subject, and only used for this particular
subject. The novelty of the algorithm presented in this paper is that it uses a limited
set of parameters whose influence is carefully studied and analysed. Also, our method
is tested on a large database, with healthy and pathological subjects, at various speeds
and in a rigorous cross-validation context.

A.3 Data, method and evaluation

A.3.1 Data Acquisition and First Observations

The data used for the conception and testing of the method presented in the article has
been provided by the following medical departments: Service de chirurgie orthopédique
et de traumatologie de l’Hôpital Européen Georges Pompidou, Assistance Publique
des Hôpitaux de Paris, Service de médecine physique et de réadaptation de l’Hôpital
Fernand Widal, Assistance Publique des Hôpitaux de Paris, Service de neurologie de
l’Hôpital d’Instruction des Armées du Val de Grâce, Service de Santé des Armées.
The study was validated by a local ethic comity (Comité de Protection des Personnes
Ile de France II, CPP 2014-10-04 RNI) and both patients and control subjects gave
their written consent to participate. All signals have been acquired at 100 Hz with
wireless XSens MTwTM sensors located at the right and left foot and fixed using a velcro
band designed by XSensTM. The signals obtained with both sensors were automatically
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Group Number
of exer-
cises

Number
of sub-
jects

Sex
(M/F)

Age
(yr)

Height
(cm)

Weight
(kg)

Healthy subjects 242 52 35/17 36.4
(20.6)

173.4
(10.8)

70.7
(12.2)

Orthopedic dis-
eases

243 53 26/27 60.1
(19.3)

169.2
(10.2)

77.4
(16.8)

Neurologic dis-
eases

535 125 80/45 61.6
(13.2)

169.8
(8.7)

72.7
(15.5)

Total 1020 230 141/89 55.5
(19.6)

170.5
(9.7)

73.4
(15.3)

Table A.1: subjects’ characteristics. For the age, height and weight, the mean and the
standard deviations are displayed.
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Figure A.1: (a) XSensTM sensor - (b,c) Vertical acceleration, Z-axis acceleration and
the Y-axis angular velocity recorded from the right foot. The vertical lines display the
different possibilities for start/end times.

synchronized by the acquisition software. All subjects were asked to:

• stand quiet for 6 seconds

• walk 10 meters at preferred walking speed on a level surface

• make a U turn

• walk back

• stand quiet 2 seconds

For practical reasons, patients kept their own shoes. The database is composed of
230 subjects who performed the protocol between 1 and 10 times, which leads to 1020
recordings. The subject’s characteristics are presented in Table A.1. Healthy subjects
had no known medical impairment. The orthopedic group is composed of 2 cohorts
of distinct pathologies: lower limb osteoarthrosis and cruciate ligament injury. The
neurologic group is composed of 4 cohorts: hemispheric stroke, Parkinson’s disease,
toxic peripheral neuropathy and radiation induced leukoencephalopathy.
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The protocol includes 2 sensors (left and right foot), and each of them records a 9-
dimensional signal (3D accelerations, 3D angular velocities, 3D magnetic fields), pos-
sibly with some recalibrated data provided by the XSensTM software (such as the vertical
acceleration in the direction of the gravity). Instead of considering all these dimensions,
we decided to only use a subset of them, and select the most relevant in the context
of step detection. This decision has been made based on observations of real data and
physiological reasons provided by doctors. We decided to only select the components
that are the most reflective of the locomotion process (see Figure 9.1a for the defini-
tion of the axis): the Z-axis acceleration, the recalibrated vertical acceleration (vertical
movements of the foot) and the Y-axis angular velocity (swing in the direction of the
walk). We expect these components to strongly react to the steps, making them iden-
tifiable.

Examples of these 3 components (Z-axis acceleration, vertical acceleration and Y-axis
angular velocity) recorded at the right foot are presented on walk/ Figure A.1b and
Figure A.1c for respectively an healthy and hip-injured patient. It appears on these
walk/ that the amplitudes of the signals are clearly different and it is likely that classical
threshold-based methods would hardly perform well on both subjects. However, the
structure and shape of the step is roughly the same for both subjects so it might be
relevant to use a template-base method. Nevertheless, these examples also display the
main difficulties in conceiving an automatic algorithm for step detection:

• The uncertainties in the definition of the starts and ends of the steps. Indeed, we
can see on Figure A.1b, that many choices would be acceptable: depending on
the considered definition, the results may be different.

• The variability of the step patterns according to the pathology, the age, the weight,
etc. For example, on Figure A.1c, the subject is dragging his feet, causing an
abrupt change in the step pattern (noisy part at the end of the step).

A.3.2 Description of the method

The principle of our step detection algorithm is to recognize the steps in the signals
thanks to a predefined set of templates. More precisely, our method uses a set of
templates P: these templates have been manually extracted from real accelerometer
data and checked by doctors and specialists of locomotion. Each template p ∈ P is
a three-dimensional signal of length |p| (vertical acceleration, Z-axis acceleration and
Y-axis angular velocity) corresponding to one step.

These templates are to be compared to the signal we want to study by calculating some
correlation coefficients. As the sequences we want to detect are variable in duration as
well as in amplitude, we want to use a measure of fit that is independent of the scale
but is able to identify the correspondences in shape. Also, we want the comparison
to be independent of the orientation of the sensor, so any DC component should be
removed. In this context, it seems natural to use the Pearson correlation coefficient,
which satisfies all these conditions, and defined for two one-dimensional vectors y and
z of length n as

ρy,z =
cov(y, z)

σyσz
=
E[(y − µy)(z − µz)]

σyσz
(A.1)

where (µy, µz), (σy, σz) are respectively the mean and standard deviation of y and z.
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Let x be a three-dimensional signal: we want to detect the steps by using the set of
templates P. Let us introduce the following notations:

• |P| is the number of three-dimensional templates

• |x| (resp. |p|) is the length of the three-dimensional vector x (resp. p)

• x(k) (resp. p(k)) is the kth component of x (resp. p). In our case we have k ∈{
1, 2, 3

}
• x(k)[t1 : t1] is the portion of x(k) between time samples t1 and t2 (we therefore

have x(k)[1 : |x|] = x(k))

The first step of the algorithm consists in calculating the Pearson correlation coeffi-
cients between the templates and the signal, for all possible time positions and all three
components:

∀k ∈
{

1, 2, 3
}
, ∀p ∈ P, ∀t ∈ J1, |x| − |p|+ 1K

r(k, p, t) = ρ
(
p(k), x(k)[t : t+ |p| − 1]

) (A.2)

r(k, p, t) is the correlation between the kth component of template p and the kth com-
ponent of the signal at time sample t.

The second step is a local maxima search among the r(k, p, t) coefficients in order to
extract the possible steps. r(k, p, t) is selected as a local maximum if it is greater than
its nearest temporal neighbors. We define the set L of possible steps as:

L =
{

(k, p, t) s.t. r(k, p, t) > r(k, p, t− 1)

and r(k, p, t) > r(k, p, t+ 1)
} (A.3)

The L contains all acceptable positions for the steps, and the coefficients r(k, p, t) with
(k, p, t) ∈ L can be interpreted as the likelihood of having a step similar to the pattern
p at time sample t.

Our step detection algorithm takes as input the set L and works as a greedy process. At
each iteration, the largest value r(k∗, p∗, t∗) with (k∗, p∗, t∗) ∈ L is selected: if the step
p∗ positioned at time sample t∗ overlaps with a previously detected step, it is discarded
and we switch to the next largest value. Otherwise, if step p∗ can be positioned at time
t∗, the step is detected and all time samples between t∗ and t∗ + |p∗| − 1 are forbidden
for the next iterations. The process is stopped when all time samples are forbidden,
when the set of possible steps L is empty, or when all values r(k, p, t) with (k, p, t) ∈ L
are lower than a threshold λ. Note that in practice, the main purpose of threshold λ is
to speed up the algorithm, as it reduces the size of set L. The algorithm is summarized
on Algorithm A.1.

A last post-processing step can be performed so as to discard the steps detected when
the patient was actually not moving. These false detections occur when a fit is found
with one template, even though the signal is almost equal to zero after DC component
removal: this is in fact due to the invariance in scale provided by the Pearson correlation
coefficients. A solution can be found by processing the final list of detected steps, and
removing the steps whose standard deviation is way lower than the one of the template
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Algorithm A.1 Step Detection Algorithm
1: Input: Set of possible steps L
2: Output: Set of start times Tstart, set of end times Tend
3: Set of forbidden time positions F = ∅;
4: Tstart = ∅, Tend = ∅
5: while F 6=

{
1, . . . , |x|

}
or L 6= ∅ or maxL > λ do

6: (k∗, p∗, t∗) = argmax
(k,p,t)∈L

r(k, p, t);

7: if
{
t∗, . . . , t∗ + |p∗| − 1

}
/∈ F then

8: t∗ → Tstart;
t∗ + |p∗| − 1→ Tend;{
t∗, . . . , t∗ + |p∗| − 1

}
→ F ;

L = L\(k∗, p∗, t∗);
9: end if

10: end while

that was used for the detection. Formally, this step involves a threshold µ: given a
detected step with start and end times tstart and tend, detected thanks to the pattern
p(k), the step is to be discarded if

σx(k)[tstart:tend] < µ σp(k) (A.4)

where σ. stands for the empirical standard deviation operator.

A.3.3 Evaluation

All steps were manually annotated by specialists using a software allowing to point with
the mouse the starts (foot-flat) and the ends (heel-off) of the foot flat periods during
which the sensor is not moving. The annotations were performed thanks to the Z-axis
acceleration (normal to the upper foot surface) which is the most sensitive direction
to detect the movements of the foot with respect to the floor. For the tricky cases of
pathological gaits, a first gross annotation was made and then refined by zooming on
each step. The uncertainty of this annotation is evaluated to less than 0.2 s (20 samples)
for each mouse click. In total, the database is composed of 40453 steps (20233 extracted
on the right foot and 20220 on the left foot). Even though they had a distinct shape,
the U-turn steps were also taken into account.

The following precision/recall metrics are used for the evaluation of our method based
on the annotations provided by the specialists.

Precision. A detected step is counted as correct if the mean of its start and end times
lies inside an annotated step. An annotated step can only be detected one time. If
several detected steps correspond to the same annotated step, all but one are considered
as false. The precision is the number of correctly detected steps divided by the total
number of detected steps.

Recall. An annotated step is counted as detected if the mean of its start and end times
lies inside a detected step. A detected step can only be used to detect one annotated
step. If several annotated steps are detected with the same detected step, all but one
are considered undetected. The recall is the number of detected annotated step divided
by the total number of annotated steps.
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A.4 Results

A.4.1 Influence of the Parameters
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Figure A.2: Influence of the parameters (on 100 simulations). By default, |P| = 10,
λ = 0.8 and µ = 0.15. Boxes correspond to quartiles and median, whiskers to 5 and 95
percentiles. Outliers are represented as +

The algorithm depends on 3 numerical parameters:

• The size of the pattern library |P|

• The stopping criterion λ

• The threshold for discarding periods of no activity µ

Note that the algorithm is also influenced by the choice of the templates composing the
library P: this will be studied in the next section.

In order to study the scope of influence of these 3 parameters, a cross validation process
is used:

• |P| three-dimensional step patterns are randomly chosen, so as to form the pattern
library P

• In order to avoid overfitting, all exercises performed by subjects that are used in
the pattern library are then discarded from the test database.

• For each exercise of the test database, the step detection is performed with the
|P| templates, and the detected steps are compared to the annotations

For each simulation, the mean and standard deviation of the precision/recall scores
on the test database are calculated, as described in Subsection A.3.3. This process is
performed 100 times.

The parameters are studied with the following grid search:

• |P| : [5, 10, 15, 20, 25]
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• λ : [0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9]

• µ : [0.05, 0.1, 0.15, 0.2, 0.25, 0.3]

In total, 210 different configurations are considered.

The configuration giving the best average results on 100 simulations is using |P| = 10
templates, λ = 0.8 and µ = 0.15, with an average recall of 96.59% (std: 4.91) and
an average precision of 97.03% (std: 3.69). Note that these values correspond to the
average on 100 simulations with randomly chosen templates: they do not reflect the
optimal performances of the algorithm.

We propose to use this configuration as a reference and study the influence of the
parameters from this grid node. Figure A.2 presents the influence of the parameters on
the precision and recall: on each figure, two of the parameters are fixed while the last
one varies. The plots displays as boxplots the results obtained on the 100 simulations
corresponding to the considered configuration.

On Figure A.2a, it is visible that adding more templates to the library tends to increase
the recall, but it has a negative effect on the precision. This is probably due to the
cross-validation process used for testing. Since the templates are randomly chosen,
it is unknown if they belong to healthy or pathological subjects, to forward walking
or U-turn, etc. Therefore, when |P| increases, it also increases the probability that
a pathological step is used for detection. This is one of the predictable effect of this
experiment: if a step within the library is unadapted for the task, it causes false detection
and thus lowers the performances. However, this does not mean that adding appropriate
steps in the library would degrade the performances: this problem will be investigated
in the next section (as well as the questionable notion of appropriate steps). When
|P| = 5, the limits of the algorithm are reached: due to the small number of templates,
the method crucially depends on the choice of the templates used for detection, thus
causing a large number of outliers. The best compromise between precision and recall is
obtained for |P| = 10, but this might only be due to the cross-validation setting: rather
than an optimal number of templates to be used, it is likely that the composition of the
library is more crucial to the performances of the algorithm.

The plot on Figure A.2b is coherent with the definition of the parameter: when λ
increases, only steps that are very correlated to the templates are selected: this increases
the precision, but decreases the recall. On the contrary, when λ decreases, all possible
steps are considered: the recall increases and the precision decreases. These results also
confirm the utility of parameter λ: by increasing λ to an appropriate value (around
0.6-0.8), it is possible to increase the precision (and the robustness of the precision)
while keeping the recall constant. Also, λ has an impact on the computational cost: for
example, using λ = 0.8 instead of λ = 0 allows to compute the results approximately 2
times faster. It is therefore interesting to use the largest value of λ as possible. The best
average performances are obtained for λ = 0.8, which constitutes a good compromise
between recall and precision: indeed, with λ = 0.85 some annotated steps are discarded
and the recall drops.

Figure A.2c shows that parameter µ mainly influences the recall. Indeed, when µ is
too large, all steps whose amplitude are too different from those of the templates are
discarded. This has a double effect: if one of the templates corresponds to a pathological
patient whose steps have small amplitude, then it will not be able to detect steps on
healthy patients. The opposite situation can also occur. In fact, when µ increases, the
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normalization effect provided by the Pearson correlation coefficient (A.1) is neutralized.
Figure A.2c shows that µ should be no greater than 0.2 so that the recall does not drop.

A.4.2 Influence of the composition of the library

The performances of the algorithm are intuitively dependent of the library of templates
used for detection. As previously seen, when inappropriate steps are added to the lib-
rary, the performances may drop. What would happen if the library of templates is
composed only of healthy steps, but is to be used on patients with degraded walking
abilities ? In order to correctly detect steps for a patient having e.g. an orthoped-
ics disease, is it necessary to have patients with similar pathologies in the library of
templates ?

To investigate this question, we propose to define two classes of subjects within the
database: class A is typically composed of subjects who have no problem for walking,
and class B is composed of subjects with severe pathologies that critically affect their
locomotion. The idea is to study the cross-performances of the method on these two
classes. The definition of these classes are non-trivial since the database contains gait
recordings of patients cared for lower limb osteoarthritis, anterior cruciate ligament
injury, hemispheric stroke, Parkinson’s disease and neuropathy. In each nosologic class,
patients were quoted by the medical doctors of our group with clinical scales specific
to each pathology (WOMAC index : lower limb osteoarthritis ; Tegner Lysholm Knee
Scoring Scale : anterior cruciate ligament injury ; Lower Limb Fugel Meyer scale :
stroke ; UPDRS III : Parkinsons Disease ; TNSc : neuropathy). To allow the between
pathology comparison, a transversal walking score (between 0 and 4) was assigned to
each patient by the medical doctors of our group. Subjects with no problem for walking
were graded 0, while other were graded from 1 to 4 (4 being the most severe degradation
of locomotion). To have an idea, lower limb osteoarthritis patients with high functional
manifestation walking troubles (use of cane, unable to climb stairs) were graded 4.
Class A is defined as subjects with a locomotion grade of 0 (no problem) and Class B
as subjects with locomotion grade of 3 or 4. In total 116 subjects are isolated from the
database: 72 subjects in Class A (322 exercises, 4877 left steps, 4846 right steps), and
35 subjects in Class B (111 exercises, 3554 left steps, 3567 right steps).

In each simulation, the library is composed of templates belonging to only one class,
and the test is performed on exercises belonging to only one class. All simulations are
run with the default parameters |P| = 10, λ = 0.8 and µ = 0.15 (that gave the best
average performances on 100 simulations in the grid search). Table A.2 presents the
results (recall/precision) averaged on 100 simulations. A first observation is that Class
A and Class B templates give similar (and good) performances on Class A subjects.
This confirms the intuitive idea that it is easier to detect steps for healthy subjects.
However, Class B templates used on Class B subjects do not perform so well: it might
be due to the definition of the class which involves several types of pathologies. In fact,
these severe pathologies might affect the steps shapes in a different way, so even though
some pathological templates are used for detection, they might not correspond to the
particular pathology of the test subject. To increase the scores, two strategies can be
implemented: either introduce all types of degradations within the library, or add several
healthy (or less pathological) steps which could smooth the results by introducing less
specific examples. Interestingly, the results obtained on Class B subjects with random
templates and with the exact same parameters (see Subsection A.4.1) are better than
those obtained by using only Class B templates. This tends to show that in order to
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Test data
Class A Class B

Template data
Class A R : 97.64 (1.17) R : 89.74 (3.82)

P : 97.45 (4.46) P : 95.75 (5.09)

Class B R : 97.80 (1.32) R : 93.25 (4.17)
P : 97.28 (2.17) P : 93.13 (5.76)

Table A.2: Influence of the composition of the library of templates in the step detection
(|P| = 10, λ = 0.8 and µ = 0.15). Average recall and precision on 100 simulations
(with standard deviation). Class A: subjects who have no problem for walking. Class
B: subjects with severe pathologies that critically affect their locomotion.

Best simulation Pan-Tomkins One template
Group Recall Precision Recall Precision Recall Precision
Healthy
subjects

98.93 (2.22) 98.98 (2.43) 99.14 (1.71) 97.09 (3.60) 99.03 (2.06) 99.33 (1.76)

Orthopedic
diseases

97.54 (2.92) 98.77 (2.12) 98.78 (2.09) 94.87 (5.09) 97.37 (3.06) 98.85 (2.23)

Neurological
diseases

98.55 (3.05) 98.05 (3.02) 96.80 (3.52) 95.49 (4.55) 98.11 (3.31) 98.58 (2.55)

Total 98.40 (2.89) 98.44 (2.72) 97.82 (3.07) 95.72 (4.56) 98.15 (3.05) 98.82 (2.33)

Table A.3: Detailed performances of the best step detection method (|P| = 5, λ = 0.75
and µ = 0.1), the best Pan-Tomkins method, and the best step detection method with
one template (|P| = 1, λ = 0.6 and µ = 0.15). Means and standard deviations are
displayed.

detect steps on severe pathological subjects, it is necessary to use a library composed
of both healthy (or slightly pathological) and pathological steps.

As far as cross-class detection is concerned, it seems that using only Class A templates
for detecting Class B steps is not appropriate : the recall drops while the precision
decreases. It is likely that these results are due to the amplitudes of the steps that
greatly vary between healthy and pathological subjects. Due to parameter µ, steps
with low amplitude are hardly detectable with high amplitude templates (and vice-
versa). Also, the durations of the steps might be inappropriate for detection, since
pathological steps are in general longer than healthy steps.

To summarize, two trends can be identified: as far as healthy subjects are concerned,
the choice of templates is not crucial for the detection. But if the algorithm is to be
used on pathological subjects, it appears that the best compromise would be to use a
combination of healthy and pathological templates.

A.4.3 Detailed results for the best simulation

The best simulation on the whole grid search (21000 simulations) described in Subsec-
tion A.4.1 is using parameters |P| = 5, λ = 0.75 and µ = 0.1, with 98.40% recall and
98.44% precision. In this section, we propose a detailed study of this method. Note that
this particular method should only be seen as a good association (templates + λ + µ)
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(a) Best step detection method
(|P| = 5, λ = 0.75 and µ = 0.1)
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(b) Best step detection method with
one template (|P| = 1, λ = 0.6 and

µ = 0.15)

Figure A.3: Differences between detected and annotated times (start, end and dura-
tion) for the best step detection method and the best step detection method with one
template. Boxes correspond to quartiles and median, whiskers to 5 and 95 percentiles.
Outliers are represented as +.

performing well, and does not constitute a golden standard (similar scores are obtained
on several other simulations).

The detailed performances of this method on the whole database is presented on Table A.3:
it is noticeable that scores are consistent on all groups of subjects. The best perform-
ances are obtained for healthy subjects, but there is no significant differences between
the groups. This clearly shows that the method adapts well to different types of patho-
logies.

Out of the 40344 detected steps, 85% of them were detected with the Y-axis angular
velocity, 2% with the vertical acceleration and 13% with Z-axis acceleration. This
proportion can be due to the nature of the signals: medio-lateral angular velocity is
actually known to be the direction in which there is the greatest quantity of movement
during walking. This signal is often used in step detection (Salarian et al., 2004; Ben
Mansour et al., 2015), and it is likely that this component captures a locomotion pattern
that is the most reproducible among the subjects.

The good performances of this method are intuitively linked to the templates composing
the library. It is remarkable that this method only requires a small number of templates,
which tends to show that the algorithm do not need a large library to perform accurately.
It probably rather needs a carefully selected set of templates, that are generic enough to
fit the general shape of a step, but can also adapt to pathological steps. For instance, this
library of 5 templates is composed as follows: 1 step belonging to an healthy subject,
3 steps corresponding to neurological diseases (2 with moderate troubles and 1 with
severe troubles), and 1 step associated to orthopedic diseases (with moderate troubles).
This covers all groups of subjects and the proportion of each group in the library is
similar to the one of database. In particular, the neurological group is composed of
many different diseases and it is likely that several patterns are necessary to accurately
fit the whole range of step shapes.

In order to further investigate the accuracy of the method, some additional evaluation
metrics are computed. For all correctly detected steps, we compute:

• the difference between the detected start time and the annotated start time

• the difference between the detected end time and the annotated end time
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• the difference between the duration of the detected step and the duration of the
annotated step

The repartition of these metrics on all 39677 correctly detected steps are presented on
Figure A.3a. One interesting result is that our method does not introduce a bias: the
median of the differences for all times (start, end, duration) is approximately equal
to zero, and the quartiles are symmetric. This tend to prove that the library is able
to accurately detect the step boundaries and to adapt to various step durations. For
90% of the steps (represented as whiskers on the figure), the errors for start, end and
duration times are lower than 0.25 seconds (in absolute value), which corresponds to 25
samples. These results are satisfactory when compared to the annotations uncertainties
of experts and specialists (which are around 20 samples - see Subsection A.3.3). Outliers
are in fact due to two specificities of the database: tiny steps (under 50 samples) mainly
located during U-turn (causing underestimation for start times and overestimation of
end and duration times), and highly pathological steps for stroke subjects whose dur-
ation exceeds one second (causing upper outliers for start times and lower outliers on
end and duration times). The method tested here is using five templates of durations
65, 76, 82, 86 and 105 samples and the detection is inevitably constrained by these step
durations. While this phenomenon does not penalize the results on most steps, it is
one limit of the algorithm especially with small libraries. Should these outliers become
more frequent, one possible solution is to increase the number of templates and to add
typical steps corresponding to these outliers within the library.

A.4.4 Comparison with the state-of-the-art

The reference procedure for step counting/detection is based on the Pan-Tomkins method
(Pan & Tompkins, 1985). First intended for ECGs, it was later adapted to detect steps
in the vertical accelerometer signal (Ying et al., 2007; Libby, 2012; Marschollek et al.,
2008; Thüer & Verwimp, 2008). It is composed of several successive signal processing
steps, which are designed to emphasize the structure of the step, making it easier to
detect. These steps can be summarized as:

• Bandpass filtering (between fmin andfmax): removes the gravity component and
the noise.

• Derivation: amplifies the slope changes in the filtered signal. Whenever the foot
rises from the ground or the heel hits the ground, the acceleration slope changes
significantly and it translates into a burst in the filtered signal.

• Squaring: makes all points positive and enhances the large values of the filtered
signal.

• Integration: the signal is smoothed using a moving-window integrator of length
Ninte.

• Peak search procedure: originally, Pan & Tompkins (1985) used a threshold to
find the phenomena they were looking for in the heart rate signal (every time the
filtered signal was above the threshold, it was considered as detected). When they
adapted the algorithm to the step detection problem, Ying et al. (2007) relied on
the fact that the filtered signal showed great regularity: a small peak was always
followed by a bigger one (respectively matching the foot lift and the heel strike).
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The time span of the second peak was defined as the peak-searching interval on
the real acceleration signal. The maximum on that interval was considered a step.

Note that this step detection procedure only allows to detect steps but not to precisely
know the start and end times of the step. Also, this method is not designed to perform
properly during periods of no activity. We therefore added a post-processing step, which,
once a step is detected, compares the standard deviation of a neighborhood around the
detected peak to a noise level. The size of the neighborhood, as well as the noise level,
are optimized by grid search so as to give the best performances.

In Ying et al. (2007), the parameters used are fmin = 0 Hz, fmax = 20 Hz, Ninte = 0.1 s.
The peak search procedure is performed sequentially: they select one peak every other
peak, starting with the second one. With these parameters, we obtain of our database
a recall of 99.53% and a precision of 51.20%. In fact, the peak-search procedure is
not adapted and tend to detect several peaks within a step except of only one. This
phenomenon has already been described by Libby (2012) and Thüer & Verwimp (2008).

In order to objectively compare our method to the Pan-Tomkins, we therefore tested
several values for fmin, fmax andNinte, as well as a more relevant peak-search procedure,
which only selects the local maxima among the detected peaks, thus preventing multiple
detections. In total, 5 parameters need to be optimized by grid search (filter bandpass
× 2, integration window, neighborhood size and noise level). When optimized on the
whole database so as to maximize the F-measure, the algorithm gives a 97.82% recall
and a 95.72% precision. Detailed results are presented on Table A.3 : while these scores
are comparable with our method on healthy subjects, it is noticeable that Pan-Tomkins
method has difficulty to deal with neurological and orthopedics subjects. In particular,
on these subjects, an overdetection occurs, thus decreasing the precision. One possible
explanation is that signals associated to pathological subjects tend to have smaller
amplitudes and to be noisier that those belonging to healthy subjects. Thus, if the
parameters of the filtering are inadapted, the preprocessing tends to increase the level
of noise and to create artefacts that as misdetected as steps. This may be one limit
of step detection methods based on signal processing: if the signals to be studied have
different properties (noise, frequential content, amplitudes), it is tricky to find one
unique processing adapted to all signals. This problem is overcome in template-based
methods which inherently consider several models.

A.5 Discussion and perspectives

The main idea behind the algorithm is that there is not one typical step but rather
several typical steps. This assumption is confirmed by the results obtained with state-
of-the-art methods, which inherently define only one model and obtain degraded per-
formances when confronted to pathological data. To go further, it is interesting to
degrade the algorithm with only one template and look at the consequences on the res-
ults. A second grid search is conducted with the same parameters as in Subsection A.4.1,
but considering libraries composed of one unique template.

The best results are displayed on Table A.3. The metrics used in Subsection A.4.3 are
also evaluated for this simulation and presented on Figure A.3b. Surprisingly, the pre-
cision and recall are comparable with those obtained with five templates. The template
used for detection in this method belongs to an orthopaedic subject with moderate
troubles and lasts 82 samples (which is close to the median step duration on the data-
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base which is equal to 77 samples). It seems that the task of step counting can be
performed with only one template. However, it can be seen on Figure A.3b that us-
ing only one template creates a bias and a systematic error on the estimation of end
and duration times. Due to the large duration of the template used for detection, an
overestimation of the duration often occurs.

We believe this simulation shows that the use of a single template is adapted for step
counting on most subjects. The use of templates appears to give better performances
than thresholding methods for step detection. However, if additional information are
desired (such as the start and end times of the steps), it is crucial to take into account
the variability of the subjects and of their locomotion, which can be done by adding
several templates that reflect the different step durations and shapes.

Intuitively, the composition of the library is a fundamental feature of the algorithm.
The choice of the templates to be used is an interesting question that can be answered
in many different ways. In a medical context, templates can for example be introduced
according to the characteristics and pathologies of the subjects to be studied: a neur-
ologist may benefit from a library of templates composed of a selection of different
neurological pathologies. They can also be specified by experts such as biomechanists
who can extract typical steps covering the whole range of types of locomotion. Unsu-
pervised machine learning techniques (such as dictionary learning) can also be used to
automatically extract typical steps that are found on several exercises. It is also relev-
ant to test semi-supervised techniques that could automatically choose the best library
according to the input signal. All these leads are to be studied soon in collaboration
with medical doctors and experts, and on more pathologies.

A.6 Conclusion

We have described in this article a template-based method for step detection. This
method, based on a greedy algorithm and a library of annotated step templates, achieves
good and robust performances even with a small number of templates. When used on
a large database composed of healthy and pathological subjects walking at different
speeds, the method obtains a 98% recall and 98% precision. Moreover, the algorithm
allows to detect the start and end times of each step with a very good precision even
on pathological subjects.

Thanks to its robustness and low computational cost, this method could be extended
to process signals acquired in free-living conditions. Indeed, the actual protocol is
composed of a no activity period and a U-turn, and there is no obstacles for testing the
algorithm on unconstrained walking. The algorithm may also be adapted to a lighter
protocol using only waist accelerometer signals and based on the same principle.

Another topic of interest is the choice of the templates to be used in the library (as
presented in Section A.5). Several selection processes could be implemented in order to
automatically adapt to any type of pathology and to optimize the performances of the
algorithm.
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C.1 Introduction

While acquired nystagmus can be the sign of a brain tumour, this is almost never the
case for early-onset nystagmus. “Early-onset” nystagmus were previously designated as
“congenital”, but this term has been abandoned, as they appear usually between 4 and
12 weeks of life, and by convention before 6 months of age. Optic pathways glioma
(OPG)-associated nystagmus can be misleading in many ways: it is considered an “ac-
quired” form of nystagmus, but it can appear so early that the age of onset might not
be discriminant (Toledano et al., 2015). It is often described as a spasmus-nutans-type
nystagmus, and can also disappear secondarily –like idiopathic spasmus-nutans–, while
the tumour actually remains stable (Brodsky & Keating, 2014). These rare nystagmus
are the source of multiple challenges. Clinically, if misdiagnosed as infantile nystag-
mus syndrome (INS), the underlying OPG diagnostic may be delayed; although far less
frequent than INS or other varieties of nystagmus, they have led some clinicians to sys-
tematically prescribe brain imaging to any infant presenting with a nystagmus, while
this may not be necessary in the great majority of cases. More generally, the patho-
physiology of disconjugate and dissociated nystagmus resulting from an optic pathway
anomaly is so far unexplained. There is to date no series describing systematically the
clinical and oculographic characteristics of OPG-associated nystagmus and the literat-
ure remains poor and contradictory on that topic. The Classification of Eye Movement
Abnormalities and Strabismus (CEMAS) does not even mention them (Group, 2001).

Spasmus-nutans-type nystagmus definitions are numerous and are a source of confu-
sion. Historically, Raudnitz reported in 1897 a triad of nystagmus, head turn and head
oscillations occurring in infants living in a dark quarter of Prague (Raudnitz, 1897).
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This nystagmus was reported to appear between 6 and 12 months of age, to always
disappear after a few months or years of evolution and to represent a benign entity.
Since 1967, however, many cases, most often isolated case reports, have stressed on the
possible association with suprasellar tumours, mainly OPG (Donin, 1967; Farmer &
Hoyt, 1984; Kelly, 1970; Lavery et al., 1984). Since then, the term spasmus-nutans has
been either designating the clinical syndrome whatever its cause, or the specific, benign
entity. The CEMAS chose the latter and proposed criteria for spasmus-nutans syn-
drome: “Infantile onset, variable conjugacy, small frequency, low amplitude oscillation,
abnormal head posture and head oscillation, improves (“disappears”) during childhood,
normal MRI/CT scan of visual pathways. Ocular motility recordings –high frequency
(>10 Hz), asymmetric, variable conjugacy, pendular oscillations”, with common asso-
ciated findings: “Disconjugate, asymmetric, multiplanar, family history of strabismus,
may be greater in one (abducting) eye, constant, head posture/oscillation (horizontal or
vertical), usually no associated sensory system deficits, may have associated strabismus
and amblyopia, may increase with convergence, head bobbing, head posture may be
compensatory” (Group, 2001). Very few studies including oculomotor recordings have
addressed the matter. Weissman et al. (1987) studied seven patients with spasmus-
nutans and showed that in all cases, both eyes exhibited phase differences, most often
of 180 degree, which varied over time. This was ascertained by the authors as being the
hallmark of spasmus-nutans. Formal eye movements recordings are here most helpful, as
the high frequency and the low amplitude often preclude any such observation through
the naked eye. Arnoldi & Tychsen (1995) reviewed 67 consecutive children diagnosed
with spasmus-nutans among whom none had evidence of a glioma. On the other hand,
Toledano et al. (2015) found monocular nystagmus at diagnosis in 41% of 22 children
with measurable OPG. The authors are not aware of any study about OPG-associated
nystagmus including formal oculomotor recordings.

Infantile nystagmus syndrome may be observed in infants with low vision resulting from
anterior visual pathway dysfunction. It usually then secondarily evolves to a vision loss
nystagmus, which is a jerk, conjugate nystagmus with horizontal, vertical and torsional
components, often of large amplitude (Group, 2001). Visual loss nystagmus is present
in old children with OPG with the worst functional evolution, but both INS and vis-
ion loss nystagmus seem distinct from most descriptions of OPG-associated nystagmus.
Monocular visual loss due to optic nerve involvement can be associated either with a
slow, pendular, purely vertical nystagmus, often referred to as Heimann-Bielschowsky
phenomenon, or sometimes with a low amplitude horizontal nystagmus (Good et al.,
1993). This would be consistent with some cases of reported OPG-associated nystag-
mus, although it has been suggested that in the case of monocular OPG-associated
nystagmus, the eye with the nystagmus could be the one with the best vision (Farmer
& Hoyt, 1984). Lesions at the optic chiasm and parasellar lesions can also rarely be
associated with pendular seesaw nystagmus. Seesaw nystagmus has been attributed
either to the effects of an associated midbrain compression –which can be seen in some
cases of OPG– or to the effects of the resulting temporal visual loss, inactivating the
calibration mechanism for eye movements normally compensating for head rotations
in roll (Leigh & Zee, 2015). Again, OPG-associated nystagmus descriptions are not
compatible with seesaw nystagmus.

In that context, many questions related to important clinical issues remain unsolved.
Are OPG-associated nystagmus always of spasmus-nutans-type? Can they sometimes fit
thecriteria of INS? Do they ever exhibit the complete triad of spasmus-nutans, including
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head oscillations, or, as suggested by some authors (Hertle & Dell’Osso, 2013), does the
presence of associated head-oscillations associated with a spasmus-nutans-type nystag-
mus preclude it being associated with a tumour? Do OPG associated with a nystagmus
at diagnosis have specific characteristics? What is the mechanism of OPG-associated
nystagmus?

C.2 Material and methods

The way patients were selected is summarised in Figure C.2. Children (0-18 year-old)
having presented with optic pathway gliomas at the paediatric neuro-ophthalmology
clinic in Hôpital Universitaire Necker-Enfants malades between October 2009 and Oc-
tober 2014 (so as to allow for a follow-up of at least one year, until October 2015)
were prospectively recorded in the database for rare diseases CEMARA. Those having
been revealed by a nystagmus were identified. Children having been referred to the
clinic over the same period of time for a nystagmus, which onset had been before two
years of age, were similarly registered. Nystagmus that had appeared secondarily, as
a consequence of an already known diagnosis, were not included. Nystagmus clinically
classified as spasmus-nutans-type were identified, as well as nystagmus having led to the
diagnosis of a brain tumour. Spasmus-nutans-type nystagmus was defined as pendular,
medium or high-frequency, low-amplitude, often multidirectional, with a dissociation
between the movements of the right vs the left eye. Cases of children presenting with a
nystagmus with a later onset were not included, since these cases are not all seen in the
paediatric neuro-ophthalmology clinic, nor therefore systematically registered in data-
bases. Only the children who also benefitted from reproducible nystagmus recordings at
diagnosis (video recording and/or infrared photoreflectometry with the Eyefant*, Ober
consulting, Poland, an eyetracker specifically designed for young children and allowing
for binocular recording at 1000 Hz) were included.

All had benefited from systematic ophthalmological examination, initially and during
follow- up. All children diagnosed with OPG were followed-up by an interdisciplin-
ary team comprising paediatric oncologists, neurosurgeons, paediatric endocrinologists,
pathologists and ophthalmologists. Decisions were taken during neuro-oncology staff
meetings. In the absence of clinical diagnostic criteria for neurofibromatosis type 1,
the children benefitted from initial biopsy and histology, except for cases of intrinsic
limited forms in young infants after consensual discussion. All children benefitted from
hormonal check-up, both at initial evaluation and during follow-up. Visual evoked po-
tentials (VEP) were performed in five cases, in order to better quantify the infants’
visual function. Reversal of pattern, ON-OFF and flash VEP were performed with the
48-cm-diagonal screen at a 100 cm distance from the child, using the LED stimulator
Vision Monitor MonPack by Metrovision system (Pérenchies, France) according to the
International Society for Clinical Electrophysiology of Vision (ISCEV) protocol with
five tinned, copper-cup occipital active electrodes (Odom et al., 2010).

The clinical and oculographic characteristics of the nystagmus; the clinical, imaging
and histological characteristics of the OPG, were studied. The treatments’ modalities
and the visual outcomes were studied. When the Eyefant* was used, the nystagmus
was recorded in the primary position of gaze, under binocular, right and left monocular
viewing conditions; for movements requiring stimuli, a 19” screen was used with stimuli
especially designed for infants. The infant was placed on his parent lap, 50cm from
the screen. Calibration was made a posteriori, using the movements of the eyes doing



246
APPENDIX C. OPTIC PATHWAY GLIOMAS-ASSOCIATED

NYSTAGMUS

saccades from a central cue to four to eight eccentric locations. Before analysing the
characteristics of the signals, singular spectrum analysis (SSA) was used, in order to
isolate the nystagmus waveforms from other eye movements (Golyandina et al., 2001).
This method allows for an adaptive extraction of the trend of a signal. In analysing
all the sub-series of the original signal for a given scale, common behaviours can be
found. The trend component was then considered to be the component explaining the
most the global variation of the signal (Figure C.1). One drawback of this method is
that the trend can be scattered on several different computed components. In order
to automatize the trend extraction step, a grouping step is needed. For the robustness
of the trend extraction, the grouping step used a k-means algorithm to regroup similar
components (Moreau et al., 2015b). The signals for the nystagmus movement were then
analysed using traditional signal processing tools. For each eye, the main frequency
of the movement was estimated, using the maximum of the correlogram. The same
principle was used to compute the phase delay of the movements of the eyes, based on
the maximum of the cross correlation function between the two movement signals.

C.3 Results

The patients were selected in three ways (Figure C.2). First, over the studied period
of time, 43 children presented at the neuro-ophthalmology clinic with an OPG and
were consequently followed up. Out of these, 11 children were diagnosed through a
nystagmus. Second, over the same period of time, 181 infants were referred to the
neuro-ophthalmology clinic for a nystagmus that had appeared before the age of two
years. Thirty-seven of them were clinically classified as spasmus nutans-type and did not
exhibit obvious signs of retinal dysfunction or dystrophy on the first evaluation –these
including a family history of retinal dystrophy or stationary retinal dysfunction, obvious
photophobia, oculo-digital sign, or abnormal fundus in favour of a retinal dystrophy.
They all benefited from a brain imaging. In ten cases an OPG was diagnosed. Third,
the same ten cases were also found when selecting the association “nystagmus with
onset before two years” and “brain tumour”. The difference between the three ways
to identify these patients (11 with the first way vs 10 with the second and third way)
can be explained by the fact that one of the children from the OPG group exhibited
nystagmus at the age of three. This correspondence between these ways of identifying
the patients also means that in all cases, nystagmus having led to the diagnosis of a
cerebral tumour had been clinically classified as spasmus nutans-type (never as infantile
nystagmus syndrome (INS) or fusion maldevelopment nystagmus syndrome (FMNS);
Group 2001), and that in all cases the cerebral tumour was an OPG. In three cases,
no interpretable recording was available –one of these three cases was also the one who
exhibited a nystagmus at the age of three.

Eight children were therefore included. The characteristics of their nystagmus and
tumours are summarised in Table C.1 to C.4. Age at nystagmus onset was 2.5-10
months (mean=5.8, median=5.5, SD=2.4). Delay between nystagmus onset and glioma
diagnosis was 0-13 months (mean=1.9, median=0.5, SD=4.5). In three cases, initial
clinical examination showed early signs of Russel diencephalic syndrome –associating
variable degrees of weight loss, emaciation, hydrocephalus and euphoria– in association
with the nystagmus. In two cases, frank optic atrophy was clinically obvious; in one
case a papilledema was noticed; in five cases, however, the fundus was considered either
strictly normal or possibly within normal limits. Although no clear crossed asymetry
pattern was ever detected, it was not possible to get reproducible enough VEP to allow
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for robust description and analysis of VEP topography. In one case, the classic triad of
spasmus nutans syndrome was complete, with head tilt and head oscillations associated
to the specific nystagmus; in two cases, the nystagmus was associated with head oscilla-
tions alone; in two other cases, with head tilt alone. In all cases, the nystagmus consisted
in medium to high frequency (2.7-5 Hz, mean=3.7 Hz, median=3.6, SD=0.8), low amp-
litude, multidirectional, disconjugated (i.e. not in phase) and dissociated (i.e. not of
the same amplitude) movements of the eyes. There was no difference in the waveforms
between binocular and monocular viewing conditions or according to the gaze direction.
The dissociation was clinically obvious to the human eye in the cases with the lowest
frequency and/or in cases where the nystagmus was very asymetrical, at least at some
stage of the evolution (four cases), to the point of being apparently unilateral, also only
at some stage (two cases). In two cases, the dissociation was unsuspectable clinically,
even on videos watched at real speed by oculomotor experts (MR, OZ and PPV). In
all cases, however, disconjugacy was obvious on recordings, with most of the time a
180 degrees interocular phase difference between the horizontal components of the two
eyes, which horizontally beat out of phase, while the vertical components beat in phase,
resulting in a characteristic “convection-like” oscillatory movement of the eyes, with a
frank dissociation between the two eyes, highly variable over time (Figure C.1). In four
cases, phase variations were observed over the length of the recordings, occurring at ir-
regular intervals and usually lasting for less than a second to a few seconds, without any
apparent trigger. Whenever identifiable, the waveforms were always truly sinusoidal. In
six cases, the nystagmus resolved between age 6.5 and age 24 months. In two cases, the
nystagmus was still present, though rarely, at age 3 and 5 years. Concerning case six,
after an initial period of three months, the nystagmus disappeared for a month, while
visual function and general health decreased, before reappearing with visual function
improvement.

In all cases but one, the tumour volume was big (>28x28x20mm, up to 51x30x47mm),
always involving the chiasm (Table C.2 and Figure C.3). In six cases, post-gadolinium
enhancement was seen in the tumour periphery, while in the centre, the anatomical
shape of a thickened chiasm could be seen, without enhancement; in three cases among
these six, the global tumour shape respected the form of the chiasm, leading to a four-
leaf clover appearance. In two cases, there was global enhancement of the tumour and
the chiasm was undistinguishable within the tumour. In two cases, histology was not
available. In five out of six cases, the tumours were pilocytic astrocytomas, while in the
sixth case it consisted in a pilo-mixoid astrocytoma grade II.

In all cases, a chemotherapy was initiated, according to the SIOP-LGG 2004 pro-
tocol (EU trial-20555) comparing classical induction with vincristine-carboplatine for
10 weeks with reinforced induction with vincristine-carboplatine-etoposide for 10 weeks,
followed in allcases by vincristine and carboplatine for a total treatment duration of
18 months. In selected cases a debulking surgery was also realised, initially in three
cases and secondarily in one case. Visual outcome was highly variable and could not
be correlated with either the delay between nystagmus onset and OPG diagnostic, the
characteristics of the tumour or the treatments administered: in two cases bilateral pro-
found visual impairment was noticed over the two months following diagnosis, in three
cases, profound visual impairment developed in one eye, while the fellow eye exhibited
moderate to no visual impairment; in three cases, only little to moderate symmetrical
visual impairment was noticed at last examination.
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Children
Age at 

nystagmus 
onset (months)

Age at glioma 
diagnosis 
(months)

Associated 
general signs at 

diagnosis
Visual function Optic discs at 

fundoscopy

VEP
(+ made,

- not made)

1 5.5 5.5
Head oscillations 

long before 
nystagmus onset

Normal
(Teller cards) Normal +

2 2.5 3 Head tilt
Collier sign

Normal 
behaviour

Doubtful 
minimal optic 

atrophy
-

3 10 23 - Normal 
behaviour

Bilateral severe 
optic atrophy +

4 4 4.5

Head oscillations,
Head tilt,
Minimal 

hydrocephalus,
Collier sign,
Corticotrope 

deficiency

Intermittent 
fixation Papilledema +

5 4 4
Hydrocephalus

Bilateral VI nerve 
paresis

Normal
(Teller cards)

Bilateral severe 
optic atrophy +

6 7.5 8

Weight loss,
Bulging fontanel, 

Corticotrope 
deficiency

Normal
(Teller cards)

Doubtful 
minimal optic 

atrophy
+

7 7 8 Head tilt

Normal 
behaviour

Teller cards: 
inferior to age 

norms

Normal -

8 5.5 5.5

Weight loss,
Head oscillations 

before 
nystagmus onset,
Hydrocephalus,

Collier sign,
Panhypopituitaris

m

Normal 
behaviour

Doubtful 
minimal optic 

atrophy
-

Table C.1: Clinical characteristics at diagnosis

Children Location Gadolinium 
enhancement

Tumour size at 
diagnosis

transverse x 
antero-post x 

sagittal (volume)

Metastasis Cyst Histologic 
type

BRAF
V600e

KIAA1549-
BRAF

1
Optic nerves, 
chiasm, optic 

tract
+Peripheral

Largest diameter 
of the optic nerve 

= 10mm
- - - - -

2

Optic nerves, 
chiasm, optic 
tract with infra-

tentorial 
infiltration

+Peripheral
51x40x37 mm

supra and infra 
tent

+ + Pilocytic 
astrocytoma 0 WT

3
Optic nerves, 
chiasm, optic 

tract
+Peripheral 33x30x21 mm

(10.4 ml) - - Pilocytic 
astrocytoma NF NF

4
Optic nerves, 
chiasm, optic 

tract
+Peripheral 28x28x24 mm - - Pilocytic 

astrocytoma NF NF

5 Optic nerves, 
chiasm +Peripheral 36x29x26 mm - + frontal (big) - - -

6
Optic nerves, 
chiasm, optic 

tract
+Global, uniform

42x38x36 mm 
and cyst 60x35 

mm
- + Pilocytic 

astrocytoma - -

7 Chiasm, optic 
tract +Peripheral 45x30mm + bulb,

T1 and T6 + Pilocytic 
astrocytoma -

Biopsy 
made on 

metastasis

8
Optic nerves, 
chiasm, optic 

tract
+ Global, uniform 51x34x44 mm - + (small)

Pilo-myxoid 
astrocytoma 

Grade II
- -

Table C.2: Imaging and histologic characteristics
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Children Treatments: first 
line

Treatments: 
second line

Treatments: third 
line and following

Visual outcome
(age at last examination)

1
SIOP LGG 2004
Stable then MRI 

progression
Velbe 1/week - OD: >0,2 R2; OS: severe amblyopia

(4 y-o)

2 SIOP LGG 2004 VCR CPM/VCR 
Cisplatine

Debulking,
Cystic derivation,

Vinblastine,
Avastin- 
Irinotecan

Profound visual impairment within the two months 
following diagnosis; NLP; 

severe bilateral optic atrophy
(2 y-o)

3 SIOP LGG 2004 - - 1.1/10 R12 // 1.5/10 R3
(5 y-o)

4 SIOP LGG 2004 TPCV -

Profound visual impairment within the two months 
following diagnosis; NLP; major photophobia; severe 

bilateral optic atrophy
(2.5 y-o)

5 Debulking
SIOP LGG 2004 - - > 1.6/10 R1/3 // 1.6/10 R1/3

(4 y-o)

6 Debulking
SIOP LGG 2004 - -

Profound visual impairment OD within the two months 
following diagnosis; 

OD: NLP; OG: normal behaviour (> R10)
(2.5 y-o)

7
SIOP LGG 2004 

(1 year only, 
parents decision)

Re-evolution age 
2.5; no treatment; 

spontaneous 
regression

-
Moderate visual impairment in both eyes,

no amblyopia
(4 y-o)

8
Debulking

SIOP LGG 2004 
(10 weeks)

TPCV

TPCV -
Light perception OD / Follows small targets OS; 

photophobia; severe bilateral optic atrophy, OD>OS
(2 y-o)

Table C.3: Treatments characteristics and visual outcome (TPCV : Thioguanine, Proc-
arbazine, CCNU or Lomustine, Vincristine NLP : no light perception)

Children

Nystagmus 
mean 

frequency 
(Hz)

Multi-
directional

EOM/
Phase difference/

Phase shift
Laterality

Age at 
nystagmus 
resolution

Oculomotor 
anomalies after 

initial 
nystagmus 
resolution

1 3 + -/+/+
Bilateral, initially 

RE>LE
then LE>RE

Still present age 
3 years -

2 5 + -/+/? ODS then 
OD>OS 7 months

Stability, then 
searching 

nystagmus and 
III nerve paresis 

with Xt

3 3.6 + + NOC monoc Nl
/+/+

Right eye alone 
first, then 

bilateral RE>LE

Still rarely 
present age 5 

years
-

4 3.6 +
pseudo-R

+ NOC bof mais 
voit-il le stim ?/+/+

OD>OG sur EOM 
180° OP 6.5 months

Stability, then 
searching 

nystagmus and 
Xt

5 4.5 + + Ininterpretable
+/? - 24 months -

6 3 + + NOC binoc Nl/+/? RE>LE 18 months Et
7 4 + -/+/? - 15 months -

8 2.7 +
pseudo-R -/+/+ initially RE

then RE>LE 12 months
Variable Xt

Crossed fixation 
with LE

Table C.4: Nystagmus characteristics (Xt: exotropia; Et: esotropia)
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C.4 Discussion

We describe here a series of patients diagnosed with OPG through nystagmus. All
of them were between 2.5 and 10-month-old when the nystagmus was first noted.
In all cases, the nystagmus characteristics were similar: multidirectional, medium to
high frequency, low amplitude, highly variable over time, disconjugate and dissociated.
Such nystagmus could not clinically be confused with an INS or a FMNS. Both eyes
were rarely oscillating with independent frequency; most of the time they exhibited a
“convection-like” oscillatory movement, with a 180 degrees horizontal phase shift and
no vertical phase shift. In all cases, the OPG were Dodge grade 2 or 3, centred by the
chiasm, with always peripheral or global gadolinium enhancement, which constitutes a
specific subpopulation of OPG. Two cases out of eight were metastatic, which is also
unusual. Eleven cases of tumours were diagnosed among the 37 cases of nystagmus
clinically classified as spasmus nutans-type. All were OPG. By contrast, no case of
brain tumour was diagnosed within the 143 children with other types of early-onset
nystagmus. The high incidence of spasmus nutans (and hence of tumours) in this series
likely reflects the selection bias of a tertiary referral paediatric hospital.

This study also allows for three practical considerations regarding nystagmus and OPG.
First, age cannot be discriminant in differentiating secondary nystagmus, since in at
least one case the nystagmus was present before 12 weeks of age, and in at least five cases,
the nystagmus was present before six months of age –and could therefore be considered
“early onset”. Not only can a nystagmus present before 12 months be associated with
an OPG, but such early onset is the rule for these nystagmus. Second, the presence of
associated head oscillations is not specific of idiopathic spasmus nutans-type nystagmus
–unlike what was recently suggested (Hertle & Dell’Osso, 2013)–, since it was noticed
in three cases in this series. Third, in all cases but one, visual behaviour was normal
at onset, and in the majority of cases (five out eight patients), despite the large volume
of the glioma, the fundus was initially considered within normal limits. Therefore,
considering that in all cases treatment was indicated from diagnosis, and considering
the relative rarity of such nystagmus as opposed to INS and FMNS, the controversy as
to whether imaging should be performed in cases of spasmus nutans-type nystagmus
even if the visual function and the fundus are considered normal (Arnoldi & Tychsen,
1995; Lee, 1996; Newman et al., 1990) can be solved: we recommend urgent imaging to
be also performed in all cases of spasmus nutans-type nystagmus, unless signs of retinal
dystrophy or dysfunction are present.

Farmer & Hoyt (1984) reported that in asymmetrical OPG-associated nystagmus, the
most oscillating eye was not necessarily the one with the lowest vision. A quick ana-
lysis of the present series would reach similar conclusions, as case one, who eventually
developed severe amblyopia in the left eye, first exhibited an asymmetrical nystagmus
with larger amplitude in the right eye. However, at that stage the vision was evaluated
as being normal, while when a frank left amblyopia developed, the nystagmus asym-
metry switched, with a larger nystagmus amplitude in the left eye. In the two other
cases where unilateral amblyopia developed, the nystagmus also predominated in the
amblyopic eye.

How can the peculiar nystagmus associated with these eight cases of OPG be described
and classified? In all cases, the nystagmus characteristics fitted the usual definition of
spasmus nutans-type nystagmus: pendular, medium (3-4 Hz) or high frequency (5Hz),
low amplitude, multidirectional, with a dissociation between both eyes’ movements.
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Here we do not consider the frequency limit criterion proposed by the CEMAS (Group,
2001), which almost never fits with cases of published spasmus nutans cases –in Weiss-
man study, no case had a frequency >10Hz (Weissman et al., 1987); in Gottlob study,
only two cases out of ten had a frequency >10Hz (Gottlob et al., 1995). Although the
frequencies observed here are in the high range of nystagmus frequencies observed in
INS at similar ages –and in the low range of spasmus nutans-type nystagmus– they
are clearly not discriminant. However, the absence of any jerk component in lateral
gaze –the nystagmus always consisting of pendular oscillations whatever the position of
gaze–, allows to easily rule out clinically the hypothesis of both an INS or an FMNS.
So do the often predominant vertical component and also the dissociation of both eye
movements, which was clinically obvious in three cases with medium frequency: one
unilateral, one very asymetrical –both observed during initial examination–, plus one
case where the nystagmus was reported to have been initially unilateral. In other cases,
the high frequency and low amplitude characteristics of the nystagmus precluded any
clinical analysis of the interocular phase relationship. Hence, based on clinical char-
acteristics alone, the nystagmus was always classified within the category of spasmus
nutans-type nystagmus. Notwithstanding the debate around what “spasmus nutans”
should designate –the idiopathic form of a given syndrome, or the syndrome itself
whatever its cause–, the definition of spasmus nutans-type nystagmus itself is chal-
lenging: for most authors, it is a clinical diagnostic as defined above, while for others,
what defines spasmus nutans is the interocular phase difference (that is, the dissociation
between the right and the left eye oscillations) and the variability of this difference over
time (Weissman et al., 1987), which most often requires one or several formal oculo-
motor recordings. An interocular phase difference was assessed in all cases reported
here, most of the time a 180 degrees phase shift; in four cases a variability of this phase
difference over time could also be assessed. It is likely that with repeated oculomotor
recordings, similar phase shifts would have been found in the four cases where they
were not identified. Based on these results, no difference therefore allowed to distin-
guish between OPG gliomas and spasmus nutans-type nystagmus, even when applying
recording-based definitions. The “convection” pattern of the OPG-associated nystagmus
does not only fit with the characteristics of spasmus nutans-type nystagmus; it has also
been reported in “convergent-divergent acquired pendular nystagmus”, which has been
described in a few adult patients (Averbuch-Heller et al., 1995; Galvez-Ruiz et al., 2011;
Gresty et al., 1982; Mossman et al., 1990; Schwartz et al., 1986; Sharpe et al., 1975;
Yang et al., 2006). What mechanism can give rise to such a nystagmus? Although in
the present series, when an amblyopia was present, the amblyopic eye exhibited larger
nystagmus amplitudes, the hypothesis of low vision as the cause for the nystagmus is
unlikely: in all cases but one, there was still no sign of low vision at nystagmus onset
and in many cases even for months after onset. Instead, here the nystagmus preceded
the variable visual loss, while vision-loss nystagmus follows severe vision loss after a
variable delay. Additionally, such pattern has not been described in other instances
of vision loss nystagmus: early monocular vision loss can give rise to binocular, jerk
nystagmus beating away from the amblyopic eye, which characteristics are similar to
a hemi-FMNS (Kushnner, 1995) – the syndrome of monocular infantile blindness with
bilateral nystagmus–, but also, more rarely, to monocular, pendular, high-frequency and
low-amplitude, horizontal, monocular nystagmus (Good et al., 1993); late monocular
vision loss can give rise to monocular, low-frequency and low-amplitude, vertical, mon-
ocular nystagmus – the so-called Heimann-Bielschowsky phenomenon– (Smith et al.,
1982); binocular vision loss can lead to continuous jerk nystagmus, with horizontal,
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vertical and torsional components – also called “searching nystagmus” – but also, more
rarely, to medium-frequency and medium-amplitude, horizontal, binocular, symmetrical
nystagmus (Good et al., 1997), or even more rarely, to seesaw nystagmus, mainly but
not always, in the case of lesions at the optic chiasm (May & Truxal, 1997). None of
these four categories of nystagmus could be mistaken for the nystagmus described here.

Another hypothesis would rely on the early crossing alterations induced by a chiasmal
lesion. According to a recent hypothesis, disruption in the negative feedback function
of the physiological optokinetic nystagmus system with inversion of the retinal slip,
might be the cause of several varieties of early onset nystagmus (Huang et al., 2011). In
almost all cases, such disruption results from constitutional misrouting of the ganglion
cells, such as in oculo- cutaneous albinism or achiasma. The OPG from the present
series represent the most early set of OPG, with an acquired, early disturbance of the
normal repartition between crossing and uncrossing ganglion cells at the level of the
chiasm. Like chiasmatic compression, chiasmatic infiltration –be it tumoural or inflam-
matory– can cause bitemporal hemianopia, by affecting more selectively the crossed
axonal fibres. The most consistent hypothesis for this susceptibility of the nasal fibres
to compression is based on structural collapse theories as applied to crossing vs non-
crossing fibers (McIlwaine et al., 2005). The nystagmus associated with OPG could be
a model of acquired, early disruption of the optokinetic system, interfering with the
calibration of the visual system during the sensitive period of visual development. Such
imperfectly calibrated oculomotor system could precisely produce a pendular nystag-
mus –one achiasmatic zebrafish belladonna mutant was shown to exhibit a pendular-
waveform nystagmus (Huang et al., 2011). However, this hypothesis is unlikely for two
reasons. First, we failed to show any consistent crossed asymmetry in the five children
we recorded with VEPs. This, however, may be due to a lack of robustness in the tech-
nique used, since the stimuli were displayed on a small screen, while bigger ones allows
for better reproducibility in VEPs in the infant age set (Thompson & Liasis, 2012).
Second, this hypothesis does not account for the 180 degree phase difference between
both eyes horizontal components: both practically and theoretically, such a failure in
the calibration of the oculomotor system would give rise to conjugated nystagmus.

As synthesised by Averbuch-Heller et al. (1995), the two theoretical possibilities to give
rise to the pattern of a “convergent-divergent acquired pendular nystagmus” are either
a dysfunction in the normal yoking mechanisms of the version system with a 180 degree
phase shift – as also proposed by some authors as an explanation for spasmus nutans
(Weissman et al., 1987)–, or oscillations in the vergence system (Schwartz et al., 1986;
Sharpe et al., 1975). Here, the OPG-associated nystagmus is also dissociated, which
also points towards vergence movements. Although variations in the phase interactions
between the two eyes were recorded, those were always brief (often lasting for less than
a second), compared to the large majority of the recordings where the horizontal phase
shift was 180 degree. The strict conjugacy of the vertical component also makes the
first possibility unlikely. The response of the vergence system is traditionally believed
to be slow. Most reported cases of convergent-divergent acquired pendular nystagmus
had low velocities and frequencies (around 1Hz) and therefore fitted with this possib-
ility (Schwartz et al., 1986; Sharpe et al., 1975). Experiments have shown, however,
that the slow vergence system could oscillate at frequencies up to 2.5 Hz (Hung et al.,
1986), while in two cases from Averbuch-Heller et al. (1995), the nystagmus frequency
was as high as 6 Hz. The slow vergence system is a negative feedback system and may
oscillate either through an increase in gain or delay within the system internal feedback
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loops, or through external oscillation imposing upon the system (Averbuch-Heller et al.,
1995). The high frequencies recorded in most of our patients suggest either patholo-
gical changes increasing the gain or decreasing the delay within this system, or external
oscillations. While most pathological lesions –such as decrease in the myeline conduc-
tion speed– would increase the delay, a loss of inhibitory connections could increase it.
However, such oscillations would then be electively provoked when the vergence system
is operating, that is during near vision, which is not what was observed in our patients,
unless one postulates that the lack of maturity of the vergence system at a young age
could account for such frequent instability and result in a highly-variable-in-time pat-
tern of oscillations. The other possibility would imply an external, linear, neuronal
oscillator –for instance within the cerebellum– projecting to the slow vergence system
(Averbuch-Heller et al., 1995). Another hypothesis would implicate the recently studied
fast vergence system, which is responsible for the fast vergence movements occurring
during rapid eye movement sleep (Cullen & Van Horn, 2011; Escudero & Vidal, 1996);
however, its neural bases are still a matter of debate; these mouvements are disconjug-
ate, which could possibly account for the observed variations in the phase shift over
time.

How can oscillations in the vergence system result from the presence of an OPG? Within
the slow vergence system, chiasmal gliomas strongly affect all the visual afferences of the
nucleus reticularis tegmenti pontis (NRTP), through the superior colliculi and through
the frontal eye fields (Figure C.4). The NRTP projects to the fastigial nucleus, the
dentate nucleus and the nucleus of the raphe interpositus (RIP). These are reciprocate,
mainly inhibitory connections. The RIP is a central element within the vergence system,
with efferences to the medial recti via the supra-oculomotor area. Instability in the
feedback loops between the NRTP and its cerebellar efferences, mainly the RIP, could
lead to sinusoidal oscillations in the vergence system. This was experimentally shown
in monkeys with selective lesions of the NRTP, who exhibited convergent-divergent
oscillations (Gamlin & Mitchell, 1993). Furthermore, it was showed that the RIP could
produce theta oscillations under experimental conditions in rabbits (Hoffmann & Berry,
2009). The frequency of theta oscillations in infants is known to range from 3.6 to 5.6
Hz, which is also close to the frequencies of OPG- associated nystagmus (Orekhova
et al., 2006). The next question is: if this specific oscillation pattern results from such a
common process, why would it only be noticed in infants with early chiasmal gliomas? A
theoretically possible mechanism to consider –either in isolation or in conjunction with
the one following– could be the contribution of some metabolic changes occurring in
these children through pituitary compression and possibly acting on membrane proteins
at the level of the previously discussed brainstem or cerebellar nuclei involved in the
control of vergence, although no such common change can be identified. Anatomic
considerations, however, suffice in providing a plausible pathophysiological mechanism:
early chiasmal gliomas actually represent a unique pathological situation, where an early
tumour grows and alters the visual pathways at the very age of a critical period of visual
development, between three and nine months of age; hence probably the homogenous
time of onset of this nystagmus. Earlier or later, similar processes do not give rise to
the same nystagmus. Early chiasmal gliomas are one of the very few conditions –if not
the only one– and hence the model of a process, which progressively and partly affects
vision at the beginning of the critical period of visual development. The understanding
of its clinical expressions is therefore of considerable interest for visual neuroscience and
should benefit from ongoing larger studies in the field.
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C.5 Figures

A B

C D

E F

G H

Figure C.1: Oculographic characteristics of typical optic pathway glioma-associated
nystagmus. (A) Raw signal of the horizontal component of the nystagmus recorded
with the Eyefant*: right eye in green, left eye in blue. (B) Extraction of the signal
trend (in red), using singular spectrum analysis. (C) Horizontal nystagmus signal.
(D) Smoothened horizontal nystagmus signal using a second order butterworth lowpass
filter with cutting frequency 35Hz; both eyes are oscillating in the horizontal plane
with a 180degree phase difference. (E) Smoothened vertical nystagmus signal; both
eyes are oscillating in phase in the vertical plane. (F) Raw signal of both horizontal
and vertical components of the nystagmus superimposed during the five considered
seconds; the nystagmus direction appears to be mainly oblique. (G) Phase shift of the
horizontal component of the nystagmus. (H) Schematic representation of the nystagmus
represented as the position of both eyes in the coronal plane: the movement of both
eyes can be compared with the convection movement of water molecules, going up and
towards the center, then down and away from the center; right eye amplitude is larger
than left eye amplitudes.
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Figure C.2: Schematic representation of the patients’ inclusion process

Figure C.3: Gadolinium-enhanced T1 axial imaging of the optic pathway gliomas. (A)
Patient 1. (B) Patient 2. (C) Patient 3. (D) Patient 4. (E) Patient 5. (F) Patient 6.
(G) Patient 7. (H) Patient 8.
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Figure C.4: Schematic representation of the disruption in the vergence system circuitry
possibly leading to the specific OPG-associated nystagmus. Afferences to the nucleus
reticularis tegmenti pontis (NRTP) are affected by big chiasmal gliomas at the age of
the sensitive period of visual development; this can result in instability in the feedback
loop between the NRTP and its cerebellar efferences and lead to sinusoidal oscillations
in the vergence system.
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Titre : Représentations Convolutives Parcimonieuses – application aux signaux physiologiques et
interprétabilité de l’apprentissage profond

Mots Clefs : Codage parcimonieux, Apprentissage de dictionnaire convolutif, Signaux Physiologiques,
Optimisation adaptive, Apprentissage Profond.

Résumé : Les représentations convolutives
extraient des motifs récurrents qui aident à com-
prendre la structure locale dans un jeu de signaux.
Elles sont adaptées pour l’analyse des signaux phy-
siologiques, qui nécessite des visualisations met-
tant en avant les informations pertinentes. Ces re-
présentations sont aussi liées aux modèles d’ap-
prentissage profond. Dans ce manuscrit, nous dé-
crivons des avancées algorithmiques et théoriques
autour de ces modèles.
Notre contribution principale dans la première
partie est un algorithme asynchrone pour accé-
lérer le codage parcimonieux convolutif, nommé
DICOD. Notre algorithme présente une accéléra-
tion super-linéaire. Nous explorons aussi la rela-
tion entre l’Analyse du Spectre Singulier et les re-
présentations convolutives, comme une étape d’ini-
tialisation de ces dernières.

Dans une seconde partie, nous analysons les liens
entre représentations et réseaux de neurones. Le
résultat principal est une étude des mécanismes
qui rendent possible l’accélération du codage parci-
monieux avec des réseaux de neurones. Nous mon-
trons que cela est lié à une factorisation de la ma-
trice de Gram du dictionnaire. D’autres aspects
des représentations dans les réseaux neuronaux
sont aussi étudiés à travers une étape d’appren-
tissage supplémentaire, appelée post-entraînement,
qui améliore les performances du réseau entraîné.
Finalement, nous illustrons l’intérêt de l’utilisa-
tion des représentations convolutives pour les si-
gnaux physiologiques. L’apprentissage de diction-
naire convolutif est utilisé pour résumer des si-
gnaux de marche et le mouvement du regard est
soustrait de signaux oculométriques avec l’Analyse
du Spectre Singulier.

Title : Convolutional Sparse Representations – application to physiological signals and interpretabil-
ity for Deep Learning
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Abstract : Convolutional representations ex-
tract recurrent patterns which lead to the discov-
ery of local structures in a set of signals. They are
well suited to analyze physiological signals which
requires interpretable representations in order to
understand the relevant information. Moreover,
these representations can be linked to deep learn-
ing models, as a way to bring interpretability in
their internal representations. In this disserta-
tion, we describe recent advances on both compu-
tational and theoretical aspects of these models.
Our main contribution in the first part is an
asynchronous algorithm, called DICOD, based on
greedy coordinate descent, to solve convolutional
sparse coding for long signals. Our algorithm has
super-linear acceleration. We also explored the re-
lationship of Singular Spectrum Analysis with con-
volutional representations, as an initialization step

for convolutional dictionary learning.
In a second part, we focus on the link between
representations and neural networks. Our main
result is a study of the mechanisms which acceler-
ate sparse coding algorithms with neural networks.
We show that it is linked to a factorization of the
Gram matrix of the dictionary. Other aspects of
representations in neural networks are also invest-
igated with an extra training step for deep learn-
ing, called post-training, to boost the perform-
ances of trained networks by improving their last
layer’s weights.
Finally, we illustrate the relevance of convolutional
representations for physiological signals. Convolu-
tional dictionary learning is used to summarize sig-
nals from human walking and Singular Spectrum
Analysis is used to remove the gaze movement in
young infant’s oculometric recordings.
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