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Dictionary Learning Olshausen and Field 1997, Vision Research

Dictionary learning learns a
set of atoms (patterns) to
sparsely reconstruct a signal,

Goal:
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» Signal exploration.

Patches learned with natural images
in Olshausen and Field 1997.




Convolutional Dictionary Learning

[Grosse et al

. 2007, UAI]
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Convolutional Dictionary Learning learns a set of shift-invariant atoms to

sparsely reconstruct a signal,

» Improve sparsity

» Not all patches

are encoded

» Sharper atoms
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Application fields
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[Oudre et al. 2018, Sensors|

» Detecting steps in human walk recordings to predict elderly falls.
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Application fields
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[Dupré la Tour et al. 2018, NeurlPS]

» Detecting steps in human walk recordings to predict elderly falls.
» Exploring neurological signals from ECG and MEG,
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Application fields

Eye positions

3
Time [s]

[Robert et al. 2016, preprint]

» Detecting steps in human walk recordings to predict elderly falls.
» Exploring neurological signals from ECG and MEG,
» Classifying pathological eye movements form oculomotor signals.
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Application fields

[del Aguila Pla et al. 2018, IEEE TSP; Yellin et al. 2017, ISBI]

» Detecting steps in human walk recordings to predict elderly falls.
» Exploring neurological signals from ECG and MEG,

» Classifying pathological eye movements form oculomotor signals.
» Counting cells in biological images.
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Application fields

[del Aguila Pla et al. 2018, ICASSP;
Beckouche et al. 2013, Astronomy & Astrophysics]

» Detecting steps in human walk recordings to predict elderly falls.

» Exploring neurological signals from ECG and MEG,

» Classifying pathological eye movements form oculomotor signals.

» Counting cells in biological images.

» Counting stars and galaxies in telescope images
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Challenges of Convolutional Dictionary Learning

» Computational: how to scale with large signals,
» by exploiting the structure of the dictionary.

» by parallellization.

» Modelization: how to incorporate prior knowledge,
» on the activations.

» on the patterns.

» Evaluation: how to evaluate the quality of the learned patterns.

» Theoretical: pattern recovery.
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Challenges of Convolutional Dictionary Learning

» Computational: how to scale with large signals,

» by exploiting the structure of the dictionary.
[Moreau and Bruna 2017, ICLR]
» by parallellization.
[Moreau et al. 2018, ICML; Moreau and Gramfort 2019, preprint]

» Modelization: how to incorporate prior knowledge,
» on the activations.

» on the patterns.
[Dupré la Tour et al. 2018, NeurlPS]

» Evaluation: how to evaluate the quality of the learned patterns.

» Theoretical: pattern recovery.
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Convolutional Dictionary Learning

Adaptive Sparse Coding

Scaling up Convolutional Sparse Coding with
coordinate descent and distributed optimization

Rank-1 Constrained Convolutional Dictionary Learning
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Convolutional Dictionary Learning

References

» Grosse, R., Raina, R., Kwong, H., and Ng, A. Y. (2007). Shift-Invariant
Sparse Coding for Audio Classification. Cortex, 8:9
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Extracting shift invariant patterns

Key idea: decouple the localization of the patterns and their shape

7 U IS
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Extracting shift invariant patterns

Key idea: decouple the localization of the patterns and their shape

2 \/\/\ | PL/\/N/\
7 VT

K
Convolutional [t] = Z*[t] +elt]
k=1

Representation:
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Extracting shift invariant patterns

Key idea: decouple the localization of the patterns and their shape
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Convolutional
Dictionary Learning:
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Notation

Sparse Convolutional model:

K
X[t] = (Dic* Z)[t] + £[t]

k=1

with Z sparse. Few of its coefficients are non-zero.

» X is a signal of length T
» £ is a noise signal of length T
» D is a set of K patterns of length L

» Z is a signal of length T=T-L+1inRK
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Convolutional Dictionary Learning

Dictionary learning optimization problem for {X[”]},’y:l

Z X7 — ZDk « ZI3 + A 20
~——r

Z <1N
Hl)k|| =1

penalization

E(Z) data fit

with a regularization parameter A > 0.

This problem is bi-convex and an approximate solution is obtained through
alternate minimization. [Engan et al., 1999; Grosse et al., 2007]
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D-step: Dictionary updates

— Z fixed, update D

D* = argmin —Z | xtnl — ZD * Z[" 15
IDell<1 N

Related Algorithms:

» Proximal Gradient Descent (PDG) [Rockafellar, 1976]
» Accelerated PGD [Nesterov, 1983]
» Block Coordinate Descent [Mairal et al., 2010]
» Alternated Direction Method of Multiplier (ADMM)

[Gabay and Mercier, 1976]
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Z-step: Convolutional Sparse Coding (CSC)

— D fixed, update Z

K
ZU* = argmin | X1 =37 Dy« ZI2 + |20y
ztrl k=1

= Independent for each n € [1, N]

Related Algorithms:

» lterative Soft-Thresholding Algorithm (ISTA)
[Daubechies et al., 2004; Chalasani et al., 2013]
» Fast ISTA
[Beck and Teboulle, 2009; Wohlberg, 2016]
» Alternated Direction Method of Multiplier (ADMM)
[Gabay and Mercier, 1976; Bristow et al., 2013]
» Coordinate Descent (CD)
[Friedman et al., 2007; Kavukcuoglu et al., 2010}
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Adaptive Sparse Coding

References

» Moreau, T. and Bruna, J. (2017). Understanding Neural Sparse Coding with
Matrix Factorization. In International Conference on Learning
Representation (ICLR)
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Adaptive Optimization for the Z-step

We have to solve N problems with a common structure D.

K
Zlh = argmin | X1 — 3" Dy« ZJ|3 + A|1 217
zlrl k=1

Can we use this structure to accelerate the resolution?
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Adaptive Optimization for the Z-step

We have to solve N problems with a common structure D.

K
Zlh = argmin | X1 — 3" Dy« ZJ|3 + A|1 217
zlrl k=1

Can we use this structure to accelerate the resolution?

Yes, with the Learned ISTA [Gregor and Le Cun 2010, NeurlPS]

error

[A (1x)
7 o LisTA (4%)

® LISTA (1x)
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Adaptive Optimization for the Z-step

We have to solve N problems with a common structure D.

K
Zlh = argmin | X1 — 3" Dy« ZJ|3 + A|1 217
zlrl k=1

Can we use this structure to accelerate the resolution?

Yes, with the Learned ISTA [Gregor and Le Cun 2010, NeurlPS]

Why does it work? (non-convolutional setting).

» [Xin et al. 2016, NeurlPS]|: Improved support recovery.
» [Giryes et al. 2018, IEEE TSP]: Leverage the sparsity pattern in Z.
» [Chen et al. 2018, NeurlPS]: Linear convergence if Z sparse enough.
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Adaptive Optimization for the Z-step

We have to solve N problems with a common structure D.

K
Zlh = argmin | X1 — 3" Dy« ZJ|3 + A|1 217
zlrl k=1

Can we use this structure to accelerate the resolution?

Yes, with the Learned ISTA [Gregor and Le Cun 2010, NeurlPS]

Why does it work? (non-convolutional setting).

» [Xin et al. 2016, NeurlPS]|: Improved support recovery.

» [Giryes et al. 2018, IEEE TSP]: Leverage the sparsity pattern in Z.
» [Chen et al. 2018, NeurlPS]: Linear convergence if Z sparse enough.
» [Moreau and Bruna 2017, ICLR]: Leverage the structure of D.
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Vectorized model

- Sparse Linear model:
» Xx is a vector in R

» ¢ is a noise vector in RT x=Dz+e

» D is a matrix in RT*LK
with z sparse.

: : CRTK : -
> zis a coding vector in R Few of its coefficients are non-zero.

o))
OEEm0 0
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D= \\‘\ \\*\
@)
0 0N 0
@)
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Notations

Consider the sparse coding problem with a dictionary D.

. 1
z" = argmin F(z) = EHX — DzH% +A]z]|1
z —

E(z)

We denote B = DTD is the Gram matrix of D.

We introduce a novel class of algorithms — FacNet — based on a
sparse factorization of B.

Quadratic form: Qs(u,v) = 3(u—v)TS(u—v) + Allullz .
Note that F(z) = Qg(z, Dx) and proxn?HI(v) = argmin, Qs(u, v)

If S is diagonal, argmin, Qs(u, v) can be efficiently minimized as the
problem is separable in each coordinate.
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Toward an adaptive procedure [Moreau and Bruna 2017, ICLR]

Given an estimate z(9) of z* at iteration g, we can write:

F(z) = E(z)+Alzllx
= E(@9)+(VE(E@),z—20) + Qg( 2, 29),
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Toward an adaptive procedure [Moreau and Bruna 2017, ICLR]

Given an estimate z(9) of z* at iteration g, we can write:

F(z) = E(z)+Alzllx
= E(@9)+(VE(E@),z—20) + Qg( 2, 29),

ISTA: Replace B by diagonal matrix S = ||B||2/k
FacNet: Replace B by A]S,A; (S, diagonal, A, unitary)

J(2) = E@9)+ <VE(z(q))’z _ Z(q)> 1 Qs, (Agz, Ag2 @) |
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Toward an adaptive procedure [Moreau and Bruna 2017, ICLR]

Given an estimate z(9) of z* at iteration g, we can write:

F(z) = E(z)+Alzllx
= E(@9)+(VE(E@),z—20) + Qg( 2, 29),

ISTA: Replace B by diagonal matrix S = ||B||2/k
FacNet: Replace B by A]S,A; (S, diagonal, A, unitary)

J(2) = E@9)+ <VE(z(q))’z _ Z(q)> 1 Qs, (Agz, Ag2 @) |
min It'q(z) < minQs, <qu,qu(q) _ SglAqVE(z(q))>

Can we choose Ag, S; to accelerate the optimization compared to ISTA?
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Toward and adaptive procedure
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Toward and adaptive procedure
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Toward and adaptive procedure
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Toward an adaptive procedure

The surogate Fq can be re-written as

Fo(z) = F(2) 4 (z = 29D)TR(z — 29) + 64(2) .

Tradeoff between:

» Diagonalization of the gram matrix B , Computation
R=ATSA-B
» Deformation of the ¢1-norm with the rotation A . Accuracy

64(2) = A (JlAzll1 = |1zl

= Trade-off between sparse A and good approximation of B.
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Theoretical results

» We showed that FacNet has the same asymptotic convergence rate as

ISTA in O(5).

» The constant factors are different and can be improved. If the
factorization (Ag, Sq) at iteration q verifies

Lag(217D) _ |1B]2

R 2
IFalle + 21—, = 2

and A, = Ik, Sp = ||Bl|2lk for p > q, then the procedure has
improved convergence rate compared to ISTA.

= There is a phase transition when ||z(?) — z*||; — 0
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Learned ISTA [Gregor and Le Cun 2010, NeurlPS]

X
74"[Wg(1) O —'[Wéz) O 20
With W, = @,ﬁz and Wy =1 — ”B” this network computes ISTA.

W, =S1ADT

FacNet: Specialization of LISTA with
W, = AT — S 1ABAT

= LISTA can be at least as good as this model.

21/45



Generic Dictionary

1
10 ~e- Linear —e— L-ISTA
— ISTA —+— FacNet
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# iteration/layers q

K generic atoms (uniform in SP~1) with Bernouilli-Gaussian activation.
Params: K =100, P =64, p =1/5, 0 =10 and \ = 0.01
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Adversarial dictionary

102 — ISTA —+— FacNet
—e— L-ISTA
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1074

Cost function F(z9) — F(z")

o
=)
&

H
2
s

—
o
>
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Same parameters with adverse dictionary (dense eigen-spaces).

10°
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Recap Part |

Take home message
» Non asymptotic acceleration of ISTA is possible based on the
structure of D,
» Sufficient analysis to explain LISTA acceleration,

» Empirically showed the structure of D is necessary for LISTA.

Ahead of us

» Improve the factorization formulation for direct optimization,
» Adaptation of the analysis to convolutional sparse coding,

» Explore the link with sparse eigenvectors of the gram matrix.
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Scaling up Convolutional Sparse Coding with
coordinate descent and distributed optimization

References

» Moreau, T., Oudre, L., and Vayatis, N. (2018). DICOD: Distributed
Convolutional Sparse Coding. In International Conference on Machine
Learning (ICML), pages 3626—3634, Stockohlm, Sweden. PMLR (80)

» Moreau, T. and Gramfort, A. (2019). Distributed Convolutional Dictionary
Learning (DiCoDilLe): Pattern Discovery in Large Images and Signals.
preprint ArXiv, 1901.09235
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Z-step: Sparse coding

— D fixed, update Z

K
Zl = argmin | X1 — 3" Dy« Z{|3 + NI 217
Zln —

= Independent for each n € [1, N]

Related Algorithms:

» lIterative Soft-Thresholding Algorithm (ISTA)
[Daubechies et al., 2004; Chalasani et al., 2013]
» Fast ISTA
[Beck and Teboulle, 2009; Wohlberg, 2016]
» Alternated Direction Method of Multiplier (ADMM)
[Gabay and Mercier, 1976; Bristow et al., 2013]
» Coordinate Descent (CD)
[Friedman et al., 2007; Kavukcuoglu et al., 2010]
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Coordinate Descent (CD)

Minimize e
7* = arg;nin IX =Y " Dicx Zill3 + Ml 21
k=1

Update one coordinate at each iteration.

1. Select a coordinate (ko, tp) to update.

Three algorithms for LASSO:
» Cyclic updates; O (1) [Friedman et al., 2007]

» Random updates; O (1) [Nesterov, 2010]
» Greedy updates; O (KL) [Osher and Li, 2009]
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Coordinate Descent (CD)

Minimize e
7 = arg;nin |X — ZDk * Zill5 + M Z |2
k=1

Update one coordinate at each iteration.

1. Select a coordinate (ko, tp) to update.

2. Compute a new value Z; [to] for this coordinate

For convolutional CD, we can use optimal updates:
Zi,lto] = ST (Bilta]. )
kil — 7T~ o ko lLtO]> )
° D13 ’

with ST(y, \) = sign(y)(ly| — A)+. Kavukcuoglu et al. [2010] showed this
can be done efficiently, with O(KL) operations.
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Coordinate Descent (CD)

Minimize e
7 = arg;nin |X — ZDk * Zill5 + M Z |2
k=1

Update one coordinate at each iteration.

1. Select a coordinate (ko, tp) to update.

2. Compute a new value Z; [to] for this coordinate

= Converges to the optimal point for CSC problem in O (%) iterations.

Trade-off between cheap computational complexity (random/cyclic CD)
and importance sampling with faster convergence (Greedy CD).
[Nutini et al., 2015; Karimireddy et al., 2019]
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Locally Greedy Coordinate Descent [Moreau et al. 2018, ICML]

We introduced the LGCD method which is an extension of GCD.

K

v

o coordinatesof Z___ _ _ ________________________ N
7

GCD has (’)(K?’) computational complexity.
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Locally Greedy Coordinate Descent [Moreau et al. 2018, ICML]

We introduced the LGCD method which is an extension of GCD.

coordinates of Z

GCD has (’)(K?’) computational complexity.

But the update itself has complexity O(KL)
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Locally Greedy Coordinate Descent [Moreau et al. 2018, ICML]

We introduced the LGCD method which is an extension of GCD.
2 @ @

ISRl

coordinates of Z

With a partition Cp, of the signal domain [1, K] x [0, 7’[

cmz[l,K]x[W_A/ll)T,”;/lT
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Locally Greedy Coordinate Descent [Moreau et al. 2018, ICML]

We introduced the LGCD method which is an extension of GCD.
2 @ @

coordinates of Z

With a partition Cp, of the signal domain [1, K] x [0, 7’[
(m=1)T mT
=[1,K]| x [———, —
Cm =1, K] x [, T
The coordinate to update is chosen greedily on a sub-domain Cp,
% =2L—-1 = O(Coordinate selection) = O(Coordinate Update)

The overall iteration complexity is O(KL) instead of O(KT).

= Efficient for sparse Z
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Fast optimization

Comparison of the coordinate selection strategy for CD on simulated
signals

We set K =10, L = 150, A = 0.1\ ax

B Greedy I Random A LGCD

104 .

Runtime [sec]
= =
o o
N w

=

o
e
1

100 d

T=150L T=750L
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Weak dependence of the coordinate updates

The update of the W coordinates (ky,w, )Y_; with additive update
AZy, [ww] changes the cost by:

iterative steps

w
AE= Y AE, — > (d, *di )lww — wwlAZk, [wh]AZ,, [wa],
=1 w#w’

interference

= If the updates are far enough, they can be considered as independent.
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Distributed Convolutional Coordinate Descent
[Moreau et al. 2018, ICML]

81 52

coordinates of Z

» Split the coordinates in continuous sub-segment S, = [ W W |-
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Distributed Convolutional Coordinate Descent
[Moreau et al. 2018, ICML]

31 52

coordinates of Z

» Split the coordinates in continuous sub-segment S, = [ W W |-

» Use CD updates in parallel in each sub-segment.
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Distributed Convolutional Coordinate Descent
[Moreau et al. 2018, ICML]

51 52
[ I
(k,t,AZ)
N

coordinates of Z

» Split the coordinates in continuous sub-segment S, = [ W W |-

» Use CD updates in parallel in each sub-segment.

» Notify neighbor workers when the update is on the border of S, .

31/45



Distributed Convolutional Coordinate Descent
[Moreau et al. 2018, ICML]

51 52

coordinates of Z

» Split the coordinates in continuous sub-segment S, = [(Wl)T L2 {

» Use CD updates in parallel in each sub-segment.
» Notify neighbor workers when the update is on the border of S, .

» What do we do when two updates are interfering?
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DICOD convergence [Moreau et al. 2018, ICML]

DICOD converges to the solution of the CSC for 1D signals without
having a control mechanism on the interference.

Theorem (Convergence of DICOD)

We consider the following assumptions:

H1: |If the cross correlation between atoms of D is strictly smaller than 1.
H2: No cores stop before all its coefficients are optimal.

H3: If the delay in communication between the processes is inferior to the
update time.

Under these assumptions, the DICOD algorithm converges asymptotically
to the optimal solution Z* of CSC.

v
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Distributed Convolutional Dictionary Learning (DiCoDilLe-Z)
[Moreau and Gramfort 2019, preprint]

» DICOD does not work for higher
dimensional signals.
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Distributed Convolutional Dictionary Learning (DiCoDilLe-Z)
[Moreau and Gramfort 2019, preprint]

» DICOD does not work for higher
dimensional signals.

» Extension require to control
interferences.
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Distributed Convolutional Dictionary Learning (DiCoDilLe-Z)
[Moreau and Gramfort 2019, preprint]

» DICOD does not work for higher
dimensional signals.

» Extension require to control
interferences.

» Use asynchronous mechanism:
Soft-lock.
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Numerical speed-up

10° T
—— DICOD

T 10 4 —o— DiCoDiLe-Z
A
[0}
E
= 10° 4
=}
o

100_

10° 10!
# workers W
Running time as a function of the number of workers W.
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Recap Part Il

Take home message
» LGCD is a very efficient algorithm when working with CSC for long
signals.
» Can be distributed efficiently for multi-dimensional signals,

» Good scaling properties with the number of workers W used to
distribute the algorithm.

Ahead of us

» Extend this algorithm to local penalization such as Group LASSO.

» This algorithm could be used for algorithm such as MP for ¢ or /g
penalties.
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Rank-1 Constrained Convolutional Dictionary Learning J

References

» Dupré la Tour, T., Moreau, T., Jas, M., and Gramfort, A. (2018).
Multivariate Convolutional Sparse Coding for Electromagnetic Brain Signals.
In Advances in Neural Information Processing Systems (NeurlPS), pages
3296—-3306, Montreal, Canada
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D-step: solving for the atoms

The dictionary update is performed by minimizing

min E({Dk}k)AZfHX" sz*oknz : (1)

<1
[I1Dkl2< =

Computing Vp, E({Dx}«) can be done efficiently
N

K
Va E{Dk) =D (20)"* | x —ZZ/ xDj | =®k =Y Wy =Dy,

n=1 I=1

= Save with Projected Gradient Descent (PGD) with an Armijo
backtracking line-search for the D-step [Wright and Nocedal, 1999].

However, this model does not account for the physics of the problem.
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EM wave diffusion

» Recording here with 8 sensors
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EM wave diffusion

» Recording here with 8 sensors
» EM activity in the brain
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EM wave diffusion

» Recording here with 8 sensors

» EM activity in the brain
» The electric field is spread linearly and instantaneously over all

sensors (Maxwell equations)

e
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EM wave diffusion

» Recording here with 8 sensors
» EM activity in the brain

» The electric field is spread linearly and instantaneously over all
sensors (Maxwell equations)

[ —— -

{Multivariate Signal ] [Topography } [Waveform]
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Multivariate CSC with rank-1 constraint
[Dupré la Tour et al. 2018, NeurlPS]

Idea: Impose a rank-1 constraint on the dictionary atoms D

To make the problem tractable, we decided to use auxiliary variables wuy
and v s.t. Dy = upvy T.

K 2 K
i Z XM=z x (uew) 2,
Ukkaka K—1 ) o 1 (2)
st flul3 <1, wl3<1andz>0.

Here,
» u, € RP is the spatial pattern of our atom
» v, € R is the temporal pattern of our atom

= Tri-convex optimization problem , solved with alternate minimization.
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Fast optimization

Comparison with multivariate methods on somato dataset with
T =134,700, K=8, P=5and L =128

Il Wohlberg (2016) WM Proposed (multivariate) Proposed (rank-1)

10°; -

Time (s)

A=3.0 A=10.0
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MNE somatosensory data

A selection of temporal waveforms of the atoms learned on the MNE
sample dataset.

Spatial pattern 0 Spatial pattern 1
Explained variance 5.62 % Explained variance 2.38 %

Temporal pattern 0 Temporal pattern 1
0.6 0.1
0.44 0.0 1
0.2 0.1
0.0 1
—0.2 |
—0.24
T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Time (sec) Time {sec)
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MNE somatosensory data

Atoms revealed using the MNE somatosensory data. Note the
non-sinusoidal comb shape of the mu rhythm.

0.2

0.1t
0.0
-0.1}

-0.2t

030 02 02 06 08 10

] 0 15 20 25
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Recap Part Il

Take home message
» The structure of the learned dictionary can be constrained to improve
the interpretability of the recovered patterns.
» Can lead to more efficient algorithm and better recovery property.

» Open source package ©) https://alphacsc.github.io

Ahead of us

» Analysis of the patterns learned on large MEG database (HCP).

» Link between the learned waveforms and information propagation
properties in the brain.

» Extension to scale invariant CDL to study frequency coupling in the
brain.
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https://alphacsc.github.io

Conclusion

Convolutional Dictionary Learning

» Flexible pattern extraction technique,
» Computationally tractable for more and more problems,

» Some application are already beginning to emerge.

Challenges

» Theoretical challenges remains (convergence, recoverability),
» The evaluation (and thus the parameter choices) is still not clear,

» Can give some insight for deep learning models?
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Thanks!

Code available online:
O LISTA : github.com/tommoral /AdaptiveOptim
© DICOD (& DiCoDile soon) : github.com/tommoral/dicod

O alphacsc : alphacsc.github.io

Slides are on my web page:

€ tommoral.github.io © ©tomamoral
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Signals from human walking

A A

ey Ay A A A A A A g A

Inertial
captor

» Shift invariant patterns linked to steps,
» Manual segmentation of the signal is expensive.

=- Can we do better with data-driven approach?
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Experiment

Create a dictionary with 25 Gaussian patterns (W = 90)

D ~ N(0, loo)

Use the Convolutional Dictionary Learning with
DICOD to learn a dictionary D on a set of 50
recording of healthy subjects walking.

Challenges

» Alignment of the patterns,
» Detect steps of different amplitude,

» Handle multivariate signals.
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Experiment

DY)

L

Time [sec|
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N

Time [sec]

Iteration

0
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Related works

» Giryes et al. [2018]: Propose the inexact projected gradient descent
and conjecture that LISTA accelerate the LASSO resolution by
learning the sparsity pattern of the input distribution.

» Xin et al. [2016]: Study the Hard-thresholding Algorithm and its
capacity to recover the support of a sparse vector.
The paper relax the RIP conditions for the dictionary.
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Generic Dictionaries

A dictionary D € RP*K is a generic dictionary when its columns D; are
drawn uniformly over the ¢> unit sphere SpP-1.
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Theorem (Generic Acceleration)

In expectation over the generic dictionary D, the factorization
algorithm using a diagonally dominant matrix A C &5, has better
performance for iteration g + 1 than the normal ISTA iteration — which
uses the identity — when

K(K -1
B, [l + 7] < o SE=2, [j20 - 22 8]

expected resolution
at iteration g

FacNet can improve the performances compared to ISTA when this is
verified.
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L-FISTA

Network architecture for L-FISTA.
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MNIST

Dictionary D with K = 100 atoms learned on 10 000 MNIST samples
(17x17) with dictionary learning. LISTA trained with MNIST training set
and tested on MNIST test set.

Cost function F(z?) — F(z*)
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Adversarial dictionary

The dictionary is constructed such that it eigen-vectors are sampled from

the Fourier basis, with

Dy = =2k

for a random subset of frequencies

iz K
{Ci}ogigp NU{K;O <m< 2}

Diagonalizing B implies large deformation of the ¢;-norm.
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Finishing the process in a distributed environment

Non trivial point: How to decide that the algorithm has converged?

» Neighbors paused is not enough!

» Define a master 0 and send probes.
Wait for M probes return.

» Uses the notion of message queue and network flow.
Maybe we can have better way?
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Numerical Experiments

Test on long signals generated with Bernoulli-Gaussian coding signal Z
and a Gaussian dictionary D. Fixed K =25, W =200 and T = 600 * W,

Algorithms implemented for benchmark

» Coordinate Descent (CD)
[Kavukcuoglu et al., 2010]

» Randomized Coordinate Descent (RCD)
[Nesterov, 2010]

» Fast Convolutional Sparse Coding (FCSC)
[Bristow et al., 2013]

[Chalasani et al., 2013; Wohlberg, 2016]
» DICOD with 60 cores
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Numerical convergence

10t

Cost E(Z9)—E(Z")

-
=)
0

1073

—4— CD
—e— RCD
—— FCSC
FISTA
—e— DICODgo

10° 107 102 10° 10° 10° 10°
# iteration g

Cost as a function of the iterations

16/24



Numerical convergence
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DICOD: numerical convergence
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DICOD: numerical convergence

10°

fun
o
]

10!

cD
RCD

FCSC

FISTA
DICODs,
DICODgo
SeqDICODg,

Cost E(Z9) —E(Z")

m

1073

itte

10 10t 102 103

Running Time (s)

Cost as a function of the time

17/24



Complexity Analysis

Two sources of acceleration:

» Perform M updates in parallel,

» Each update is computed on a segment of size ¢;

Iteration complexity of O <Kﬁ> instead of O (KL)

Limitations:

2
» Interfering updates, with probability a* = (T)

E[Qdicod] = M(1—20>M*+0(a*M*)) .

a—0

> Cost of the update of 8 in O (KW)
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Soft-Locks [Moreau and Gramfort, 2019]

81 82

AN A A

£
T

> Keep track of the value of the optimal update in an extended zone of
size L — 1.
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Soft-Locks [Moreau and Gramfort, 2019]
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size L — 1.

» Select an update candidate with LGCD.

» If it is in the interfering zone, compare the value of the update with
the value potential updates in the other worker.
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Soft-Locks [Moreau and Gramfort, 2019]

81 82

> Keep track of the value of the optimal update in an extended zone of
size L — 1.
» Select an update candidate with LGCD.

» If it is in the interfering zone, compare the value of the update with
the value potential updates in the other worker.

» Only perform the udpate if it is larger than the other update.
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Soft-Locks [Moreau and Gramfort, 2019]

81 82

”

> Keep track of the value of the optimal update in an extended zone of
size L — 1.
» Select an update candidate with LGCD.

» If it is in the interfering zone, compare the value of the update with
the value potential updates in the other worker.

£
T

» Only perform the udpate if it is larger than the other update.

= Give an update order asynchronously.
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Images from Hubble Space Telescope




Images from Hubble Space Telescope
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Studying brain activity through electromagnetic signals

» Brain (electrical) activity produces an electromagnetic field.
» This can be measured with EEG or MEG.

Traffic, Wt bt AN (ot
Sensor noise Electrical disturbance vvﬂwwwﬂmﬂvwwwwﬁwhwmwwmmWWVWWWM
Spontaneous Earth’s :
brain activity magnetic field —

4 g . 8 K -4
10 10 10 10 10 10" B (tesla)
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Goal: Study Oscillation in Neural Data

Oscillations are believed to play an important role in cognitive functions.

Many studies rely on Fourier or wavelet analyses:
» Easy interpretation,

» Standard analysis e.g. canonical bands alpha, beta or theta.
[Buzsaki, 2006]
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Goal: Study Oscillation in Neural Data

However, some brain rhythms are not sinusoidal, e.g. mu-waves.
[Hari, 2006]

E LT el iy

1s

and filtering degrades waveforms
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00
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0

=- Can we do better with data-driven approach?
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Pattern recovery

Evolution of the recovery loss with o for different values of P. Using more
channels improves the recovery of the original patterns.
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