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Dictionary Learning [Olshausen and Field 1997, Vision Research]

Dictionary learning learns a
set of atoms (patterns) to
sparsely reconstruct a signal,

Goal:

I Feature extraction,

I Signal exploration.
Patches learned with natural images

in Olshausen and Field 1997.
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Convolutional Dictionary Learning [Grosse et al. 2007, UAI]

(Credit to [Yellin et al., 2017])

Convolutional Dictionary Learning learns a set of shift-invariant atoms to
sparsely reconstruct a signal,

I Improve sparsity I Not all patches
are encoded

I Sharper atoms
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Application fields
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[Oudre et al. 2018, Sensors]
.

I Detecting steps in human walk recordings to predict elderly falls.

I Exploring neurological signals from ECG and MEG,
I Classifying pathological eye movements form oculomotor signals.
I Counting cells in biological images.
I Counting stars and galaxies in telescope images
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Application fields
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[Robert et al. 2016, preprint]
.

I Detecting steps in human walk recordings to predict elderly falls.
I Exploring neurological signals from ECG and MEG,
I Classifying pathological eye movements form oculomotor signals.

I Counting cells in biological images.
I Counting stars and galaxies in telescope images
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Application fields

[del Aguila Pla et al. 2018, IEEE TSP; Yellin et al. 2017, ISBI]
.
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Application fields

[del Aguila Pla et al. 2018, ICASSP;
Beckouche et al. 2013, Astronomy & Astrophysics]

I Detecting steps in human walk recordings to predict elderly falls.
I Exploring neurological signals from ECG and MEG,
I Classifying pathological eye movements form oculomotor signals.
I Counting cells in biological images.
I Counting stars and galaxies in telescope images
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Challenges of Convolutional Dictionary Learning

I Computational: how to scale with large signals,
I by exploiting the structure of the dictionary.

[Moreau and Bruna 2017, ICLR]

I by parallellization.

[Moreau et al. 2018, ICML; Moreau and Gramfort 2019, preprint]

I Modelization: how to incorporate prior knowledge,
I on the activations.

I on the patterns.

[Dupré la Tour et al. 2018, NeurIPS]

I Evaluation: how to evaluate the quality of the learned patterns.

I Theoretical: pattern recovery.

5/45



Challenges of Convolutional Dictionary Learning

I Computational: how to scale with large signals,
I by exploiting the structure of the dictionary.

[Moreau and Bruna 2017, ICLR]
I by parallellization.

[Moreau et al. 2018, ICML; Moreau and Gramfort 2019, preprint]

I Modelization: how to incorporate prior knowledge,
I on the activations.

I on the patterns.
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Convolutional Dictionary Learning

Adaptive Sparse Coding

Scaling up Convolutional Sparse Coding with
coordinate descent and distributed optimization

Rank-1 Constrained Convolutional Dictionary Learning
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Convolutional Dictionary Learning

References

I Grosse, R., Raina, R., Kwong, H., and Ng, A. Y. (2007). Shift-Invariant
Sparse Coding for Audio Classification. Cortex, 8:9
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Extracting shift invariant patterns

Key idea: decouple the localization of the patterns and their shape

Convolutional
Dictionary Learning:
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Notation

Sparse Convolutional model:

X [t] =
K∑

k=1

(DDDk ∗ Zk)[t] + E [t]

with Z sparse. Few of its coefficients are non-zero.

I X is a signal of length T

I E is a noise signal of length T

I DDD is a set of K patterns of length L

I Z is a signal of length T̃ = T − L + 1 in RK
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Convolutional Dictionary Learning

Dictionary learning optimization problem for {X [n]}Nn=1

min
Z ,‖DDDk‖≤1

1

N

N∑
n=1

‖X [n] −
K∑

k=1

DDDk ∗ Z [n]
k ‖2

2︸ ︷︷ ︸
E(Z) data fit

+ λ‖Z [n]‖1︸ ︷︷ ︸
penalization

with a regularization parameter λ > 0.

This problem is bi-convex and an approximate solution is obtained through
alternate minimization. [Engan et al., 1999; Grosse et al., 2007]

10/45



DDD-step: Dictionary updates

→ Z fixed, update DDD

DDD∗ = argmin
‖DDDk‖2≤1

1

N

N∑
n=1

‖X [n] −
K∑

k=1

DDDk ∗ Z [n]
k ‖2

2

Related Algorithms:

I Proximal Gradient Descent (PDG) [Rockafellar, 1976]

I Accelerated PGD [Nesterov, 1983]

I Block Coordinate Descent [Mairal et al., 2010]

I Alternated Direction Method of Multiplier (ADMM)
[Gabay and Mercier, 1976]
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Z -step: Convolutional Sparse Coding (CSC)

→ DDD fixed, update Z

Z [n],∗ = argmin
Z [n]

‖X [n] −
K∑

k=1

DDDk ∗ Z [n]
k ‖2

2 + λ‖Z [n]‖1

⇒ Independent for each n ∈ J1,NK

Related Algorithms:

I Iterative Soft-Thresholding Algorithm (ISTA)
[Daubechies et al., 2004; Chalasani et al., 2013]

I Fast ISTA
[Beck and Teboulle, 2009; Wohlberg, 2016]

I Alternated Direction Method of Multiplier (ADMM)
[Gabay and Mercier, 1976; Bristow et al., 2013]

I Coordinate Descent (CD)
[Friedman et al., 2007; Kavukcuoglu et al., 2010]
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Adaptive Sparse Coding

References

I Moreau, T. and Bruna, J. (2017). Understanding Neural Sparse Coding with
Matrix Factorization. In International Conference on Learning
Representation (ICLR)
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Adaptive Optimization for the Z -step

We have to solve N problems with a common structure DDD.

Z [n],∗ = argmin
Z [n]

‖X [n] −
K∑

k=1

DDDk ∗ Z [n]
k ‖2

2 + λ‖Z [n]‖1

Can we use this structure to accelerate the resolution?

Yes, with the Learned ISTA [Gregor and Le Cun 2010, NeurIPS]
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Vectorized model

I x is a vector in RT

I ε is a noise vector in RT

I D is a matrix in RT×LK

I z is a coding vector in RT̃K

Sparse Linear model:

x = Dz + ε

with z sparse.
Few of its coefficients are non-zero.

D̄ 0̄

0̄ D̄ 0̄

0̄ D̄ 0̄

0̄ D̄ 0̄

0̄ D̄ 0̄

0̄ D̄

0

0

D =

.
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Notations

Consider the sparse coding problem with a dictionary D.

z∗ = argmin
z

F (z) =
1

2
‖x − Dz‖2

2︸ ︷︷ ︸
E(z)

+λ‖z‖1

We denote B = DTD is the Gram matrix of D.

We introduce a novel class of algorithms – FacNet – based on a
sparse factorization of B.

Quadratic form: QS(u, v) = 1
2 (u − v)TS(u − v) + λ‖u‖1 .

Note that F (z) = QB(z ,D†x) and proxS‖·‖1
(v) = argminu QS(u, v)

If S is diagonal, argminu QS(u, v) can be efficiently minimized as the
problem is separable in each coordinate.
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Toward an adaptive procedure [Moreau and Bruna 2017, ICLR]

Given an estimate z(q) of z∗ at iteration q, we can write:

F (z) = E (z) + λ‖z‖1

= E (z(q)) +
〈
∇E (z(q)), z − z(q)

〉
+ QB( z , z(q)) ,

ISTA: Replace B by diagonal matrix S = ‖B‖2IIIK

FacNet: Replace B by AAAT
qSSSqAAAq (SSSq diagonal, AAAq unitary)

Can we choose Aq,Sq to accelerate the optimization compared to ISTA?
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Toward and adaptive procedure
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Toward an adaptive procedure

The surogate F̃q can be re-written as

F̃q(z) = F (z) + (z − z(q))TR(z − z(q)) + δA(z) .

Tradeoff between:

I Diagonalization of the gram matrix B , Computation

R = ATSA− B

I Deformation of the `1-norm with the rotation A . Accuracy

δA(z) = λ
(
‖Az‖1 − ‖z‖1

)
⇒ Trade-off between sparse A and good approximation of B.
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Theoretical results

I We showed that FacNet has the same asymptotic convergence rate as
ISTA in O( 1

q ).

I The constant factors are different and can be improved. If the
factorization (Aq, Sq) at iteration q verifies

‖Rq‖2 + 2
LAq(z(q+1))

‖z∗ − z(q)‖2
≤ ‖B‖2

2

and Ap = IIIK , Sp = ‖B‖2IIIK for p > q, then the procedure has
improved convergence rate compared to ISTA.

⇒ There is a phase transition when ‖z(q) − z∗‖2 → 0
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Learned ISTA [Gregor and Le Cun 2010, NeurIPS]

X

W
(0)
e

W
(1)
g

W
(1)
e

W
(2)
g

W
(2)
e

Z (3)

With We = DT

‖B‖2
and Wg = I − B

‖B‖2
, this network computes ISTA.

FacNet: Specialization of LISTA with

We = S−1ADT

Wg = AT − S−1ABAT

⇒ LISTA can be at least as good as this model.
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Generic Dictionary
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# iteration/layers q
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Linear
ISTA

L-ISTA
FacNet

K generic atoms (uniform in Sp−1) with Bernouilli-Gaussian activation.
Params: K = 100, P = 64, ρ = 1/20, σ = 10 and λ = 0.01
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Adversarial dictionary

100 101 102 103

# iteration/layers q
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FacNet

Same parameters with adverse dictionary (dense eigen-spaces).
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Recap Part I

Take home message

I Non asymptotic acceleration of ISTA is possible based on the
structure of DDD,

I Sufficient analysis to explain LISTA acceleration,

I Empirically showed the structure of D is necessary for LISTA.

Ahead of us

I Improve the factorization formulation for direct optimization,

I Adaptation of the analysis to convolutional sparse coding,

I Explore the link with sparse eigenvectors of the gram matrix.
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Scaling up Convolutional Sparse Coding with
coordinate descent and distributed optimization

References

I Moreau, T., Oudre, L., and Vayatis, N. (2018). DICOD: Distributed
Convolutional Sparse Coding. In International Conference on Machine
Learning (ICML), pages 3626–3634, Stockohlm, Sweden. PMLR (80)

I Moreau, T. and Gramfort, A. (2019). Distributed Convolutional Dictionary
Learning (DiCoDiLe): Pattern Discovery in Large Images and Signals.
preprint ArXiv, 1901.09235
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Z -step: Sparse coding

→ DDD fixed, update Z

Z [n],∗ = argmin
Z [n]

‖X [n] −
K∑

k=1

DDDk ∗ Z [n]
k ‖2

2 + λ‖Z [n]‖1

⇒ Independent for each n ∈ J1,NK

Related Algorithms:

I Iterative Soft-Thresholding Algorithm (ISTA)
[Daubechies et al., 2004; Chalasani et al., 2013]

I Fast ISTA
[Beck and Teboulle, 2009; Wohlberg, 2016]

I Alternated Direction Method of Multiplier (ADMM)
[Gabay and Mercier, 1976; Bristow et al., 2013]

I Coordinate Descent (CD)
[Friedman et al., 2007; Kavukcuoglu et al., 2010]
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Coordinate Descent (CD)

Minimize

Z ∗ = argmin
Z
‖X −

K∑
k=1

DDDk ∗ Zk‖2
2 + λ‖Z‖1

Update one coordinate at each iteration.

1. Select a coordinate (k0, t0) to update.

2. Compute a new value Z ′k0
[t0] for this coordinate

Three algorithms for LASSO:

I Cyclic updates; O
(
1
)

[Friedman et al., 2007]

I Random updates; O
(
1
)

[Nesterov, 2010]

I Greedy updates; O
(
KL
)

[Osher and Li, 2009]
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Coordinate Descent (CD)

Minimize

Z ∗ = argmin
Z
‖X −

K∑
k=1

DDDk ∗ Zk‖2
2 + λ‖Z‖1

Update one coordinate at each iteration.

1. Select a coordinate (k0, t0) to update.

2. Compute a new value Z ′k0
[t0] for this coordinate

For convolutional CD, we can use optimal updates:

Z ′k0
[t0] =

1

‖DDDk0‖2
2

ST(βk0 [t0], λ),

with ST(y , λ) = sign(y)(|y | − λ)+. Kavukcuoglu et al. [2010] showed this
can be done efficiently, with O(KL) operations.
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Coordinate Descent (CD)

Minimize

Z ∗ = argmin
Z
‖X −

K∑
k=1

DDDk ∗ Zk‖2
2 + λ‖Z‖1

Update one coordinate at each iteration.

1. Select a coordinate (k0, t0) to update.

2. Compute a new value Z ′k0
[t0] for this coordinate

⇒ Converges to the optimal point for CSC problem in O
(

1
q

)
iterations.

Trade-off between cheap computational complexity (random/cyclic CD)
and importance sampling with faster convergence (Greedy CD).

[Nutini et al., 2015; Karimireddy et al., 2019]
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Locally Greedy Coordinate Descent [Moreau et al. 2018, ICML]

We introduced the LGCD method which is an extension of GCD.

coordinates of Z

T̃

K

C1 C2 C3

coordinates of Z

GCD has O(KT̃ ) computational complexity.

With a partition Cm of the signal domain [1,K ]× [0, T̃ [,

Cm = [1,K ]× [
(m − 1)T̃

M
,
mT̃

M
[

The coordinate to update is chosen greedily on a sub-domain Cm
T̃
M = 2L− 1 ⇒ O(Coordinate selection) = O(Coordinate Update)

The overall iteration complexity is O(KL) instead of O(KT̃ ).

⇒ Efficient for sparse Z
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Fast optimization

Comparison of the coordinate selection strategy for CD on simulated
signals
We set K = 10, L = 150, λ = 0.1λmax
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Weak dependence of the coordinate updates

The update of the W coordinates (kw , ωw )Ww=1 with additive update
∆Zkw [ωw ] changes the cost by:

∆E =

iterative steps︷ ︸︸ ︷
W∑
i=1

∆Ew −
∑
w 6=w ′

(dkw ∗ d�kw′ )[ωw ′ − ωw ]∆Zkw [ωw ]∆Zkw′ [ωw ′ ]

︸ ︷︷ ︸
interference

,

⇒ If the updates are far enough, they can be considered as independent.
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Distributed Convolutional Coordinate Descent
[Moreau et al. 2018, ICML]

2L− 1

coordinates of Z

S1 S2

I Split the coordinates in continuous sub-segment Sw =

[
(w−1)T

W , wTW

[
.

I Use CD updates in parallel in each sub-segment.

I Notify neighbor workers when the update is on the border of Sw .

I What do we do when two updates are interfering?
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DICOD convergence [Moreau et al. 2018, ICML]

DICOD converges to the solution of the CSC for 1D signals without
having a control mechanism on the interference.

Theorem (Convergence of DICOD)

We consider the following assumptions:

H1: If the cross correlation between atoms of DDD is strictly smaller than 1.

H2: No cores stop before all its coefficients are optimal.

H3: If the delay in communication between the processes is inferior to the
update time.

Under these assumptions, the DICOD algorithm converges asymptotically
to the optimal solution Z ∗ of CSC.
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Distributed Convolutional Dictionary Learning (DiCoDiLe-Z)
[Moreau and Gramfort 2019, preprint]

I DICOD does not work for higher
dimensional signals.

I Extension require to control
interferences.

I Use asynchronous mechanism:
Soft-lock.
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Numerical speed-up
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Recap Part II

Take home message

I LGCD is a very efficient algorithm when working with CSC for long
signals.

I Can be distributed efficiently for multi-dimensional signals,

I Good scaling properties with the number of workers W used to
distribute the algorithm.

Ahead of us

I Extend this algorithm to local penalization such as Group LASSO.

I This algorithm could be used for algorithm such as MP for `0 or `0,∞
penalties.
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Rank-1 Constrained Convolutional Dictionary Learning

References

I Dupré la Tour, T., Moreau, T., Jas, M., and Gramfort, A. (2018).
Multivariate Convolutional Sparse Coding for Electromagnetic Brain Signals.
In Advances in Neural Information Processing Systems (NeurIPS), pages
3296–3306, Montreal, Canada
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D-step: solving for the atoms

The dictionary update is performed by minimizing

min
‖DDDk‖2≤1

E ({DDDk}k)
∆
=

N∑
n=1

1

2
‖X n −

K∑
k=1

znk ∗DDDk‖2
2 . (1)

Computing ∇DDDk
E ({DDDk}k) can be done efficiently

∇dkE ({DDDk}k) =
N∑

n=1

(znk )� ∗

xn −
K∑
l=1

znl ∗DDD l

 = Φk −
K∑
l=1

Ψk,l ∗DDD l ,

⇒ Save with Projected Gradient Descent (PGD) with an Armijo
backtracking line-search for the D-step [Wright and Nocedal, 1999].

However, this model does not account for the physics of the problem.
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EM wave diffusion

I Recording here with 8 sensors

I EM activity in the brain
I The electric field is spread linearly and instantaneously over all

sensors (Maxwell equations)
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Multivariate CSC with rank-1 constraint
[Dupré la Tour et al. 2018, NeurIPS]

Idea: Impose a rank-1 constraint on the dictionary atoms Dk

To make the problem tractable, we decided to use auxiliary variables uk
and vk s.t. Dk = ukvk>.

min
uk ,vk ,z

n
k

N∑
n=1

1

2

∥∥∥∥∥∥X n −
K∑

k=1

znk ∗ (ukv
>
k )

∥∥∥∥∥∥
2

2

+ λ

K∑
k=1

∥∥∥znk ∥∥∥
1
,

s.t. ‖uk‖2
2 ≤ 1 , ‖vk‖2

2 ≤ 1 and znk ≥ 0 .

(2)

Here,

I uk ∈ RP is the spatial pattern of our atom

I vk ∈ RL is the temporal pattern of our atom

⇒ Tri-convex optimization problem , solved with alternate minimization.
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Fast optimization

Comparison with multivariate methods on somato dataset with
T = 134, 700, K = 8, P = 5 and L = 128
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MNE somatosensory data

A selection of temporal waveforms of the atoms learned on the MNE
sample dataset.
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MNE somatosensory data

Atoms revealed using the MNE somatosensory data. Note the
non-sinusoidal comb shape of the mu rhythm.
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Recap Part III

Take home message

I The structure of the learned dictionary can be constrained to improve
the interpretability of the recovered patterns.

I Can lead to more efficient algorithm and better recovery property.

I Open source package https://alphacsc.github.io

Ahead of us

I Analysis of the patterns learned on large MEG database (HCP).

I Link between the learned waveforms and information propagation
properties in the brain.

I Extension to scale invariant CDL to study frequency coupling in the
brain.
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Conclusion

Convolutional Dictionary Learning

I Flexible pattern extraction technique,

I Computationally tractable for more and more problems,

I Some application are already beginning to emerge.

Challenges

I Theoretical challenges remains (convergence, recoverability),

I The evaluation (and thus the parameter choices) is still not clear,

I Can give some insight for deep learning models?

44/45



Thanks!

Code available online:

LISTA : github.com/tommoral/AdaptiveOptim

DICOD (& DiCoDiLe soon) : github.com/tommoral/dicod

alphacsc : alphacsc.github.io

Slides are on my web page:

tommoral.github.io @tomamoral
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Signals from human walking
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I Shift invariant patterns linked to steps,

I Manual segmentation of the signal is expensive.

⇒ Can we do better with data-driven approach?
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Experiment

Create a dictionary with 25 Gaussian patterns (W = 90)

DDD
(0)
k ∼ N (0, I90)

Use the Convolutional Dictionary Learning with
DICOD to learn a dictionary DDD on a set of 50
recording of healthy subjects walking.

Challenges

I Alignment of the patterns,

I Detect steps of different amplitude,

I Handle multivariate signals.
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Experiment
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Related works

I Giryes et al. [2018]: Propose the inexact projected gradient descent
and conjecture that LISTA accelerate the LASSO resolution by
learning the sparsity pattern of the input distribution.

I Xin et al. [2016]: Study the Hard-thresholding Algorithm and its
capacity to recover the support of a sparse vector.
The paper relax the RIP conditions for the dictionary.
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Generic Dictionaries

A dictionary D ∈ Rp×K is a generic dictionary when its columns Di are
drawn uniformly over the `2 unit sphere Sp−1.
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Theorem (Generic Acceleration)

In expectation over the generic dictionary D, the factorization
algorithm using a diagonally dominant matrix A ⊂ Eδ, has better
performance for iteration q + 1 than the normal ISTA iteration – which
uses the identity – when

λEz

[
‖z(q+1)‖1 + ‖z∗‖1

]
≤
√

K (K − 1)

p
Ez

[
‖z(q) − z∗‖2

2

]
︸ ︷︷ ︸

expected resolution
at iteration q

FacNet can improve the performances compared to ISTA when this is
verified.
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L-FISTA
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Network architecture for L-FISTA.
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PASCAL 08
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MNIST

Dictionary D with K = 100 atoms learned on 10 000 MNIST samples
(17x17) with dictionary learning. LISTA trained with MNIST training set
and tested on MNIST test set.
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Adversarial dictionary

The dictionary is constructed such that it eigen-vectors are sampled from
the Fourier basis, with

Dk,j = e−2iπkζj

for a random subset of frequencies

{
ζi
}

0≤i≤p ∼ U
{
m

K
; 0 ≤ m ≤ K

2

}

Diagonalizing B implies large deformation of the `1-norm.
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Finishing the process in a distributed environment

Non trivial point: How to decide that the algorithm has converged?

I Neighbors paused is not enough!

I Define a master 0 and send probes.
Wait for M probes return.

I Uses the notion of message queue and network flow.
Maybe we can have better way?
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Numerical Experiments

Test on long signals generated with Bernoulli-Gaussian coding signal Z
and a Gaussian dictionary DDD. Fixed K = 25, W = 200 and T = 600 ∗W ,

Algorithms implemented for benchmark

I Coordinate Descent (CD)
[Kavukcuoglu et al., 2010]

I Randomized Coordinate Descent (RCD)
[Nesterov, 2010]

I Fast Convolutional Sparse Coding (FCSC)
[Bristow et al., 2013]

I Fast Ierative Soft-Thresholding Algorithm (FISTA)
[Chalasani et al., 2013; Wohlberg, 2016]

I DICOD with 60 cores
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Numerical convergence
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Numerical convergence
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DICOD: numerical convergence
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DICOD: numerical convergence
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Complexity Analysis

Two sources of acceleration:

I Perform M updates in parallel,

I Each update is computed on a segment of size L
M

Iteration complexity of O
(
K L

M

)
instead of O

(
KL
)

Limitations:

I Interfering updates, with probability α2 =
(
WM
T

)2

E[Qdicod ] &
α→0

M(1−2α2M2+O(α4M4)) .

I Cost of the update of β in O
(
KW

)
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Soft-Locks [Moreau and Gramfort, 2019]

S1 S2

1

L− 1

2

L− 1

S1 S2

I Keep track of the value of the optimal update in an extended zone of
size L− 1.

I Select an update candidate with LGCD.

I If it is in the interfering zone, compare the value of the update with
the value potential updates in the other worker.

I Only perform the udpate if it is larger than the other update.
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Soft-Locks [Moreau and Gramfort, 2019]

S1 S2

12

S1 S2

I Keep track of the value of the optimal update in an extended zone of
size L− 1.

I Select an update candidate with LGCD.

I If it is in the interfering zone, compare the value of the update with
the value potential updates in the other worker.

I Only perform the udpate if it is larger than the other update.

⇒ Give an update order asynchronously.
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Images from Hubble Space Telescope
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Images from Hubble Space Telescope
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Studying brain activity through electromagnetic signals

I Brain (electrical) activity produces an electromagnetic field.

I This can be measured with EEG or MEG.
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Goal: Study Oscillation in Neural Data

Oscillations are believed to play an important role in cognitive functions.

Many studies rely on Fourier or wavelet analyses:

I Easy interpretation,

I Standard analysis e.g. canonical bands alpha, beta or theta.
[Buzsaki, 2006]
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Goal: Study Oscillation in Neural Data

However, some brain rhythms are not sinusoidal, e.g. mu-waves.
[Hari, 2006]

and filtering degrades waveforms

⇒ Can we do better with data-driven approach?
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Pattern recovery

Evolution of the recovery loss with σ for different values of P. Using more
channels improves the recovery of the original patterns.
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