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Studying brain activity through electromagnetic signals

» Brain (electrical) activity produces an electromagnetic field.
» This can be measured with EEG or MEG.

Traffic, Wt bt AN et
Sensor noise Electrical disturbance vwﬂMwMAMNVWVWWNWMWWVWMMWWVWWWM
Spontaneous Earth’s :
brain activity magnetic field —

- g g - 6 -4
10 10 10 10 10 10" B (tesla)

2/18



Goal: Study Oscillation in Neural Data

Oscillations are believed to play an important role in cognitive functions.

Many studies rely on Fourier or wavelet analyses:

» Easy interpretation,

» Standard analysis e.g. canonical bands alpha, beta or theta.
[Buzsaki, 2006]

3/18



Goal: Study Oscillation in Neural Data

However, some brain rhythms are not sinusoidal, e.g.mu-waves [Hari, 2006
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and filtering degrades waveforms

The shape of the waveform can be linked to the information flow between
neurons.

= Can extract them with an unsupervised data-driven approach?
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Extracting shift invariant patterns

Key idea: decouple the localization of the patterns and their shape
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Extracting shift invariant patterns

Key idea: decouple the localization of the patterns and their shape
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EM wave diffusion

» Recording here with 8 sensors
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EM wave diffusion

» Recording here with 8 sensors
» EM activity in the brain
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EM wave diffusion

» Recording here with 8 sensors

» EM activity in the brain
» The electric field is spread linearly and instantaneously over all

sensors (Maxwell equations)

YA
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Multivariate CSC with rank-1 constraint

Idea: Impose a rank-1 constraint on the dictionary atoms Dy

To make the problem tractable, we decided to use auxiliary variables wuy
and v s.t. D = ukaT.

p 2
min Z —Zz,’(’*(ukva)
k=1

Uk,Vk,Zk
st |ul3 <1, ||wll3<1andzf>0.

Here,
» u, € RP is the spatial pattern of our atom

» v, € RE is the temporal pattern of our atom

(1)
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Optimization strategy

Tri-convex: The problem is not jointly convex in z/, u) and vi but it is
convex in each block of coordinate.

We can use a block coordinate descent, aka alternate minimization, to
converge to a local minima of this problem. The 3 following steps are
applied alternatively:

» Z-step: given a fixed estimate of the atom, compute the activation
signal z; associated to each signal X".

> u-step: given a fixed estimate of the activation and temporal pattern,
update the spatial pattern uy.

» v-step: given a fixed estimate of the activation and spatial pattern,
update the temporal pattern vi.
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Z-step: Locally greedy coordinate descent (LGCD)

N independent problem such that

This problem is convex in z, and can be solved with different techniques:

>

>
| 2
>

Greedy CD [Kavukcuoglu et al.,
Fista [Chalasani et al.,
ADMM [Bristow et al.,
L-BFGS [Jas et al.,

2010]
2013
2013
2017]

= These methods can be slow for long signals as the complexity of each

iteration is at least linear in the length of the signal.
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Z-step: Locally greedy coordinate descent (LGCD)

For the Greedy Coordinate Descent, only 1 coordinate is updated at each
iteration: [Kavukcuoglu et al., 2010]

1. The coordinate z,[to] is updated to its optimal value z [to] when all
other coordinate are fixed.

, Bilt] — A
z[t] = max <l|(|[D]kH§’O> )

with B[t] = [D; x (x — Sz % Dy + z[t]er * Dk>] [t]

For each coordinate update, it is possible to maintain the value of 3
with O(KL) operations.
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Z-step: Locally greedy coordinate descent (LGCD)

For the Greedy Coordinate Descent, only 1 coordinate is updated at each
iteration: [Kavukcuoglu et al., 2010]
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The coordinate zj[to] is updated to its optimal value z, [to] when all
other coordinate are fixed.

The updated coordinate is chosen

Cyclic selection: O(1) [Friedman et al., 2007]
Randomized selection: O(1) [Nesterov, 2010]
Greedy selection: O(KT) [Osher and Li, 2009]
by maximizing |zx[t] — z,[t]|

Locally Greedy selection: O(KL) [Moreau et al., 2018]

by maximizing |zx[t] — z,[t]| on a sub-segment.
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D-step: solving for the atoms

The dictionary update is performed by minimizing

N K

. A 1 )
min E(D) = ZIxn — N D . 5
5 £(P) 25l k; i * Dill2 (2)

n=1
Computing Vg4, E({dk}«) can be done efficiently

N K K
VoE(D)=> (z)" [x"=> 2/ Di | =& =) Wy Dy |
[I=il [I=il

n=1

= Save with Projected Gradient Descent (PGD) with an Armijo
backtracking line-search for the D-step [Wright and Nocedal, 1999].
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Experiments

Good time to wake-up if you got lost in the previous section!
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Fast optimization

Comparison with univariate methods on somato dataset with
T =134,700, K =8 and L = 128

HEl Garcia-Cardona et al (2017) W Jas et al (2017) LBFGS
Bl Jas et al (2017) FISTA 77/, Proposed (univariate)
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Fast optimization

Comparison with multivariate methods on somato dataset with
T =134,700, K=8, P=5and L =128

HN Wohlberg (2016) E#& Proposed (multivariate) #2727 Proposed (rank-1)
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Good scaling in the number of channels P

Scaling relative to P on somato dataset with T = 134,700, K = 2, and
L =128
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Experiments on MEG data

Even better time to wake-up!
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MNE somatosensory data

A selection of temporal waveforms of the atoms learned on the MNE
sample dataset.

Spatial pattern 0 Spatial pattern 1
Explained variance 5.62 % Explained variance 2.38 %
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MNE somatosensory data

Atoms revealed using the MNE somatosensory data. Note the
non-sinusoidal comb shape of the mu rhythm.
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Conclusion

» We proposed a model for multivariate CSC with rank-1 constraint.
This model makes sense for different type of data.

» We proposed a fast algorithm to solve the optimization problem
involved in this model.

» We demonstrated numerically the performance of our algorithm on
both simulated and real datasets.

» We illustrated the benefit of such method to study electromagnetic
signals form recorded from brain activity.
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Thanks for your attention!

Code available online:
O alphacsc : alphacsc.github.io

© DiCoDile : github.com/tommoral/dicodile

Slides are on my web page:

€ tommoral.github.io O ©@tomamoral
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Locally Greedy Coordinate Descent [Moreau et al., 2018]

We introduced the LGCD method which is an extension of GCD.

s
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GCD has (’)(K?’) computational complexity.
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Locally Greedy Coordinate Descent [Moreau et al., 2018]

We introduced the LGCD method which is an extension of GCD.

coordinates of Z

GCD has (’)(K?’) computational complexity.

But the update itself has complexity O(KL)
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Locally Greedy Coordinate Descent [Moreau et al., 2018]

We introduced the LGCD method which is an extension of GCD.
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coordinates of Z

With a partition Cp, of the signal domain [1, K] x [0, 7’[
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Locally Greedy Coordinate Descent [Moreau et al., 2018]

We introduced the LGCD method which is an extension of GCD.
2 @ @

coordinates of Z

With a partition Cp, of the signal domain [1, K] x [0, 7’[
(m=1)T mT

M M
The coordinate to update is chosen greedily on a sub-domain Cp,

Con = [1, K] X |

% =2L—-1 = O(Coordinate selection) = O(Coordinate Update)

The overall iteration complexity is O(KL) instead of O(KT).

= Efficient for sparse Z
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D-step: solving for the atoms

We use the projected gradient descent with an Armijo backtracking
line-search Wright and Nocedal [1999] for both u-step and v-step for

min_E(uy, vic) = Z*HXH sz (uev)l3 - (3)

[|uk|]2<1
[lvall2<1

One important computation trick is for fast computation of the gradient.
VukE(uk, Vk) = VDkE(Uka vk)vk € RP ,
VvkE(Uk; Vk) = U;l(—kaE(uk, Vk) S RL 5

Computing Vp, E(uk, vk) can be done efficiently

N

K K
Vo E(uk,vi) =D (20) % [ X" =D 27Dy | =& =Y Wy x Dy,
=1 =1

n=1
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Pattern recovery

Test the pattern recovery capabilities of our method on simulated data,
2
X" = sz s (uvy )+ €
k=1

where (u, vk) are chosen patterns of rank-1 and the activated coefficient
z][t] are drawn uniformly and their value are uniform in [0, 1].

The noise £ is generated as a gaussian white noise with variance o.

We set N = 100, L = 64 and T = 640
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Pattern recovery

Patterns recovered with P =1 and P = 5. The signals were generated
with the two simulated temporal patterns and with o = 1073.

Atoms

—— P=1— P=5 ---- Simulated
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Pattern recovery

Evolution of the recovery loss with o for different values of P. Using more
channels improves the recovery of the original patterns.
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