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Studying brain activity through electromagnetic signals

I Brain (electrical) activity produces an electromagnetic field.

I This can be measured with EEG or MEG.
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Goal: Study Oscillation in Neural Data

Oscillations are believed to play an important role in cognitive functions.

Many studies rely on Fourier or wavelet analyses:

I Easy interpretation,

I Standard analysis e.g. canonical bands alpha, beta or theta.
[Buzsáki, 2006]
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Goal: Study Oscillation in Neural Data

However, some brain rhythms are not sinusoidal, e.g.mu-waves [Hari, 2006]

and filtering degrades waveforms

The shape of the waveform can be linked to the information flow between
neurons.

⇒ Can extract them with an unsupervised data-driven approach?
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Extracting shift invariant patterns

Key idea: decouple the localization of the patterns and their shape

Convolutional
Dictionary Learning:
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EM wave diffusion

I Recording here with 8 sensors

I EM activity in the brain
I The electric field is spread linearly and instantaneously over all

sensors (Maxwell equations)

6/18



EM wave diffusion

I Recording here with 8 sensors
I EM activity in the brain

I The electric field is spread linearly and instantaneously over all
sensors (Maxwell equations)

6/18



EM wave diffusion

I Recording here with 8 sensors
I EM activity in the brain
I The electric field is spread linearly and instantaneously over all

sensors (Maxwell equations)

6/18



Multivariate CSC with rank-1 constraint

Idea: Impose a rank-1 constraint on the dictionary atoms Dk

To make the problem tractable, we decided to use auxiliary variables uk
and vk s.t. Dk = ukv

>
k .

min
uk ,vk ,z

n
k

N∑
n=1

1

2

∥∥∥∥∥∥X n −
K∑

k=1

znk ∗ (ukv
>
k )

∥∥∥∥∥∥
2

2

+ λ

K∑
k=1

∥∥∥znk ∥∥∥
1
,

s.t. ‖uk‖2
2 ≤ 1 , ‖vk‖2

2 ≤ 1 and znk ≥ 0 .

(1)

Here,

I uk ∈ RP is the spatial pattern of our atom

I vk ∈ RL is the temporal pattern of our atom
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Optimization strategy

Tri-convex: The problem is not jointly convex in znk , uk and vk but it is
convex in each block of coordinate.

We can use a block coordinate descent, aka alternate minimization, to
converge to a local minima of this problem. The 3 following steps are
applied alternatively:

I Z-step: given a fixed estimate of the atom, compute the activation
signal znk associated to each signal X n.

I u-step: given a fixed estimate of the activation and temporal pattern,
update the spatial pattern uk .

I v-step: given a fixed estimate of the activation and spatial pattern,
update the temporal pattern vk .
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Z-step: Locally greedy coordinate descent (LGCD)

N independent problem such that

min
znk≥0

1

2

∥∥∥∥∥∥X n −
K∑

k=1

znk ∗ Dk

∥∥∥∥∥∥
2

2

+ λ

K∑
k=1

∥∥∥znk ∥∥∥
1
.

This problem is convex in zk and can be solved with different techniques:

I Greedy CD [Kavukcuoglu et al., 2010]

I Fista [Chalasani et al., 2013]

I ADMM [Bristow et al., 2013]

I L-BFGS [Jas et al., 2017]

⇒ These methods can be slow for long signals as the complexity of each
iteration is at least linear in the length of the signal.
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Z-step: Locally greedy coordinate descent (LGCD)

For the Greedy Coordinate Descent, only 1 coordinate is updated at each
iteration: [Kavukcuoglu et al., 2010]

1. The coordinate zk0 [t0] is updated to its optimal value z ′k0
[t0] when all

other coordinate are fixed.

z ′k [t] = max

(
βk [t]− λ
‖Dk‖2

2

, 0

)
,

with βk [t] =

[
D�k ∗

(
X −

∑K
l=1 zl ∗ Dl + zk [t]et ∗ Dk

)]
[t]

For each coordinate update, it is possible to maintain the value of β
with O(KL) operations.

2. The updated coordinate is chosen
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other coordinate are fixed.
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I Cyclic selection: O(1) [Friedman et al., 2007]

I Randomized selection: O(1) [Nesterov, 2010]

I Greedy selection: O(KT̃ ) [Osher and Li, 2009]
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I Locally Greedy selection: O(KL) [Moreau et al., 2018]
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D-step: solving for the atoms

The dictionary update is performed by minimizing

min
‖Dk‖2≤1

E (D)
∆
=

N∑
n=1

1

2
‖X n −

K∑
k=1

znk ∗ Dk‖2
2 . (2)

Computing ∇dkE ({dk}k) can be done efficiently

∇DE (D) =
N∑

n=1

(znk )� ∗

xn −
K∑
l=1

znl ∗ Dl

 = Φk −
K∑
l=1

Ψk,l ∗ Dl ,

⇒ Save with Projected Gradient Descent (PGD) with an Armijo
backtracking line-search for the D-step [Wright and Nocedal, 1999].
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Experiments

Good time to wake-up if you got lost in the previous section!
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Fast optimization

Comparison with univariate methods on somato dataset with
T = 134, 700, K = 8 and L = 128

λ= 0.3 λ= 1.0 λ= 3.0 λ= 10.0
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Fast optimization

Comparison with multivariate methods on somato dataset with
T = 134, 700, K = 8, P = 5 and L = 128

λ= 0.3 λ= 1.0 λ= 3.0 λ= 10.0
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Good scaling in the number of channels P

Scaling relative to P on somato dataset with T = 134, 700, K = 2, and
L = 128
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Experiments on MEG data

Even better time to wake-up!
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MNE somatosensory data

A selection of temporal waveforms of the atoms learned on the MNE
sample dataset.

15/18



MNE somatosensory data

Atoms revealed using the MNE somatosensory data. Note the
non-sinusoidal comb shape of the mu rhythm.
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Conclusion

I We proposed a model for multivariate CSC with rank-1 constraint.
This model makes sense for different type of data.

I We proposed a fast algorithm to solve the optimization problem
involved in this model.

I We demonstrated numerically the performance of our algorithm on
both simulated and real datasets.

I We illustrated the benefit of such method to study electromagnetic
signals form recorded from brain activity.
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Thanks for your attention!

Code available online:

alphacsc : alphacsc.github.io

DiCoDiLe : github.com/tommoral/dicodile

Slides are on my web page:

tommoral.github.io @tomamoral
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Locally Greedy Coordinate Descent [Moreau et al., 2018]

We introduced the LGCD method which is an extension of GCD.

coordinates of Z

T̃

K

C1 C2 C3

coordinates of Z

GCD has O(KT̃ ) computational complexity.

With a partition Cm of the signal domain [1,K ]× [0, T̃ [,

Cm = [1,K ]× [
(m − 1)T̃

M
,
mT̃

M
[

The coordinate to update is chosen greedily on a sub-domain Cm

T̃
M = 2L− 1 ⇒ O(Coordinate selection) = O(Coordinate Update)

The overall iteration complexity is O(KL) instead of O(KT̃ ).

⇒ Efficient for sparse Z
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D-step: solving for the atoms

We use the projected gradient descent with an Armijo backtracking
line-search Wright and Nocedal [1999] for both u-step and v-step for

min
‖uk‖2≤1
‖vk‖2≤1

E (uk , vk)
∆
=

N∑
n=1

1

2
‖X n −

K∑
k=1

znk ∗ (ukv
>
k )‖2

2 . (3)

One important computation trick is for fast computation of the gradient.

∇ukE (uk , vk) = ∇Dk
E (uk , vk)vk ∈ RP ,

∇vkE (uk , vk) = u>k ∇Dk
E (uk , vk) ∈ RL ,

Computing ∇Dk
E (uk , vk) can be done efficiently

∇Dk
E (uk , vk) =

N∑
n=1

(znk )� ∗

X n −
K∑
l=1

znl ∗ Dl

 = Φk −
K∑
l=1

Ψk,l ∗ Dl ,
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Pattern recovery

Test the pattern recovery capabilities of our method on simulated data,

X n =
2∑

k=1

zk ∗ (ukv
>
k ) + E

where (uk , vk) are chosen patterns of rank-1 and the activated coefficient
znk [t] are drawn uniformly and their value are uniform in [0, 1].

The noise E is generated as a gaussian white noise with variance σ.

We set N = 100, L = 64 and T̃ = 640
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Pattern recovery

Patterns recovered with P = 1 and P = 5. The signals were generated
with the two simulated temporal patterns and with σ = 10−3.
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Pattern recovery

Evolution of the recovery loss with σ for different values of P. Using more
channels improves the recovery of the original patterns.
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