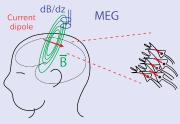
Learning step sizes for unfolded sparse coding

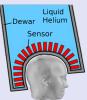
Thomas Moreau INRIA Saclay

Joint work with Pierre Ablin; Mathurin Massias; Alexandre Gramfort

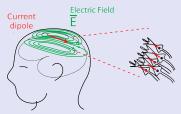
Electrophysiology

Magnetoencephalography

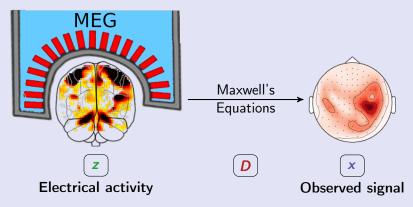




Electroencephalography

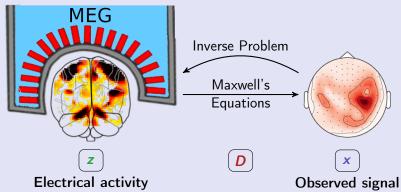


Inverse problems



Forward model: x = Dz

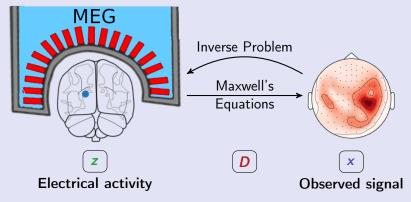
Inverse problems



Forward model: x = Dz

Inverse problem: ill-posed

Inverse problems

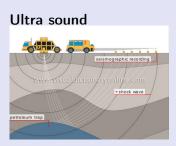


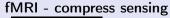
Forward model: x = Dz Inverse problem: ill-posed

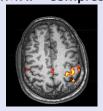
Optimization with a regularization \mathcal{R} encoding prior knowledge $\operatorname{argmin}_{\boldsymbol{z}} \|\boldsymbol{x} - \boldsymbol{D}\boldsymbol{z}\|_2^2 + \mathcal{R}(\boldsymbol{z})$

Example: sparsity with $\mathcal{R} = \lambda \| \cdot \|_1$

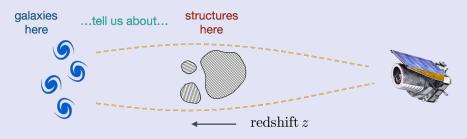
Inverse problem: Other domains







Astrophysic



Some challenges for inverse problems

Evaluation: often there is no ground truth,

- In neuroscience, we cannot access the brain electrical activity.
- How to evaluate how well it is reconstructed?

Part of my research topic

Modelization: how to better account for the image structure,

- ullet ℓ_2 reconstruction evaluation does not account for localization
- Optimal transport could help in this case?

Hicham and Quentin projects

Computational: solving these problems can be too long,

- Many problems share the same forward operator D
- Can we use the structure of the problem?

Today talk topic!

Better step sizes for Iterative Shrinkage-Thresholding Algorithm (ISTA)

Sparse Coding

For a dictionary $D \in \mathbb{R}^{n \times m}$ and $\lambda > 0$, sparse coding for $x \in \mathbb{R}^n$ is

$$z^* = \underset{z}{\operatorname{argmin}} F_x(z) = \underbrace{\frac{1}{2} \|x - Dz\|_2^2}_{f_x(z)} + \lambda \|z\|_1$$

a.k.a. Lasso, sparse linear regression, ...

We are interested in the case where m > n.

Properties

- ▶ The problem is convex in z but not strongly convex in general
- ightharpoonup z = 0 is solution if and only if $\lambda \geq \lambda_{\max} \doteq \|D^{\top}x\|_{\infty}$

Proximal gradient descent algorithm

$$z^{(t+1)} = \mathsf{ST}\left(z^{(t)} - \frac{1}{L}\underbrace{\nabla f_{x}(z^{(t)})}_{D^{\top}(Dz^{(t)} - x)}, \frac{\lambda}{L}\right)$$

where $L = ||D^{T}D||_2$ is the largest eigen-value of $D^{T}D$. Here, 1/L play the role of a step size.

Convergence rates

If f_x is μ -strongly convex, i.e. $\sigma_{\min}(D^T D) \ge \mu > 0$

$$F_x(z^{(t)}) - F_x(z^*) \le \left(1 - \frac{\mu}{I}\right)^t \left(F_x(0) - F_x(z^*)\right)$$

In the general case, $F_x(z^{(t)}) - F_x(z^*) \leq \frac{L\|z^*\|_2}{t}$

ISTA: Majoration-Minimization

Taylor expansion of f_x in $z^{(t)}$

$$F_{x}(z) = f_{x}(z^{(t)}) + \nabla f_{x}(z^{(t)})^{\top} (z - z^{(t)}) + \lambda \|z\|_{1}$$

$$+ \frac{1}{2} (z - z^{(t)}) D^{\top} D(z - z^{(t)})$$

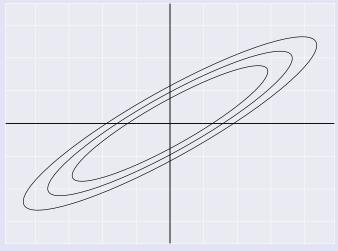
$$\leq f_{x}(z^{(t)}) + \nabla f_{x}(z^{(t)})^{\top} (z - z^{(t)}) + \frac{L}{2} \|z - z^{(t)}\|_{2}^{2} + \lambda \|z\|_{1}$$

Replace the Hessian $D^{\top}D$ by L Id.

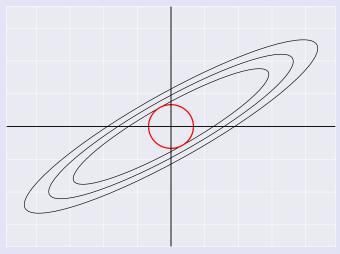
Separable function that can be minimized in close form

$$\begin{aligned} \underset{z}{\operatorname{argmin}} \frac{L}{2} \left\| z^{(t)} - \frac{1}{L} \nabla f_{x}(z^{(t)}) - z \right\|_{2}^{2} + \lambda \|z\|_{1} &= \operatorname{ST} \left(z^{(t)} - \frac{1}{L} \nabla f_{x}(z^{(t)}), \frac{\lambda}{L} \right) \\ &= \operatorname{prox}_{\frac{\lambda}{L}} \left(z^{(t)} - \frac{1}{L} \nabla f_{x}(z^{(t)}) \right) \end{aligned}$$

▶ Hessian $D^{\top}D$

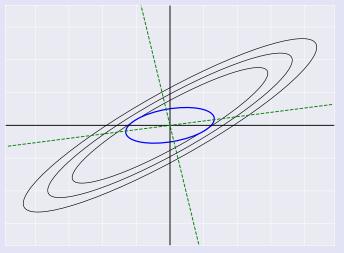


▶ Hessian $D^{\top}D \prec L$ Id

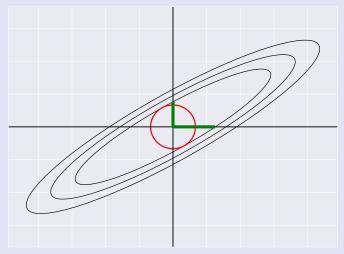


► Hessian $D^{\top}D \prec A^{\top}\Lambda A$

[Moreau and Bruna 2017]



▶ Hessian $D^{\top}D \prec L_S$ Id on support S

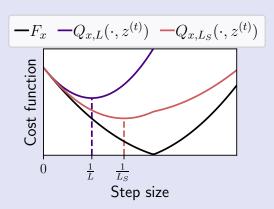


OISTA: Majoration-Minimization

For all z such that $Supp(z) \subset S \doteq Supp(z^{(t)})$,

$$F_x(z) \le f_x(z^{(t)}) + \nabla f_x(z^{(t)})^{\top} (z - z^{(t)}) + \frac{L_S}{2} ||z - z^{(t)}||_2^2 + \lambda ||z||_1$$

with $L_S = \|D_{\cdot,S}^{\top}D_{\cdot,S}\|_2$.



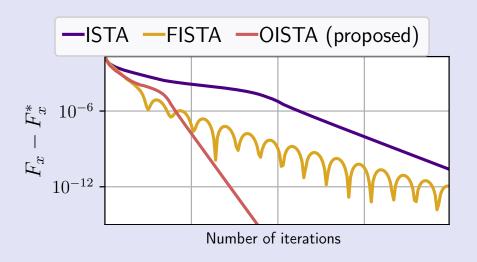
Oracle ISTA:

- 1. Get the Lipschitz constant L_S associated with support $S = \text{Supp}(z^{(t)})$.
- 2. Compute $y^{(t+1)}$ as a step of ISTA with a step-size of $1/L_S$

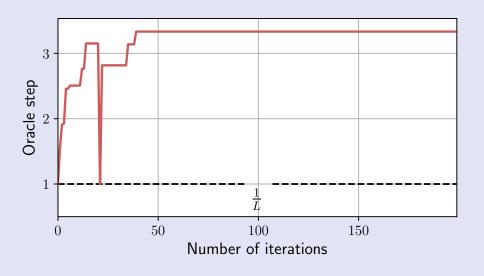
$$y^{(t+1)} = \mathsf{ST}\left(z^{(t)} - \frac{1}{L_{\mathcal{S}}}D^{\top}(Dz^{(t)} - x), \frac{\lambda}{L_{\mathcal{S}}}\right)$$

- 3. If $Supp(y^{t+1}) \subset S$, accept the update $z^{(t+1)} = y^{(t+1)}$.
- **4.** Else, $z^{(t+1)}$ is computed with step size 1/L.

OISTA: Performances



OISTA - Step-size



OISTA – Convergence

Proposition 3.1: Convergence

When D is such that the solution is unique for all x and $\lambda > 0$, the sequence $(z^{(t)})$ generated by the algorithm converges to $z^* = \operatorname{argmin} F_x$.

Further, there exists an iteration T^* such that for $t \geq T^*$, $Supp(z^{(t)}) = Supp(z^*) \triangleq S^*$.

Proposition 3.2: Convergence rate

For $t > T^*$,

$$F_{x}(z^{(t)}) - F_{x}(z^{*}) \leq L_{S^{*}} \frac{\|z^{*} - z^{(T^{*})}\|^{2}}{2(t - T^{*})}$$
.

If moreover, $\lambda_{\min}(D_{S^*}^{ op}D_{S^*})=\mu^*>0$, then

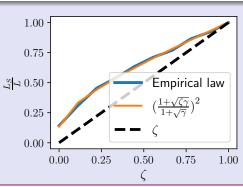
$$F_{x}(z^{(t)}) - F_{x}(z^{*}) \leq (1 - \frac{\mu^{*}}{L_{c^{*}}})^{t-T^{*}} (F_{x}(z^{(T^{*})}) - F_{x}(z^{*}))$$
.

OISTA – Gaussian setting

Acceleration quantification with Marchenko-Pastur

Entries in $D\in\mathbb{R}^{n\times m}$ are sampled from $\mathcal{N}(0,1)$ and S is sampled uniformly with |S|=k. Denote $m/n\to\gamma,\ k/m\to\zeta$, with $k,m,n\to+\infty$. Then

$$\frac{L_S}{L} \to \left(\frac{1 + \sqrt{\zeta \gamma}}{1 + \sqrt{\gamma}}\right)^2 . \tag{1}$$



OISTA – Limitation

- ▶ In practice, OISTA is not practical, as you need to compute L_S at each iteration and this might be costly in time.
- ▶ No precomputation possible: there is an exponential number of supports *S*.

Using deep learning to approximate OISTA

Deep learning for inverse problem

For a direct operator D, the inverse problem computes

$$\mathcal{I}_D(x) = \operatorname*{argmin}_{z} \frac{1}{2} \|x - Dz\| + \lambda \|z\|_1$$

Thus, the goal is not to solve one problem but multiple problems!

 \Rightarrow Can we leverage the problem's structure?

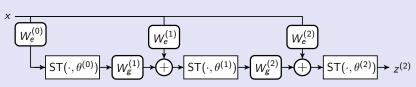
- ▶ ISTA: worst case algorithm, second order information is *L*.
- ▶ OISTA: adaptive algorithm, second order information is L_S (NP-hard).
- ▶ LISTA: adaptive algorithm, use DL to learn second order information?

Recurrence relation of ISTA define a RNN

$$z^{(t+1)} = \mathsf{ST}\left(z^{(t)} - \frac{1}{L}D^{\top}(Dz^{(t)} - x), \frac{\lambda}{L}\right)^{x} \xrightarrow{W_e} \mathsf{ST}(\cdot, \frac{\lambda}{L}) \xrightarrow{z^*}$$

With $W_e = \frac{D^T}{L}$ and $W_g = I - \frac{D^TD}{L}$, this network is equivalent to ISTA.

This recurrent network can be unfolded as a feed-forward network.



Let $\Phi_{\Theta^{(T)}}$ denote a network with T layers parametrized with $\Theta^{(T)}$

LISTA – Parametrizations

General LISTA model

[Gregor and Le Cun 2010]

$$z^{(t+1)} = \mathsf{ST}\left(\mathsf{W}_\mathsf{e}^{(t)} z^{(t)} + \mathsf{W}_\mathsf{x}^{(t)} x, \theta^{(t)}\right)$$

The structure of D is lost in the linear transform.

Coupled LISTA

[Chen et al. 2018]

$$z^{(t+1)} = \mathsf{ST}\left(z^{(t)} - \alpha^{(t)} \mathsf{W}^{(t)}(Dz^{(t)} - x), \theta^{(t)}\right)$$

Can be seen as learning

▶ Pre-conditionner
$$W^{(t)} \in \mathbb{R}^{m \times n}$$

► Step-size
$$\alpha^{(t)} \in \mathbb{R}_+$$

► Threshold
$$\theta^{(t)} \in \mathbb{R}_+$$

LISTA – Parametrizations

General LISTA model

$$z^{(t+1)} = \mathsf{ST}\left(\mathsf{W}_{\mathrm{e}}^{(t)} z^{(t)} + \mathsf{W}_{\mathsf{x}}^{(t)} x, \theta^{(t)}\right)$$

The structure of *D* is lost in the linear transform

Coupled LISTA

[Chen et al. 2018]

$$z^{(t+1)} = \mathsf{ST}\left(z^{(t)} - \alpha^{(t)} \mathsf{W}^{(t)}(Dz^{(t)} - x), \theta^{(t)}\right)$$

Can be seen as learning

▶ Pre-conditionner
$$W^{(t)} \in \mathbb{R}^{m \times n}$$

Step-size
$$\alpha^{(t)} \in \mathbb{R}_+$$

► Threshold
$$\theta^{(t)} \in \mathbb{R}$$

⇒ Justified theoretically for (un)supervised convergence

Restricted parametrization : Only learn a step-size $\boldsymbol{\alpha}^{(t)}$

$$z^{(t+1)} = \mathsf{ST}\left(z^{(t)} - \alpha^{(t)}D^{\top}(Dz^{(t)} - x), \lambda\alpha^{(t)}\right)$$

Fewer parameters: T instead of (2 + MN)T.

⇒ Easier to learn

⇒ Reduced performances?

Goal: Learn adapted step sizes for ISTA.

LISTA - Training

Training: Given a distribution p in the input space \mathbb{R}^n , the training solves

$$\tilde{\Theta}^{(\mathcal{T})} \in \arg\min_{\Theta^{(\mathcal{T})}} \mathbb{E}_{x \sim p}[\mathcal{L}_x(\Phi_{\Theta^{(\mathcal{T})}}(x))] \ .$$

for a given loss \mathcal{L}_x .

 \Rightarrow Choice of loss \mathcal{L}_{x} ?

LISTA - Training

Supervised: a ground truth $z^*(x)$ is known

$$\mathcal{L}_{x}(z)=\frac{1}{2}\|z-z^{*}(x)\|$$

Solving the inverse problem directly.

Semi-supervised: the solution of the Lasso $z^*(x)$ is known

$$\mathcal{L}_{x}(z) = \frac{1}{2} \|z - z^{*}(x)\|$$

Accelerating the resolution of the Lasso.

Unsupervised: there is no ground truth

$$\mathcal{L}_{x}(z) = \frac{1}{2} \|x - Dz\|_{2}^{2} + \lambda \|z\|_{1}$$

Solving the Lasso directly.

LISTA - Training

Supervised: a ground truth $z^*(x)$ is known

$$\mathcal{L}_{x}(z) = \frac{1}{2} \|z - z^{*}(x)\|$$

Solving the inverse problem directly.

Semi-supervised: the solution of the Lasso $z^*(x)$ is known

$$\mathcal{L}_{x}(z) = \frac{1}{2} ||z - z^{*}(x)||$$

Accelerating the resolution of the Lasso.

Unsupervised: there is no ground truth

$$\mathcal{L}_{x}(z) = \frac{1}{2} \|x - Dz\|_{2}^{2} + \lambda \|z\|_{1}$$

Solving the Lasso directly.

Interlude – regularization λ

Importance of the parameter λ

$$\mathcal{L}_{x}(z) = \frac{1}{2} \|x - Dz\|_{2}^{2} + \lambda \|z\|_{1}$$
$$z^{(t+1)} = \mathsf{ST}\left(z^{(t)} - \alpha^{(t)}D^{\top}(Dz^{(t)} - x), \lambda \alpha^{(t)}\right)$$

Control the distribution of $z^*(x)$ sparsity.

Maximal value

 $\lambda_{\max} = \|D^{\top}x\|_{\infty}$ is the minimal value of λ for which

$$z^*(x) = 0$$

Equiregularization set

Set in \mathbb{R}^n for which $\lambda_{\sf max} = 1$

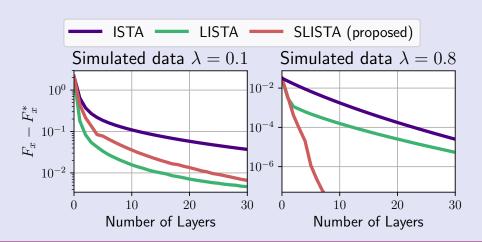
$$\mathcal{B}_{\infty} = \{ x \in \mathbb{R}^n ; \| D^{\top} x \|_{\infty} = 1 \}$$

 \Rightarrow Training performed with points sampled in \mathcal{B}_{∞}

Performances

Simulated data: m = 256 and n = 64

$$D_k \sim \mathcal{U}(\mathcal{S}^{n-1})$$
 and $x = \frac{\widetilde{x}}{\|D^{\top \widetilde{x}}\|_{\infty}}$ with $\widetilde{x}_i \sim \mathcal{N}(0,1)$

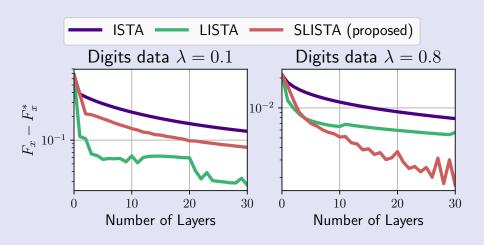


Performance on semi-real datasets

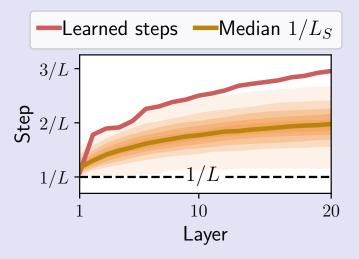
Digits: 8×8 images

[Pedregosa et al. 2011]

 D_k sampled uniformly and $x=rac{\widetilde{x}}{\|D^{ op}\widetilde{x}\|_{\infty}}$ with $\widetilde{x}_i\sim\mathcal{N}(0,1)$



Link with OISTA



The learned step-sizes are linked to the distribution of $1/L_S$

Theoretical results

Hold on for 2 slides!

Weights coupling

We denote $\theta = (W, \alpha, \beta)$ the parameters of a given layer ϕ_{θ} .

$$\phi_{\theta}(z, x) = \mathsf{ST}\left(z - \alpha D^{\mathsf{T}}(Dz - x), \lambda \alpha\right)$$

Assumption 1:

 $\overline{D \in \mathbb{R}^{n \times m}}$ is a dictionary with non-duplicated unit-normed columns.

Lemma 4.3 – Weight coupling

If for all the couples $(z^*(x), x) \in \mathbb{R}^m \times \mathcal{B}_{\infty}$ such that $z^*(x) \in \operatorname{argmin} F_x(z)$, it holds $\phi_{\theta}(z^*(x), x) = z^*(x)$. Then, $\frac{\alpha}{\beta}W = D$.

The solution of the Lasso is a fixed point of a given layer ϕ_{θ} if and only if ϕ_{θ} is equivalent to a step of ISTA with a given step-size.

Asymptotic convergence of the weights

Theorem 4.4 – Asymptotic convergence

Consider a sequence of nested networks $\Phi_{\Theta(T)}$ s.t.

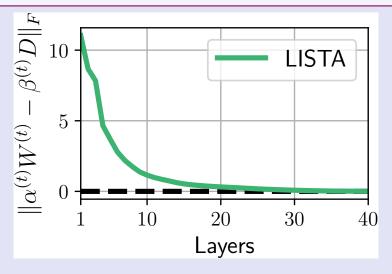
 $\Phi_{\Theta^{(t)}}(x) = \phi_{\theta^{(t)}}(\Phi_{\Theta^{(t+1)}}(x), x)$. Assume that

1. the sequence of parameters converges *i.e.*
$$\theta^{(t)} \xrightarrow[t \to \infty]{} \theta^* = (W^*, \alpha^*, \beta^*)$$
,

2. the output of the network converges toward a solution $z^*(x)$ of the Lasso uniformly over the equiregularization set \mathcal{B}_{∞} , *i.e.* $\sup_{x \in \mathcal{B}_{\infty}} \|\Phi_{\Theta}(\tau)(x) - z^*(x)\| \xrightarrow[\tau_{-\infty}]{} 0$.

Then
$$\frac{\alpha^*}{\beta^*}W^*=D$$
 .

Numerical verification



40-layers LISTA network trained on a 10 \times 20 problem with $\lambda=0.1$ The weights $W^{(t)}$ align with D and α,β get coupled.

Conclusion

- Using 1/L as a step size is not always the fastest.
- ▶ Structure of the sparsity can help accelerate resolution of the Lasso.
- ▶ This structure can be accessed with DL.

Take home message:

First order structure is important in optimization! No hope to learn an algorithm better than ISTA.

(except for step-sizes!)

Future work:

- ► Finding a good starting point (first layer)?
- Adversarial cases?

Thanks!

Code available online:

• adopty : github.com/tommoral/adopty

Slides are on my web page:

tommoral.github.io

O @tomamoral