Learning step sizes for
unfolded sparse coding
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Inverse problems

MEG

Inverse Problem

T

Maxwell's
Equations

(o)

Electrical activity Observed signal

Forward model: x = Dz Inverse problem: ill-posed

Optimization with a regularization R encoding prior knowledge
argmin, ||x — Dz||3 + R(z2)

Example: sparsity with R = A|| - |l1
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Inverse problem: Other domains
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Some challenges for inverse problems

Evaluation: often there is no ground truth,

e In neuroscience, we cannot access the brain electrical activity.
e How to evaluate how well it is reconstructed?
Part of my research topic

v

Modelization: how to better account for the image structure,

e /> reconstruction evaluation does not account for localization
e Optimal transport could help in this case?
Hicham and Quentin projects

Computational: solving these problems can be too long,

e Many problems share the same forward operator D
e Can we use the structure of the problem?
Today talk topic!
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Better step sizes for
lterative Shrinkage-Thresholding Algorithm (ISTA)
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Sparse Coding

For a dictionary D € R™™ and A > 0, sparse coding for x € R" is

« - 1
z" = argmin F(z) = §Hx = DzH% +Alz]|1
z

|
fx(2)

a.k.a. Lasso, sparse linear regression, ...

We are interested in the case where m > n .

Properties

» The problem is convex in z but not strongly convex in general

» z =0 is solution if and only if A > Anax = [|D " x]|0o
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Iterative Shrinkage-Thresholding Algorithm [Daubechies et al. 2004]

Proximal gradient descent algorithm

A6+ ZoT [ 0 1 ge 0y 2
NSO AY)
DT (Dz(t) —x)

where L = ||[DT D||5 is the largest eigen-value of DT D.
Here, 1/L play the role of a step size.

Convergence rates
If £, is p-strongly convex, i.e. am;n(DTD) >u>0
t
F(2) = Fu) < (1= F) (Fu(0) = Au(z))

In the general case, Fx(z(t)) — F(z¥) < %:”2
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ISTA: Majoration-Minimization

Taylor expansion of f; in z(t)
Fu(2) = £(Z) + VAT (z = 20) + A z|1s
+ %(z — 2D D(z — ()
< £29) + VA (2 — 29) + iz~ 203 + Azl

Replace the Hessian DT D by L Id.

Separable function that can be minimized in close form

0 _ 1 (t) : _ r_ 1 (1) A
20 - 29£(20) — 2| + Azl =ST (2 - 1VA(ED), 2

2 L

1
— (1) _ = (t)
= proxa (z T Vi(z )>

. L
argmin —
gz 5
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ISTA: Majoration for the data-fit

» Hessian DTD
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ISTA: Majoration for the data-fit

» Hessian DD < L Id

oy
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ISTA: Majoration for the data-fit

» Hessian DTD < ATAA [Moreau and Bruna 2017]
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ISTA: Majoration for the data-fit

» Hessian D'D < Ls Id on support S

ZAN
NPz

10/34



OISTA: Majoration-Minimization

For all z such that Supp(z) C S = Supp(z(?),
Fu(2) < £(29) + V() T (z — 29) + %HZ — 293+ Azlx

with Lg = ||D:|—5D.75H2.

43 _Qx,L('a Z(t)) _Qx,LS('7 Z(t))

I
=

Cost function

Step size
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Better step-sizes for ISTA

Oracle ISTA:

1. Get the Lipschitz constant Ls associated with support S = Supp(z(")).

2. Compute y(tt1) as a step of ISTA with a step-size of 1/Ls

) 6T <z<t) _ 1 pT (D0 — %), A)
Ls Ls

3. If Supp(y*!) C S, accept the update z(tt1) = y(t+1),

4. Else, z(t*1) is computed with step size 1/L.
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OISTA: Performances

—ISTA —FISTA —OISTA (proposed)

£ 107°
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Number of iterations
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OISTA — Step-size

Oracle step

0 50 100 150
Number of iterations
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OISTA - Convergence

Proposition 3.1: Convergence

When D is such that the solution is unique for all x and A > 0,
the sequence (z(*)) generated by the algorithm converges to
z* = argmin F .

Further, there exists an iteration T* such that for t > T* |
Supp(z(")) = Supp(z*) £ S*.

Proposition 3.2: Convergence rate
Fort>T%*,

2 AATH)|2
Fu(z®)) = Fu(z*) < Ls- 1552

If moreover, )\m;n(DST* Ds+) = p* > 0, then

*

Fu(2®) = Fu(z*) < (L= £)7 T (F(@T)) = Fu(2) -
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OISTA — Gaussian setting

Acceleration quantification with Marchenko-Pastur

Entries in D € R"™™ are sampled from A/(0,1) and S is sampled uniformly
with |S| = k. Denote m/n — ~, k/m — ¢ , with k,m,n — 400 . Then

2
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OISTA — Limitation

» In practice, OISTA is not practical, as you need to compute Ls at each
iteration and this might be costly in time.

» No precomputation possible: there is an exponential number of
supports S.
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Using deep learning to approximate OISTA
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Deep learning for inverse problem

For a direct operator D, the inverse problem computes
1
Zp(x) = argmin §||x — Dz|| + A||z||1
z

Thus, the goal is not to solve one problem but multiple problems!

=> Can we leverage the problem’s structure?

» ISTA: worst case algorithm, second order information is L.
» OISTA: adaptive algorithm, second order information is Ls (NP-hard).

» LISTA: adaptive algorithm, use DL to learn second order information?
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Learned ISTA [Gregor and Le Cun 2010]

Recurrence relation of ISTA define a RNN

2064 ST (0 - LDT(Dz(t ~ %), )
With W, = L " and Wg = | — ==, this network is equivalent to ISTA.

This recurrent network can be unfolded as a feed-forward network.

M @
e e

PO sTC o W (D[ sT( 02> 20

X

ST(-, 60

Let ®g(r) denote a network with T layers parametrized with oM
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LISTA — Parametrizations

General LISTA model [Gregor and Le Cun 2010]
24D = ST (W20 + Wiy, 6)

The structure of D is lost in the linear transform.

Coupled LISTA [Chen et al. 2018]
AAt+1) _gT (z(t) — aOWO (DB _ x), 9<t>>

Can be seen as learning

» Pre-conditionner > Step-size » Threshold
W(t) ¢ Rmxn o) e Ry 0t) c R,
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LISTA — Parametrizations

Coupled LISTA [Chen et al. 2018]
At+1) _gT (z(t) — aOWO (DB _ x), 9<t>>

Can be seen as learning

» Pre-conditionner > Step-size » Threshold
W(t) ¢ Rmxn o) e Ry 0t) c R,

= Justified theoretically for (un)supervised convergence
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Step LISTA [Ablin et al. 2019]

Restricted parametrization : Only learn a step-size a?)

A+ — ST (z(t) —a®DT (DY) — x), )\oz(t))

Fewer parameters: T instead of (2 + MN)T .

= Easier to learn = Reduced performances?

Goal: Learn adapted step sizes for ISTA.
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LISTA — Training

Training : Given a distribution p in the input space R", the training solves

@(T) € arg gl(l_p) IExmp[‘cx(q)@('r)(X))] o

for a given loss L, .

= Choice of loss L7
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LISTA — Training

Supervised: a ground truth z*(x) is known
L .
L«(2) = 5llz = 2" (x)]

Solving the inverse problem directly.

Semi-supervised: the solution of the Lasso z*(x) is known

Lud2) = 5llz— ()

Accelerating the resolution of the Lasso.

Unsupervised: there is no ground truth
1
£4(2) = 5 lx — D[ + Azl

Solving the Lasso directly.
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LISTA — Training

Unsupervised: there is no ground truth
1
£4(2) = 5 lx — D[ + Azl

Solving the Lasso directly.
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Interlude — regularization \

Importance of the parameter A
1 2
L£x(2) = 5lx = Dz|jz + Allz]lx

) — g7 (z(t) —a®DT (D) — x), /\a(t))

Control the distribution of z*(x) sparsity.

Maximal value Equiregularization set

Amax = ||D T X||so is the minimal Set in R” for which Apax = 1
value of A for which
Boo = {x€R"; [|D"x|oo =1}
z"(x) =0

= Training performed with points sampled in B,
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Performances

Simulated data: m = 256 and n = 64

Dy ~U(S" 1) and x = with Xx; ~ N(0,1)

IIDT~H

me= |STA === LISTA === SLISTA (proposed)
Simulated data A = 0.1 Simulated data A = 0.8

10° 1072 A
*LL.R
| 10! 1074
e
—6
10—2 ].0
0 10 20 30 0 10 20 30

Number of Layers Number of Layers
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Performance on semi-real datasets

Digits: 8 x 8 images [Pedregosa et al. 2011]

Dy sampled uniformly and x = with Xx; ~ N(0,1)

HDT~H

mm |STA === LISTA === SLISTA (proposed)
Digits data A = 0.1 Digits data A = 0.8

0 10 20 30 0 10 20 30
Number of Layers Number of Layers
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Link with OISTA

==|earned steps ==Median 1/Lg

Layer

The learned step-sizes are linked to the distribution of 1/Lg
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Theoretical results

Hold on for 2 slides!
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Weights coupling

We denote 0 = (W, «, B) the parameters of a given layer ¢y.
¢o(z,x) =ST (z —aD"(Dz - x), Aa)

Assumption 1:
D € R"™ ™ is a dictionary with non-duplicated unit-normed columns.

Lemma 4.3 — Weight coupling

If for all the couples (z*(x), x) € R™ x By such that z*(x) € argmin F(z),
it holds ¢g(z*(x),x) = z*(x). Then, GW =D .

The solution of the Lasso is a fixed point of a given layer ¢y if and
only if ¢y is equivalent to a step of ISTA with a given step-size.

30/34



Asymptotic convergence of the weights

Theorem 4.4 — Asymptotic convergence
Consider a sequence of nested networks ®¢g(r) s.t.
Do) (X) = dp (Poren) (x), x) . Assume that

1. the sequence of parameters converges i.e.
e(t) P = (W*,CM*,B*) 7
t—o0

2. the output of the network converges toward a solution z*(x) of the
Lasso uniformly over the equiregularization set B, , i.e.
supxes,, [Pom (x) = 2*(x) ——0
T—o0

Then %W* =D .
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Numerical verification

= | |STA

I 1 1 1 1

1 10 20 30 40
Layers

40-layers LISTA network trained on a 10 x 20 problem with A = 0.1
The weights W(9 align with D and «, 5 get coupled.
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Conclusion

» Using 1/L as a step size is not always the fastest.
» Structure of the sparsity can help accelerate resolution of the Lasso.

» This structure can be accessed with DL.

Take home message:

First order structure is important in optimization!
No hope to learn an algorithm better than ISTA.

(except for step-sizes!)

Future work:

» Finding a good starting point (first layer)?

» Adversarial cases?
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Thanks!

Code available online:

© adopty : github.com/tommoral/adopty

Slides are on my web page:

€ tommoral.github.io O @tomamoral
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