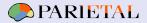
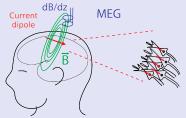
Learning step sizes for unfolded sparse coding

Thomas Moreau INRIA Saclay

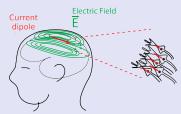
Joint work with Pierre Ablin; Mathurin Massias; Alexandre Gramfort



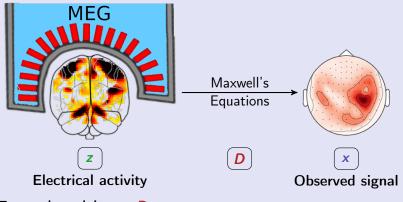
Magnetoencephalography



Electroencephalography

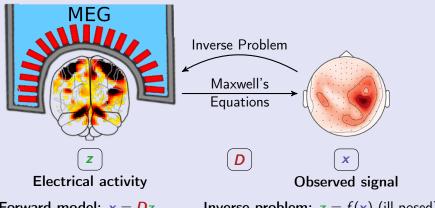


Inverse problems



Forward model: x = Dz

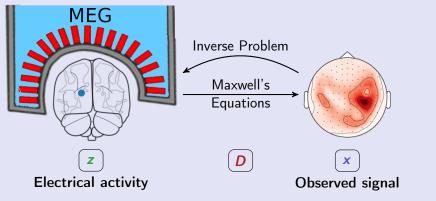
Inverse problems



Forward model: x = Dz

Inverse problem: z = f(x) (ill-posed)

Inverse problems



Forward model: x = Dz

Inverse problem: z = f(x) (ill-posed)

Optimization with a regularization \mathcal{R} encoding prior knowledge $\operatorname{argmin}_{z} \|x - Dz\|_{2}^{2} + \mathcal{R}(z)$

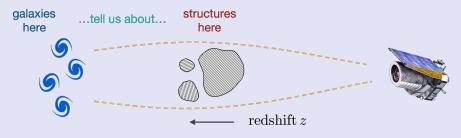
Example: sparsity with $\mathcal{R} = \lambda \| \cdot \|_1$

Other inverse problems

Ultra sound

fMRI - compress sensing

Astrophysic



Evaluation: often there is no ground truth,

- In neuroscience, we cannot access the brain electrical activity.
- How to evaluate how well it is reconstructed?

Open problem in unsupervised learning

Modelization: how to better account for the signal structure,

- ℓ_2 reconstruction evaluation does not account for localization
- Optimal transport could help in this case?

Computational: solving these problems can be too long,

- Many problems share the same forward operator \boldsymbol{D}
- Can we use the structure of the problem?

Today's talk topic!

Better step sizes for Iterative Shrinkage-Thresholding Algorithm (ISTA)

The Lasso

For a fixed design matrix $D \in \mathbb{R}^{n \times m}$ and $\lambda > 0$, the Lasso for $x \in \mathbb{R}^n$ is

$$z^* = \underset{z}{\operatorname{argmin}} F_x(z) = \underbrace{\frac{1}{2} \|x - Dz\|_2^2}_{f_x(z)} + \lambda \|z\|_1$$

a.k.a. sparse coding, sparse linear regression, ...

We are interested in the over-complete case where m > n.

The Lasso

For a fixed design matrix $D \in \mathbb{R}^{n \times m}$ and $\lambda > 0$, the Lasso for $x \in \mathbb{R}^n$ is

$$z^* = \underset{z}{\operatorname{argmin}} F_x(z) = \underbrace{\frac{1}{2} \|x - Dz\|_2^2}_{f_x(z)} + \lambda \|z\|_1$$

a.k.a. sparse coding, sparse linear regression, ...

We are interested in the over-complete case where m > n.

Properties

▶ The problem is convex in *z* but not strongly convex in general

•
$$z = 0$$
 is solution if and only if $\lambda \ge \lambda_{\max} \doteq \|D^{\top}x\|_{\infty}$

ISTA: [Daubechies et al. 2004] Iterative Shrinkage-Thresholding Algorithm

 f_x is a L-smooth function with $L = ||D||_2^2$ and

$$\nabla f_x(z^{(t)}) = D^\top (Dz^{(t)} - x)$$

The ℓ_1 -norm is proximable with a separable proximal operator

$$\operatorname{prox}_{\mu \|\cdot\|_1}(x) = \operatorname{sign}(x) \max(0, |x| - \mu) = ST(x, \mu)$$

ISTA: [Daubechies et al. 2004] Iterative Shrinkage-Thresholding Algorithm

 f_x is a L-smooth function with $L = ||D||_2^2$ and

$$\nabla f_x(z^{(t)}) = D^\top (Dz^{(t)} - x)$$

The ℓ_1 -norm is proximable with a separable proximal operator

$$\mathsf{prox}_{\mu\|\cdot\|_1}(x) = \mathsf{sign}(x) \max(0,|x|-\mu) = \mathsf{ST}(x,\mu)$$

We can use the proximal gradient descent algorithm (ISTA)

$$z^{(t+1)} = \mathsf{ST}\left(z^{(t)} - \rho \underbrace{\nabla f_x(z^{(t)})}_{D^\top(Dz^{(t)}-x)}, \rho\lambda\right)$$

Here, ρ play the role of a step size (in $[0, \frac{2}{L}]$).

ISTA: Majoration-Minimization

Taylor expansion of f_x in $z^{(t)}$

$$F_{x}(z) = f_{x}(z^{(t)}) + \nabla f_{x}(z^{(t)})^{\top}(z - z^{(t)}) + \frac{1}{2} \|D(z - z^{(t)})\|_{2}^{2} + \lambda \|z\|_{1}$$

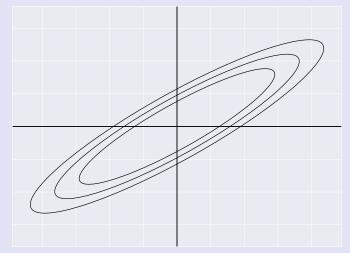
$$\leq f_{x}(z^{(t)}) + \nabla f_{x}(z^{(t)})^{\top}(z - z^{(t)}) + \frac{1}{2} \|z - z^{(t)}\|_{2}^{2} + \lambda \|z\|_{1}$$

 \Rightarrow Replace the Hessian $D^{\top}D$ by L Id.

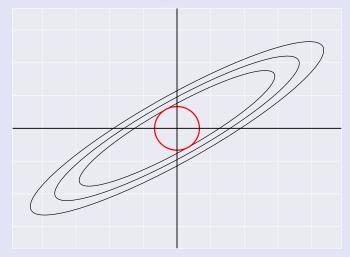
Separable function that can be minimized in close form

$$\begin{aligned} \underset{z}{\operatorname{argmin}} \frac{L}{2} \left\| z^{(t)} - \frac{1}{L} \nabla f_{x}(z^{(t)}) - z \right\|_{2}^{2} + \lambda \|z\|_{1} &= \operatorname{ST} \left(z^{(t)} - \frac{1}{L} \nabla f_{x}(z^{(t)}), \frac{\lambda}{L} \right) \\ &= \operatorname{prox}_{\frac{\lambda}{L}} \left(z^{(t)} - \frac{1}{L} \nabla f_{x}(z^{(t)}) \right) \end{aligned}$$

► Level lines form $z^{\top}D^{\top}Dz$

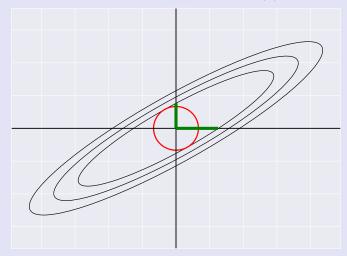


▶ Level lines form $z^{\top}D^{\top}Dz \leq L||z||_2$



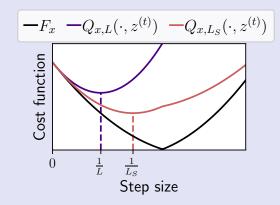
► Level lines form $z^{\top}D^{\top}Dz \leq z^{\top}A^{\top}\Lambda Az$ [Moreau and Bruna 2017]

▶ Level lines form $z^{\top}D^{\top}Dz \leq L_{S}||z||_{2}$ for $Supp(z) \subset S$



Oracle ISTA: Majoration-Minimization

For all z such that $\text{Supp}(z) \subset S \doteq \text{Supp}(z^{(t)})$, $F_x(z) \leq f_x(z^{(t)}) + \nabla f_x(z^{(t)})^\top (z - z^{(t)}) + \frac{L_S}{2} ||z - z^{(t)}||_2^2 + \lambda ||z||_1$ with $L_S = ||D_{\cdot,S}||_2^2$.



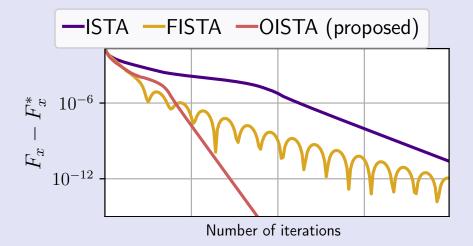
Oracle ISTA (OISTA):

- 1. Get the Lipschitz constant L_S associated with support $S = \text{Supp}(z^{(t)})$.
- 2. Compute $y^{(t+1)}$ as a step of ISTA with a step-size of $1/L_S$

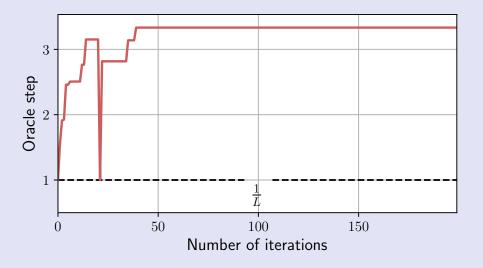
$$y^{(t+1)} = \mathsf{ST}\left(z^{(t)} - \frac{1}{L_S}D^{\top}(Dz^{(t)} - x), \frac{\lambda}{L_S}\right)$$

- 3. If $\operatorname{Supp}(y^{t+1}) \subset S$, accept the update $z^{(t+1)} = y^{(t+1)}$.
- 4. Else, $z^{(t+1)}$ is computed with step size 1/L.

OISTA: Performances



OISTA – Step-size



$$egin{aligned} S^* &= {\it Supp}(Z^*) \ \mu^* &= \min \| Dz \|_2^2 ext{ for } \| z \|_2 = 1 ext{ and } {\it Supp}(z) \subset S^*. \end{aligned}$$

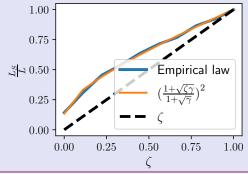
If $\mu^* > 0$, OISTA converges with a linear rate $F_x(z^{(t)}) - F_x(z^*) \le (1 - \frac{\mu^*}{L_{S^*}})^{t - T^*} (F_x(z^{(T^*)}) - F_x(z^*)) .$

OISTA – Gaussian setting

Acceleration quantification with Marchenko-Pastur

Entries in $D \in \mathbb{R}^{n \times m}$ are sampled from $\mathcal{N}(0, 1)$ and S is sampled uniformly with |S| = k. Denote $m/n \to \gamma$, $k/m \to \zeta$, with $k, m, n \to +\infty$. Then

$$\frac{L_S}{L} \to \left(\frac{1+\sqrt{\zeta\gamma}}{1+\sqrt{\gamma}}\right)^2$$
 . (1)



$$\frac{\text{Empirical law}}{n = 200, \ m = 600}$$

- In practice, OISTA is not practical, as you need to compute L_S at each iteration and this is costly.
- No precomputation possible: there is an exponential number of supports S.

Using deep learning to approximate OISTA

Assume that we want to solve the Lasso for many observation $\{x_1, \ldots, x_N\}$ with a fixed direct operator D *i.e.* for each x computes

$$\mathcal{I}_D(x) = \operatorname*{argmin}_z \frac{1}{2} \|x - Dz\| + \lambda \|z\|_1$$

Thus, the goal is not to solve one problem but multiple problems.

 \Rightarrow Can we leverage the problem's structure?

- **ISTA**: worst case algorithm, second order information is *L*.
- **OISTA**: adaptive algorithm, second order information is L_S (NP-hard).
- LISTA: adaptive algorithm, use DL to adapt to second order information?

ISTA is a Neural Network

ISTA

$$z^{(t+1)} = \mathsf{ST}\left(z^{(t)} - \frac{1}{L}D^{\top}(Dz^{(t)} - x), \frac{\lambda}{L}\right)$$

Let $W_z = I_m - \frac{1}{L}D^{\top}D$ and $W_x = \frac{1}{L}D^{\top}$. Then

$$z^{(t+1)} = \mathsf{ST}(W_z z^{(t)} + W_x x, \frac{\lambda}{L})$$

One step of ISTA

$$x \rightarrow W_{x} \rightarrow f \qquad ST(\cdot, \frac{\lambda}{L}) \rightarrow z^{(t+1)}$$

$$z^{(t)} \rightarrow W_{z}$$

ISTA is a Neural Network

ISTA

$$z^{(t+1)} = \mathsf{ST}\left(z^{(t)} - \frac{1}{L}D^{\top}(Dz^{(t)} - x), \frac{\lambda}{L}\right)$$

Let $W_z = I_m - \frac{1}{L}D^{\top}D$ and $W_x = \frac{1}{L}D^{\top}$. Then

$$z^{(t+1)} = \mathsf{ST}(W_z z^{(t)} + W_x x, \frac{\lambda}{L})$$

RNN equivalent to ISTA

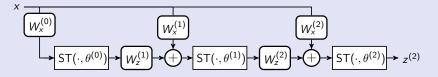
$$x \rightarrow W_{x} \rightarrow \bigoplus ST(\cdot, \frac{\lambda}{L}) \longrightarrow z^{*}$$

Learned ISTA

Recurrence relation of ISTA define a RNN

$$z^{(t+1)} = \mathsf{ST}\left(z^{(t)} - \frac{1}{L}D^{\top}(Dz^{(t)} - x), \frac{\lambda}{L}\right) \xrightarrow{X \to W_x} \xrightarrow{\mathsf{ST}(\cdot, \frac{\lambda}{L})} \xrightarrow{z^*}$$

This RNN can be unfolded as a feed-forward network.



Let $\Phi_{\Theta^{(T)}}$ denote a network with T layers parametrized with $\Theta^{(T)}$.

If
$$W_x^{(i)} = W_x$$
 and $W_z^{(i)} = W_z$, then $\Phi_{\Theta^T}(x) = z^{(t)}$.

Empirical risk minimization : We need a training set of $\{x_1, \ldots, x_N\}$ training sample and our goad is to accelerate ISTA on unseen data $x \sim p$.

The training solves

$$\tilde{\Theta}^{(T)} \in \arg\min_{\Theta^{(T)}} \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}_{x}(\Phi_{\Theta^{(T)}}(x_{i}))$$
.

for a loss \mathcal{L}_{x} .

\Rightarrow Choice of loss \mathcal{L}_x ?

Supervised: a ground truth $z^*(x)$ is known

$$\mathcal{L}_x(z) = rac{1}{2} \|z-z^*(x)\|$$

Solving the inverse problem.

Supervised: a ground truth $z^*(x)$ is known

$$\mathcal{L}_x(z) = \frac{1}{2} \|z - z^*(x)\|$$

Solving the inverse problem.

Semi-supervised: the solution of the Lasso $z^*(x)$ is known

$$\mathcal{L}_{x}(z) = \frac{1}{2} \|z - z^{*}(x)\|$$

Accelerating the resolution of the Lasso.

Supervised: a ground truth $z^*(x)$ is known

$$\mathcal{L}_x(z) = \frac{1}{2} \|z - z^*(x)\|$$

Solving the inverse problem.

Semi-supervised: the solution of the Lasso $z^*(x)$ is known

$$\mathcal{L}_{x}(z) = \frac{1}{2} \|z - z^{*}(x)\|$$

Accelerating the resolution of the Lasso.

Unsupervised: there is no ground truth

$$\mathcal{L}_x(z) = rac{1}{2} \|x - Dz\|_2^2 + \lambda \|z\|_1$$

Solving the Lasso.

Supervised: a ground truth $z^*(x)$ is known

$$\mathcal{L}_{x}(z) = \frac{1}{2} \|z - z^{*}(x)\|$$

Solving the inverse problem.

Semi-supervised: the solution of the Lasso $z^*(x)$ is known

$$\mathcal{L}_{x}(z) = \frac{1}{2} \|z - z^{*}(x)\|$$

Accelerating the resolution of the Lasso.

Unsupervised: there is no ground truth

$$\mathcal{L}_{x}(z) = rac{1}{2} \|x - Dz\|_{2}^{2} + \lambda \|z\|_{1}$$

Solving the Lasso.

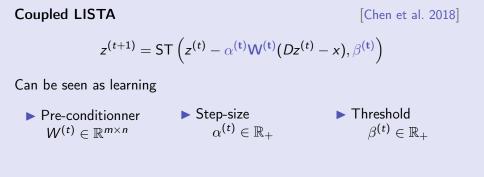
LISTA – Parametrizations

General LISTA model

[Gregor and Le Cun 2010]

$$z^{(t+1)} = \mathsf{ST}\left(\mathsf{W}_{\mathsf{e}}^{(t)} z^{(t)} + \mathsf{W}_{\mathsf{x}}^{(t)} x, \theta^{(t)}\right)$$

The structure of D is lost in the linear transform.



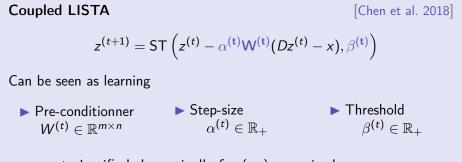
LISTA – Parametrizations

General LISTA model

[Gregor and Le Cun 2010]

$$z^{(t+1)} = \mathsf{ST}\left(\mathsf{W}_{\mathbf{e}}^{(t)} z^{(t)} + \mathsf{W}_{\mathsf{x}}^{(t)} x, \theta^{(t)}\right)$$

The structure of D is lost in the linear transform.



 \Rightarrow Justified theoretically for (un)supervised convergence

Theorem – Asymptotic convergence of the weights

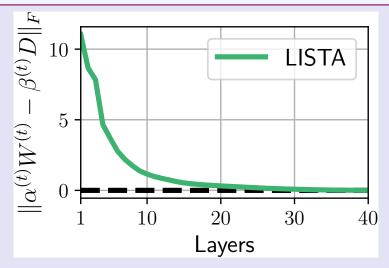
Consider a sequence of nested networks $\Phi_{\Theta^{(T)}} s.t. \Phi_{\Theta^{(t)}}(x) = \phi_{\theta^{(t)}}(\Phi_{\Theta^{(t+1)}}(x), x)$. Assume that

- 1. the sequence of parameters converges *i.e.* $\theta^{(t)} \xrightarrow[t \to \infty]{} \theta^* = (W^*, \alpha^*, \beta^*) ,$
- 2. the output of the network converges toward a solution $z^*(x)$ of the Lasso uniformly over the equiregularization set \mathcal{B}_{∞} , *i.e.* $\sup_{x \in \mathcal{B}_{\infty}} \|\Phi_{\Theta}(\tau)(x) - z^*(x)\| \xrightarrow[T \to \infty]{} 0$.

Then $rac{lpha^*}{eta^*} W^* = D$.

Sad result: "The deep layers of LISTA only learn a better step size".

Numerical verification



40-layers LISTA network trained on a 10 \times 20 problem with $\lambda = 0.1$ The weights $W^{(t)}$ align with D and α, β get coupled. Restricted parametrization : Only learn a step-size $\alpha^{(t)}$

$$z^{(t+1)} = \mathsf{ST}\left(z^{(t)} - \alpha^{(t)}D^{\top}(Dz^{(t)} - x), \lambda\alpha^{(t)}\right)$$

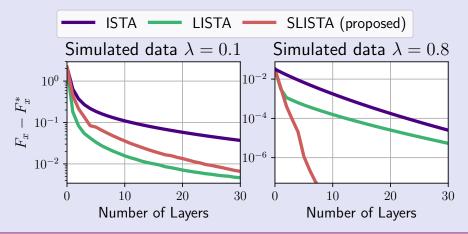
Fewer parameters: T instead of (2 + mn)T.

 $\Rightarrow \mathsf{Easier to \ learn} \qquad \Rightarrow \mathsf{Reduced \ performances}?$

Goal: Learn adapted step sizes for ISTA.

Performances

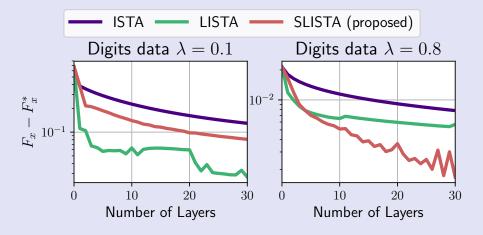
Simulated data: m = 256 and n = 64 $D_k \sim \mathcal{U}(S^{n-1})$ and $x = \frac{\tilde{x}}{\|D^\top \tilde{x}\|_{\infty}}$ with $\tilde{x}_i \sim \mathcal{N}(0, 1)$



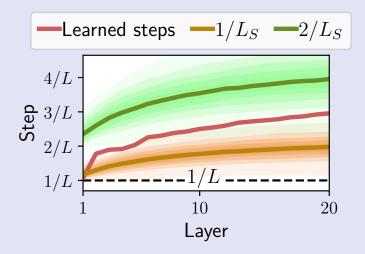
Performance on semi-real datasets

Digits: 8 × 8 images [Pedregosa et al. 2011]

 D_k and \tilde{x} sampled uniformly from the digits and $x = \frac{\tilde{x}}{\|D^\top \tilde{x}\|_{\infty}}$.



Link with OISTA



The learned step-sizes are linked to the distribution of $1/L_S$

- Using 1/L as a step size is not always the fastest.
- Structure of the sparsity can help choose a better step size.
- ► This structure can be accessed with DL.

Take home message:

First order structure is needed in optimization. No hope to learn an algorithm better than ISTA.

(except for step-sizes!)

Related work:

[Moreau and Bruna 2017]

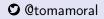
- ▶ It is possible to find a better starting point for ISTA.
- There exists some adversarial cases.
- It is harder and harder as you get closer to the solution.

Code to reproduce the figures is available online:

O adopty : github.com/tommoral/adopty

Slides are on my web page:

tommoral.github.io



Convergence rates

If f_x is μ -strongly convex, *i.e.* $\sigma_{\min}(D^T D) \ge \mu > 0$

$$F_x(z^{(t)}) - F_x(z^*) \le \left(1 - \frac{\mu}{L}\right)^t (F_x(0) - F_x(z^*))$$

In the general case, $F_x(z^{(t)}) - F_x(z^*) \leq \frac{L \|z^*\|_2}{t}$

Proposition 3.1: Convergence

When D is such that the solution is unique for all x and $\lambda > 0$, the sequence $(z^{(t)})$ generated by the algorithm converges to $z^* = \operatorname{argmin} F_x$. Further, there exists an iteration T^* such that for $t \ge T^*$, $\operatorname{Supp}(z^{(t)}) = \operatorname{Supp}(z^*) \triangleq S^*$.

Proposition 3.2: Convergence rate
For
$$t > T^*$$
,
 $F_x(z^{(t)}) - F_x(z^*) \le L_{S^*} \frac{\|z^* - z^{(T^*)}\|^2}{2(t - T^*)}$.

If moreover, $\lambda_{\min}(D_{S^*}^{ op}D_{S^*})=\mu^*>0$, then

$$F_x(z^{(t)}) - F_x(z^*) \le (1 - \frac{\mu^*}{L_{S^*}})^{t-T^*}(F_x(z^{(T^*)}) - F_x(z^*))$$
.

Interlude – regularization λ

Importance of the parameter λ

$$\mathcal{L}_{x}(z) = \frac{1}{2} \|x - Dz\|_{2}^{2} + \lambda \|z\|_{1}$$
$$z^{(t+1)} = \mathsf{ST}\left(z^{(t)} - \alpha^{(t)}D^{\top}(Dz^{(t)} - x), \lambda \alpha^{(t)}\right)$$

Control the distribution of $z^*(x)$ sparsity.

Maximal value $\lambda_{\max} = \|D^{\top}x\|_{\infty}$ is the minimal value of λ for which $z^*(x) = 0$ Equiregularization set Set in \mathbb{R}^n for which $\lambda_{\max} = 1$ $\mathcal{B}_{\infty} = \{x \in \mathbb{R}^n ; \|D^{\top}x\|_{\infty} = 1\}$

 \Rightarrow Training performed with points sampled in \mathcal{B}_∞