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Electrophysiology

Magnetoencephalography Electroencephalography
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Inverse problems

Maxwell’s
Equations

xxx

Observed signal

zzz

Electrical activity
DDD

Inverse Problem

Forward model: xxx = DDDzzz

Inverse problem: zzz = f (xxx) (ill-posed)

Optimization with a regularization R encoding prior knowledge
argminzzz ‖xxx −DDDzzz‖22 +R(zzz)

Example: sparsity with R = λ‖ · ‖1
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Other inverse problems

Ultra sound fMRI - compress sensing

Astrophysic
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Some challenges for inverse problems

Evaluation: often there is no ground truth,
• In neuroscience, we cannot access the brain electrical activity.
• How to evaluate how well it is reconstructed?

Open problem in unsupervised learning

Modelization: how to better account for the signal structure,
• `2 reconstruction evaluation does not account for localization
• Optimal transport could help in this case?

Computational: solving these problems can be too long,
• Many problems share the same forward operator DDD
• Can we use the structure of the problem?

Today’s talk topic!
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Better step sizes for
Iterative Shrinkage-Thresholding Algorithm (ISTA)
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The Lasso

For a fixed design matrix D ∈ Rn×m and λ > 0, the Lasso for x ∈ Rn is

z∗ = argmin
z

Fx(z) =
1
2
‖x − Dz‖22︸ ︷︷ ︸

fx (z)

+λ‖z‖1

a.k.a. sparse coding, sparse linear regression, ...

We are interested in the over-complete case where m > n.

Properties
I The problem is convex in z but not strongly convex in general

I z = 0 is solution if and only if λ ≥ λmax
.

= ‖D>x‖∞
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ISTA: [Daubechies et al. 2004]
Iterative Shrinkage-Thresholding Algorithm

fx is a L-smooth function with L = ‖D‖22 and

∇fx(z(t)) = D>(Dz(t) − x)

The `1-norm is proximable with a separable proximal operator

proxµ‖·‖1(x) = sign(x) max(0, |x | − µ) = ST (x , µ)

We can use the proximal gradient descent algorithm (ISTA)

z(t+1) = ST

z(t) − ρ ∇fx(z(t))︸ ︷︷ ︸
D>(Dz(t)−x)

, ρλ


Here, ρ play the role of a step size (in [0, 2

L [).
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ISTA: Majoration-Minimization

Taylor expansion of fx in z(t)

Fx(z) = fx(z(t)) +∇fx(z(t))>(z − z(t)) +
1
2
‖D(z − z(t))‖22 + λ‖z‖1

≤ fx(z(t)) +∇fx(z(t))>(z − z(t)) +
L
2
‖z − z(t)‖22 + λ‖z‖1

⇒ Replace the Hessian D>D by L Id.

Separable function that can be minimized in close form

argmin
z

L
2

∥∥∥∥z(t) − 1
L
∇fx(z(t))− z

∥∥∥∥2

2
+ λ‖z‖1 = ST

(
z(t) − 1

L
∇fx(z(t)),

λ

L

)
= proxλ

L

(
z(t) − 1

L
∇fx(z(t))

)
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ISTA: Majoration for the data-fit

I Level lines form z>D>Dz
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ISTA: Majoration for the data-fit

I Level lines form z>D>Dz ≤ L‖z‖2
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ISTA: Majoration for the data-fit

I Level lines form z>D>Dz ≤ z>A>ΛAz [Moreau and Bruna 2017]
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ISTA: Majoration for the data-fit

I Level lines form z>D>Dz ≤ LS‖z‖2 for Supp(z) ⊂ S
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Oracle ISTA: Majoration-Minimization

For all z such that Supp(z) ⊂ S .
= Supp(z(t)),

Fx(z) ≤ fx(z(t)) +∇fx(z(t))>(z − z(t)) +
LS

2
‖z − z(t)‖22 + λ‖z‖1

with LS = ‖D·,S‖22.

0 1
L

1
LS

Step size

C
os

t
fu

nc
ti

on

Fx Qx,L(·, z(t)) Qx,LS(·, z(t))
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Better step-sizes for ISTA

Oracle ISTA (OISTA):

1. Get the Lipschitz constant LS associated with support S = Supp(z(t)).

2. Compute y (t+1) as a step of ISTA with a step-size of 1/LS

y (t+1) = ST
(

z(t) − 1
LS

D>(Dz(t) − x),
λ

LS

)
3. If Supp(y t+1) ⊂ S , accept the update z(t+1) = y (t+1).

4. Else, z(t+1) is computed with step size 1/L.
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OISTA: Performances

10−6

10−12

F
x
−
F
∗ x

0 50 100 150

Number of iterations

1
2
3

O
ra

cl
e

st
ep

1
L

ISTA FISTA OISTA (proposed)

Number of iterations

13/32



OISTA – Step-size
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OISTA – Improved-convergence rates

S∗ = Supp(Z ∗)

µ∗ = min ‖Dz‖22 for ‖z‖2 = 1 and Supp(z) ⊂ S∗.

If µ∗ > 0, OISTA converges with a linear rate

Fx(z(t))− Fx(z∗) ≤ (1− µ∗

LS∗
)t−T∗(Fx(z(T∗))− Fx(z∗)) .
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OISTA – Gaussian setting

Acceleration quantification with Marchenko-Pastur
Entries in D ∈ Rn×m are sampled from N (0, 1) and S is sampled uniformly
with |S | = k . Denote m/n→ γ, k/m→ ζ , with k ,m, n→ +∞ . Then

LS

L
→
(
1 +
√
ζγ

1 +
√
γ

)2

. (1)
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ζ
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L
S L Empirical law

(1+
√
ζγ

1+
√
γ )

2

ζ

Empirical law

n = 200, m = 600
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OISTA – Limitation

I In practice, OISTA is not practical, as you need to compute LS at each
iteration and this is costly.

I No precomputation possible: there is an exponential number of
supports S .
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Using deep learning to approximate OISTA
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Solving the Lasso many times

Assume that we want to solve the Lasso for many observation {x1, . . . , xN}
with a fixed direct operator D i.e.for each x computes

ID(x) = argmin
z

1
2
‖x − Dz‖+ λ‖z‖1

Thus, the goal is not to solve one problem but multiple problems.

⇒ Can we leverage the problem’s structure?

I ISTA: worst case algorithm, second order information is L.

I OISTA: adaptive algorithm, second order information is LS (NP-hard).

I LISTA: adaptive algorithm, use DL to adapt to second order
information?
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ISTA is a Neural Network

ISTA

z(t+1) = ST
(

z(t) − 1
L
D>(Dz(t) − x),

λ

L

)

Let Wz = Im − 1
LD>D and Wx = 1

LD>. Then

z(t+1) = ST(Wzz(t) + Wxx ,
λ

L
)

One step of ISTA
Wxx

Wzz(t)

ST(·, λL ) z(t+1)
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Learned ISTA [Gregor and Le Cun 2010]

Recurrence relation of ISTA define a RNN

z(t+1) = ST
(

z(t) − 1
L
D>(Dz(t) − x),

λ

L

) Wxx ST(·, λL ) z∗

Wz

This RNN can be unfolded as a feed-forward network.

x

W (0)
x

ST(·, θ(0)) W (1)
z

W (1)
x

ST(·, θ(1)) W (2)
z

W (2)
x

ST(·, θ(2)) z(2)

Let ΦΘ(T ) denote a network with T layers parametrized with Θ(T ).

If W (i)
x = Wx and W (i)

z = Wz , then ΦΘT (x) = z(t).
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LISTA – Training

Empirical risk minimization : We need a training set of {x1, . . . xN
training sample and our goad is to accelerate ISTA on unseen data x ∼ p.

The training solves

Θ̃(T ) ∈ arg min
Θ(T )

1
N

N∑
i=1

Lx(ΦΘ(T )(xi )) .

for a loss Lx .

⇒ Choice of loss Lx?
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LISTA – Training

Supervised: a ground truth z∗(x) is known

Lx(z) =
1
2
‖z − z∗(x)‖

Solving the inverse problem.

Semi-supervised: the solution of the Lasso z∗(x) is known

Lx(z) =
1
2
‖z − z∗(x)‖

Accelerating the resolution of the Lasso.

Unsupervised: there is no ground truth

Lx(z) =
1
2
‖x − Dz‖22 + λ‖z‖1

Solving the Lasso.

23/32



LISTA – Training

Supervised: a ground truth z∗(x) is known

Lx(z) =
1
2
‖z − z∗(x)‖

Solving the inverse problem.

Semi-supervised: the solution of the Lasso z∗(x) is known

Lx(z) =
1
2
‖z − z∗(x)‖

Accelerating the resolution of the Lasso.

Unsupervised: there is no ground truth

Lx(z) =
1
2
‖x − Dz‖22 + λ‖z‖1

Solving the Lasso.

23/32



LISTA – Training

Supervised: a ground truth z∗(x) is known

Lx(z) =
1
2
‖z − z∗(x)‖

Solving the inverse problem.

Semi-supervised: the solution of the Lasso z∗(x) is known

Lx(z) =
1
2
‖z − z∗(x)‖

Accelerating the resolution of the Lasso.

Unsupervised: there is no ground truth

Lx(z) =
1
2
‖x − Dz‖22 + λ‖z‖1

Solving the Lasso.

23/32



LISTA – Training

Supervised: a ground truth z∗(x) is known

Lx(z) =
1
2
‖z − z∗(x)‖

Solving the inverse problem.

Semi-supervised: the solution of the Lasso z∗(x) is known

Lx(z) =
1
2
‖z − z∗(x)‖

Accelerating the resolution of the Lasso.

Unsupervised: there is no ground truth

Lx(z) =
1
2
‖x − Dz‖22 + λ‖z‖1

Solving the Lasso.

23/32



LISTA – Parametrizations

General LISTA model [Gregor and Le Cun 2010]

z(t+1) = ST
(
W(t)

e z(t) + W(t)
x x , θ(t)

)
The structure of D is lost in the linear transform.

Coupled LISTA [Chen et al. 2018]

z(t+1) = ST
(
z(t) − α(t)W(t)(Dz(t) − x), β(t)

)
Can be seen as learning

I Pre-conditionner
W (t) ∈ Rm×n

I Step-size
α(t) ∈ R+

I Threshold
β(t) ∈ R+

⇒ Justified theoretically for (un)supervised convergence
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What does LISTA learn? [Ablin et al. 2019]

Theorem – Asymptotic convergence of the weights
Consider a sequence of nested networks ΦΘ(T ) s.t.
ΦΘ(t)(x) = φθ(t)(ΦΘ(t+1)(x), x) . Assume that

1. the sequence of parameters converges i.e.
θ(t) −−−→

t→∞
θ∗ = (W ∗, α∗, β∗) ,

2. the output of the network converges toward a solution z∗(x) of the
Lasso uniformly over the equiregularization set B∞ , i.e.
supx∈B∞ ‖ΦΘ(T )(x)− z∗(x)‖ −−−−→

T→∞
0 .

Then α∗

β∗W
∗ = D .

Sad result: "The deep layers of LISTA only learn a better step size".
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Numerical verification

1 10 20 30 40

Layers

0

5

10
‖α

(t
) W

(t
)
−
β

(t
) D
‖ F

LISTA

40-layers LISTA network trained on a 10× 20 problem with λ = 0.1
The weights W (t) align with D and α, β get coupled.
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Step LISTA [Ablin et al. 2019]

Restricted parametrization : Only learn a step-size α(t)

z(t+1) = ST
(
z(t) − α(t)D>(Dz(t) − x), λα(t)

)
Fewer parameters: T instead of (2 + mn)T .

⇒ Easier to learn ⇒ Reduced performances?

Goal: Learn adapted step sizes for ISTA.

27/32



Performances

Simulated data: m = 256 and n = 64

Dk ∼ U(Sn−1) and x = x̃
‖D>x̃‖∞ with x̃i ∼ N (0, 1)

0 10 20 30

Number of Layers

10−2

10−1

100

F
x
−
F
∗ x

Simulated data λ = 0.1

0 10 20 30

Number of Layers

10−6

10−4

10−2

Simulated data λ = 0.8

ISTA LISTA SLISTA (proposed)
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Performance on semi-real datasets

Digits: 8× 8 images [Pedregosa et al. 2011]

Dk and x̃ sampled uniformly from the digits and x = x̃
‖D>x̃‖∞ .

0 10 20 30

Number of Layers

10−1

F
x
−
F
∗ x

Digits data λ = 0.1

0 10 20 30

Number of Layers

10−2

Digits data λ = 0.8

ISTA LISTA SLISTA (proposed)
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Link with OISTA

1 10 20

Layer

1/L

2/L

3/L

4/L

S
te

p

1/L

Learned steps 1/LS 2/LS

The learned step-sizes are linked to the distribution of 1/LS
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Conclusion

I Using 1/L as a step size is not always the fastest.

I Structure of the sparsity can help choose a better step size.

I This structure can be accessed with DL.

Take home message:

First order structure is needed in optimization.
No hope to learn an algorithm better than ISTA.

(except for step-sizes!)
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Conclusion

Related work: [Moreau and Bruna 2017]

I It is possible to find a better starting point for ISTA.
I There exists some adversarial cases.
I It is harder and harder as you get closer to the solution.

Code to reproduce the figures is available online:

adopty : github.com/tommoral/adopty

Slides are on my web page:

tommoral.github.io @tomamoral
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ISTA – Convergence

Convergence rates

If fx is µ-strongly convex, i.e. σmin(DTD) ≥ µ > 0

Fx(z(t))− Fx(z∗) ≤
(
1− µ

L

)t
(Fx(0)− Fx(z∗))

In the general case, Fx(z(t))− Fx(z∗) ≤ L‖z∗‖2
t
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OISTA – Convergence

Proposition 3.1: Convergence
When D is such that the solution is unique for all x and λ > 0,
the sequence (z(t)) generated by the algorithm converges to
z∗ = argmin Fx .
Further, there exists an iteration T ∗ such that for t ≥ T ∗ ,
Supp(z(t)) = Supp(z∗) , S∗.

Proposition 3.2: Convergence rate
For t > T ∗ ,

Fx(z(t))− Fx(z∗) ≤ LS∗
‖z∗−z(T∗)‖2

2(t−T∗) .

If moreover, λmin(D>S∗DS∗) = µ∗ > 0 , then

Fx(z(t))− Fx(z∗) ≤ (1− µ∗

LS∗
)t−T∗(Fx(z(T∗))− Fx(z∗)) .
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Interlude – regularization λ

Importance of the parameter λ

Lx(z) =
1
2
‖x − Dz‖22 + λ‖z‖1

z(t+1) = ST
(
z(t) − α(t)D>(Dz(t) − x), λα(t)

)
Control the distribution of z∗(x) sparsity.

Maximal value
λmax = ‖D>x‖∞ is the minimal
value of λ for which

z∗(x) = 0

Equiregularization set
Set in Rn for which λmax = 1

B∞ = {x ∈ Rn ; ‖D>x‖∞ = 1}

⇒ Training performed with points sampled in B∞
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