Learning step sizes for
unfolded sparse coding
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Inverse problems

MEG

Inverse Problem

T

Maxwell's
Equations

(o)

Electrical activity Observed signal

Forward model: x = Dz Inverse problem: z = f(x) (ill-posed)

Optimization with a regularization R encoding prior knowledge
argmin, ||x — Dz||3 + R(z2)

Example: sparsity with R = A|| - |l1
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Some challenges for inverse problems

Evaluation: often there is no ground truth,

e In neuroscience, we cannot access the brain electrical activity.
e How to evaluate how well it is reconstructed?
Open problem in unsupervised learning

Modelization: how to better account for the signal structure,

e /> reconstruction evaluation does not account for localization
e Optimal transport could help in this case?

Computational: solving these problems can be too long,

e Many problems share the same forward operator D
e Can we use the structure of the problem?
Today's talk topic!
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Better step sizes for
lterative Shrinkage-Thresholding Algorithm (ISTA)
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The Lasso

For a fixed design matrix D € R"™*™ and A > 0, the Lasso for x € R” is

1
z" = argmin F(2) = 5l — Dz||5 +Xl|zlx
z —
f(2)

a.k.a. sparse coding, sparse linear regression, ...

We are interested in the over-complete case where m > n.
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The Lasso

For a fixed design matrix D € R"*™ and X\ > 0, the Lasso for x € R" is

. 1
z" = argmin F(z) = §||x — DzH% +A[z]]1
z

-—
< (2)

a.k.a. sparse coding, sparse linear regression, ...

We are interested in the over-complete case where m > n.

Properties

» The problem is convex in z but not strongly convex in general

» z =0 is solution if and only if A > Amax = [|D" x|l
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ISTA: [Daubechies et al. 2004]
Iterative Shrinkage-Thresholding Algorithm

f. is a L-smooth function with L = ||D||3 and
Vh(z®)) = DT(Dz() — x)
The ¢1-norm is proximable with a separable proximal operator

prox,,|.j, (x) = sign(x) max(0, [x| — u) = ST(x, )
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ISTA: [Daubechies et al. 2004]
Iterative Shrinkage-Thresholding Algorithm

f. is a L-smooth function with L = ||D||3 and
V£ (z®) = DT (Dz") — x)
The ¢1-norm is proximable with a separable proximal operator
prox,,|.j, (x) = sign(x) max(0, [x| — u) = ST(x, )

We can use the proximal gradient descent algorithm (ISTA)

2D = ST | 20 — p VE(D) | pA
——

DT (Dz(t) —x)

Here, p play the role of a step size (in [0, Z[).
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ISTA: Majoration-Minimization

Taylor expansion of f; in z(t)
=) = GEY) - TEE) e — 2 4 %HD(Z — zM)|E + Azl
L
S&@m)+vﬂﬁuwnz—ﬂﬂf+jV—J“W§+MVM

= Replace the Hessian DD by L Id.

Separable function that can be minimized in close form

2 1 A
+ Al|zllp =ST <z(f> — 2V (2, >
) L L

= proxx (z(t) - inX(z(t))>

L

A8 — %fo(z(t)) —Zz

. L
argmin —
gz 5
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ISTA: Majoration for the data-fit

» Level lines form z"DT Dz
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ISTA: Majoration for the data-fit

» Level lines form z' DDz < zTATAAz [Moreau and Bruna 2017]
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ISTA: Majoration for the data-fit

» Level lines form z"D"Dz < Ls||z||» for Supp(z) C S

ZdAN
\J

10/32



Oracle ISTA: Majoration-Minimization

For all z such that Supp(z) C S = Supp(z(),
Fu(2) < £(21) + V(2) (2 - 29) + %HZ — 2913+ Alzllx

with Ls = [|D. s]3.

_F;E _Qx,L('az(t)) _Qx,LS('wZ(t))

Cost function

Step size
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Better step-sizes for ISTA

Oracle ISTA (OISTA):

1. Get the Lipschitz constant Ls associated with support S = Supp(z(")).

N

. Compute y(t*+1) as a step of ISTA with a step-size of 1/Ls

Y ST (20— L0702 - ), 1)

S S

w

. If Supp(ytt1) C S, accept the update z(t+1) =y (t+1),

4. Else, z(t*1) is computed with step size 1/L.
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OISTA: Performances

—ISTA —FISTA —OISTA (proposed)
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OISTA — Step-size

Oracle step

0 50 100 150
Number of iterations
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OISTA — Improved-convergence rates

S* = Supp(Z*)
w* = min ||Dz||3 for ||z||2 = 1 and Supp(z) C S*.

If u* >0, OISTA converges with a linear rate

FX(Z(t)) . FX(Z*) < (1 . _LSL**)t—T*(FX(Z(T*)) — Fx(z*)) .
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OISTA — Gaussian setting

Acceleration quantification with Marchenko-Pastur

Entries in D € R"™™ are sampled from A/(0,1) and S is sampled uniformly
with |S| = k. Denote m/n — ~, k/m — ¢ , with k,m,n — 400 . Then

Ls_><1+\/a
L 14+ 7
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OISTA — Limitation

» In practice, OISTA is not practical, as you need to compute Ls at each
iteration and this is costly.

» No precomputation possible: there is an exponential number of
supports S.
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Using deep learning to approximate OISTA
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Solving the Lasso many times

Assume that we want to solve the Lasso for many observation {xi,...,xy}
with a fixed direct operator D i.e.for each x computes

1
Ip(x) = argmin §||x — Dz|| + A||z||1
z
Thus, the goal is not to solve one problem but multiple problems.

=> Can we leverage the problem’s structure?

» ISTA: worst case algorithm, second order information is L.
» OISTA: adaptive algorithm, second order information is Ls (NP-hard).

» LISTA: adaptive algorithm, use DL to adapt to second order
information?
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ISTA is a Neural Network

ISTA

() = sT <z(t) - %DT(Dz(t) — x), i)

Let W, = 1,, — %DTD and W, = %DT. Then

2D = ST(W,z() 4+ Wix, %)

s Z(t+1)

One step of ISTA
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ISTA is a Neural Network

ISTA

() — ST <z(t) — %DT(DZ(t) — x), i)

Let W, = I, — 1DTD and Wy = £DT. Then

2D = ST(W,2() + W,x, %)

RNN equivalent to
ISTA
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Learned ISTA [Gregor and Le Cun 2010]

Recurrence relation of ISTA define a RNN

264 =T (20 - 70709 = ,3)

This RNN can be unfolded as a feed-forward network.

ST('79(°))—’[WZ(1) © 5T('79(”)—’[W§2) (D-{5T(-, 60> @

X

Let ®g(r) denote a network with T layers parametrized with oM.

If W = W, and W) = W, then dgr(x) = 2().
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LISTA — Training

Empirical risk minimization : We need a training set of {xi,...xy
training sample and our goad is to accelerate ISTA on unseen data x ~ p.

The training solves

q)e(T X, ) o

||M2

6T ¢ arg min
o(T)

for a loss L

= Choice of loss L7
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LISTA — Training

Supervised: a ground truth z*(x) is known
L .
L«(2) = 5llz = 2" (x)]

Solving the inverse problem.
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LISTA — Training

Supervised: a ground truth z*(x) is known
L .
L«(2) = 5llz = 2" (x)]

Solving the inverse problem.

Semi-supervised: the solution of the Lasso z*(x) is known

Lud2) = 5l ()

Accelerating the resolution of the Lasso.

Unsupervised: there is no ground truth
1
£4(2) = 5 lx — D[ + Azl

Solving the Lasso.
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LISTA — Training

Unsupervised: there is no ground truth
1
£4(2) = 5 lx — D[ + Azl

Solving the Lasso.
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LISTA — Parametrizations

General LISTA model [Gregor and Le Cun 2010]
24D = ST (W20 + Wiy, 6)

The structure of D is lost in the linear transform.

Coupled LISTA [Chen et al. 2018]
At+1) _gT (z(f) — WO (DO _ x), 5(t))

Can be seen as learning

» Pre-conditionner > Step-size » Threshold
W) ¢ Rmxn o) e Ry 5 e R,
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LISTA — Parametrizations

Coupled LISTA [Chen et al. 2018]
At+1) _gT (z(f) — a®OWO(D® _ x), 5(t))

Can be seen as learning

» Pre-conditionner > Step-size » Threshold
W) ¢ Rmxn o) e Ry 5 e R,

= Justified theoretically for (un)supervised convergence
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What does LISTA learn? [Ablin et al. 2019]

Theorem — Asymptotic convergence of the weights
Consider a sequence of nested networks ®¢g(r) s.t.
Do) (X) = Py (Porern) (x), x) . Assume that

1. the sequence of parameters converges i.e.
e(t) S/ L. (W*,CM*,B*) 7
t—o0

2. the output of the network converges toward a solution z*(x) of the
Lasso uniformly over the equiregularization set B , i.e.
supxes,, [Pom (x) = 2*(x) ——0
T—o0

Then %W* =D .

Sad result: "The deep layers of LISTA only learn a better step size".
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Numerical verification

= | |STA

I 1 1 1 1

1 10 20 30 40
Layers

40-layers LISTA network trained on a 10 x 20 problem with A = 0.1
The weights W(9 align with D and «, 5 get coupled.
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Step LISTA [Ablin et al. 2019]

Restricted parametrization : Only learn a step-size a?)

A+ — ST (z(t) —a®DT (DY) — x), )\oz(t))

Fewer parameters: T instead of (2+ mn)T .

= Easier to learn = Reduced performances?

Goal: Learn adapted step sizes for ISTA.
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Performances

Simulated data: m = 256 and n = 64

Dy ~U(S" 1) and x = with Xx; ~ N(0,1)

IIDT~H

me= |STA === LISTA === SLISTA (proposed)
Simulated data A = 0.1 Simulated data A = 0.8
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Number of Layers Number of Layers
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Performance on semi-real datasets

Digits: 8 x 8 images [Pedregosa et al. 2011]

Dy and x sampled uniformly from the digits and x = ﬁ.

mm |STA === LISTA === SLISTA (proposed)

Digits data A = 0.1 Digits data A = 0.8
28
LLN 10°!
6 1}) 2}) 30 0 1}) 2}) 30
Number of Layers Number of Layers
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Link with OISTA

=== earned steps ==1/Lg ==2/Lg

4/L-

o S/L -
/?

1/L fm======= |/ P —

1 10 20
Layer

Ste

The learned step-sizes are linked to the distribution of 1/Lg
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Conclusion

» Using 1/L as a step size is not always the fastest.
» Structure of the sparsity can help choose a better step size.

» This structure can be accessed with DL.

Take home message:

First order structure is needed in optimization.
No hope to learn an algorithm better than ISTA.

(except for step-sizes!)
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Conclusion

Related work: [Moreau and Bruna 2017]

» It is possible to find a better starting point for ISTA.
» There exists some adversarial cases.

» It is harder and harder as you get closer to the solution.

Code to reproduce the figures is available online:

© adopty : github.com/tommoral/adopty

Slides are on my web page:

€ tommoral.github.io O @tomamoral
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ISTA — Convergence

Convergence rates

If £, is p-strongly convex, i.e. am;n(DTD) >u>0

Fo(29) - Fu(z) < (1 — %)t (Fx(0) — Fe(2"))

In the general case, Fx(z(t)) — F(z%) < M:”z
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OISTA - Convergence

Proposition 3.1: Convergence

When D is such that the solution is unique for all x and A > 0,
the sequence (z(*)) generated by the algorithm converges to
z* = argmin F .

Further, there exists an iteration T* such that for t > T* |
Supp(z(")) = Supp(z*) £ S*.

Proposition 3.2: Convergence rate
Fort>T%*,

2 AATH)|2
Fu(z®)) = Fu(z*) < Ls- 1552

If moreover, )\m;n(DST* Ds+) = p* > 0, then

*

Fu(2®) = Fu(z*) < (L= £)7 T (F(@T)) = Fu(2) -
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Interlude — regularization \

Importance of the parameter A
1 2
L£x(2) = 5lx = Dz|jz + Allz]lx

) — g7 (z(t) —a®DT (D) — x), /\a(t))

Control the distribution of z*(x) sparsity.

Maximal value Equiregularization set

Amax = ||D T X||so is the minimal Set in R” for which Apax = 1
value of A for which
Boo = {x€R"; [|D"x|oo =1}
z"(x) =0

= Training performed with points sampled in B,
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