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Context: Functional Neuroimaging

Goal: Study the brain mechanisms while it is functioning.

Outputs:

» Functional Atlases: Link areas of the brain to specific cognitive
functions.

» Functional Connectivity: Highlight the information flow in the
brain.

» Healthcare: Develop bio-markers for neurological disorders.

> ...
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Context: Functional Neuroimaging

How to record living brains activity: Electrophysiology

Direct measurement of electrical activity.

High Localization J Low Resolution J Invasive J
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Context: functional Neuroimaging

How to record living brains activity: Electrophysiology

Remote measurement of the electrical activity.

Current EEG
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K-Complex :
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K-Complex :
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Linear filtering

After Linear filters, everything looks like a sinusoid.
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= Lose the asymmetry and the shape information.
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Fourier Fallacy

"Even though it may be possible to analyze the complex forms of
brain waves into a number of different sine-wave frequencies, this
may lead only to what might be termed a “Fourier fallacy”, if one
assumes ad hoc that all of the necessary frequencies actually occur

as periodic phenomena in cell groups within the brain.”

[Jasper (1948)]
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Fourier Fallacy

"Even though it may be possible to analyze the complex forms of
brain waves into a number of different sine-wave frequencies, this
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Learning the waveform:
Convolutional Dictionary Learning

References

» Grosse, R., Raina, R., Kwong, H., and Ng, A. Y. (2007). Shift-Invariant
Sparse Coding for Audio Classification.

Cortex, 8:9
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Local structure in signals
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Local structure in signals
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Local structure in signals
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Local structure in signals
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Local structure in signals

Key idea: decouple the localization of the patterns and their shape
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Local structure in signals

Key idea: decouple the localization of the patterns and their shape
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Local structure in signals

Key idea: decouple the localization of the patterns and their shape
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Convolutional Dictionary Learning [Grosse2007]

For a set of N univariate signals x”, solve

mln . Za*dk +)\Z”aH1’
s.t. HdkHzﬁl

Hypothesis: patterns di are not present everywhere in the signal. They
are localized in time.

=- Sparse activation signals z

Technical hypothesis: the patterns are in the £>-ball: ||d||3 < 1.
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Optimization strategy

Bi-convex: The problem is not jointly convex in z/, and d but it is
convex in each block of coordinate.

Alternate minimization (a.k.a. Bloc Coordinate Descent):

> Z-step: given a fixed estimate of the atom, compute the activation
signal z; associated to each signal x".

» D-step: given a fixed estimate of the activation, update the atoms in
the dictionary dj.
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Learned atoms [Jas et al. (2017)]

Data: MWMMW
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Learned atoms [Jas et al. (2017)]

Data: MWWMW
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How to extend CSC to multivariate signals?

We can just use multivariate convolution,

K
Z zi* Dy) [t] = ZZZk[t—T] Dk[T]
k=1

eP k=171=1 eRP

with:
» X a multivariate signal of length T in R”

» Dy a multivariate signal of length L in RP
» Zz, a univariate activation signal of length T=T-L+1

However, this model does not account for the physics of the problem.
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Rank-1 constrained dictionary learning

References

» Dupré la Tour, T., Moreau, T., Jas, M., and Gramfort, A. (2018).

Multivariate Convolutional Sparse Coding for Electromagnetic Brain Signals.

In Advances in Neural Information Processing Systems (NeurlPS), pages
3296-3306, Montreal, Canada
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EM wave diffusion

» Recording here with 8 sensors
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EM wave diffusion

» Recording here with 8 sensors
» EM activity in the brain
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EM wave diffusion

» Recording here with 8 sensors

» EM activity in the brain
» The electric field is spread linearly and instantaneously over all

sensors (Maxwell equations)

YA
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Multivariate CSC with rank-1 constraint

Idea: Impose a rank-1 constraint on the dictionary atoms Dy

To make the problem tractable, we decided to use auxiliary variables wuy
and v s.t. D = ukaT.

p 2
min Z _sz*(UkaT)
k=1

Uk,Vk,Zk
st |ul3 <1, ||wll3<1andzf>0.

Here,
» u, € RP is the spatial pattern of our atom

» v, € RE is the temporal pattern of our atom

(1)
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Optimization strategy

Tri-convex: The problem is not jointly convex in z/, u) and vi but it is
convex in each block of coordinate.

We can use a block coordinate descent, aka alternate minimization, to
converge to a local minima of this problem. The 3 following steps are
applied alternatively:

» Z-step: given a fixed estimate of the atom, compute the activation
signal z; associated to each signal X".

> u-step: given a fixed estimate of the activation and temporal pattern,
update the spatial pattern uy.

» v-step: given a fixed estimate of the activation and spatial pattern,
update the temporal pattern vi.
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Z-step: Locally greedy coordinate descent (LGCD)

N independent problem such that

This problem is convex in z, and can be solved with different techniques:

>

>
| 2
>

Greedy CD [Kavukcuoglu et al.,
Fista [Chalasani et al.,
ADMM [Bristow et al.,
L-BFGS [Jas et al.,

2010]
2013
2013
2017]

= These methods can be slow for long signals as the complexity of each

iteration is at least linear in the length of the signal.
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Z-step: Locally greedy coordinate descent (LGCD)

For the Greedy Coordinate Descent, only 1 coordinate is updated at each
iteration: [Kavukcuoglu et al., 2010]

1. The coordinate z,[to] is updated to its optimal value z [to] when all
other coordinate are fixed.

, Bilt] — A
z[t] = max <l|(|[D]kH§’O> )

with B[t] = [D; x (x — Sz % Dy + z[t]er * Dk>] [t]

For each coordinate update, it is possible to maintain the value of 3
with O(KL) operations.
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Z-step: Locally greedy coordinate descent (LGCD)

For the Greedy Coordinate Descent, only 1 coordinate is updated at each
iteration: [Kavukcuoglu et al., 2010]

1.

vvyy NS

The coordinate zj[to] is updated to its optimal value z, [to] when all
other coordinate are fixed.

The updated coordinate is chosen

Cyclic selection: O(1) [Friedman et al., 2007]
Randomized selection: O(1) [Nesterov, 2010]
Greedy selection: O(KT) [Osher and Li, 2009]

by maximizing |zx[t] — z,[t]|
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Locally Greedy Coordinate Descent [Moreau et al., 2018]

We introduced the LGCD method which is an extension of GCD.

s
|

'K

v

o coordinatesof Z___ _ _ ________________________ N
P2

GCD has (’)(K?’) computational complexity.
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Locally Greedy Coordinate Descent [Moreau et al., 2018]

We introduced the LGCD method which is an extension of GCD.

coordinates of Z

GCD has (’)(K?’) computational complexity.

But the update itself has complexity O(KL)

21/38



Locally Greedy Coordinate Descent [Moreau et al., 2018]

We introduced the LGCD method which is an extension of GCD
@ @ @

T
M

coordinates of Z
With a partition Cp, of the signal domain [1, K] x [0, 7’[

cmz[l,K]x[W_A/ll)T,”;/lT
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Locally Greedy Coordinate Descent [Moreau et al., 2018]

We introduced the LGCD method which is an extension of GCD.
@ @ @

coordinates of Z
With a partition Cp, of the signal domain [1, K] x [0, 7’[
(m—=1)T mT
=[1,K —_—
Cm =1, K] x [, T
The coordinate to update is chosen greedily on a sub-domain Cp,

% =2L—-1 = O(Coordinate selection) = O(Coordinate Update)

The overall iteration complexity is O(KL) instead of O(KT).

= Efficient for sparse Z
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Locally Greedy Coordinate Descent [Moreau et al., 2018]

We introduced the LGCD method which is an extension of GCD.
@ @ @

coordinates of Z
With a partition Cp, of the signal domain [1, K] x [0, 7’[
(m—=1)T mT
=[1,K —_—
Cm =1, K] x [, T
The coordinate to update is chosen greedily on a sub-domain Cp,

% =2L—-1 = O(Coordinate selection) = O(Coordinate Update)

The overall iteration complexity is O(KL) instead of O(KT).

= Efficient for sparse Z = Can be efficiently parallelized.
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D-step: solving for the atoms

The dictionary update is performed by minimizing

N K

. A 1 )
min E(D) = ZIxn — N D . 5
5 £(P) 25l k; i * Dill2 (2)

n=1
Computing Vg4, E({dk}«) can be done efficiently

N K K
VoE(D)=> (z)" [x"=> 2/ Di | =& =) Wy Dy |
[I=il [I=il

n=1

= Save with Projected Gradient Descent (PGD) with an Armijo
backtracking line-search for the D-step [Wright and Nocedal, 1999].
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D-step: solving for the atoms

We use the projected gradient descent with an Armijo backtracking
line-search Wright and Nocedal [1999] for both u-step and v-step for

min_E(uy, vic) = Z*HXH sz (uev)l3 - (3)

[|uk|]2<1
[lvall2<1

One important computation trick is for fast computation of the gradient.
VukE(uk, Vk) = VDkE(Uka vk)vk € RP ,
VvkE(Uk; Vk) = U;l(—kaE(uk, Vk) S RL 5

Computing Vp, E(uk, vk) can be done efficiently

N

K K
Vo E(uk,vi) =D (20) % [ X" =D 27Dy | =& =Y Wy x Dy,
=1 =1

n=1
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Experiments

Good time to wake-up if you got lost in the previous section!
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Fast optimization

Comparison of the coordinate selection strategy for CD on simulated
signals

We set K =10, L = 150, A = 0.1\ ax
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Fast optimization

Comparison with univariate methods on somato dataset with
T =134,700, K =8 and L = 128

HEl Garcia-Cardona et al (2017) W Jas et al (2017) LBFGS
Bl Jas et al (2017) FISTA 77/, Proposed (univariate)
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Fast optimization

Comparison with multivariate methods on somato dataset with
T =134,700, K=8, P=5and L =128

HN Wohlberg (2016) E#& Proposed (multivariate) #2727 Proposed (rank-1)

103 |

Time (s)

A=3.0 A=10.0
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Good scaling in the number of channels P

Scaling relative to P on somato dataset with T = 134,700, K = 2, and
L =128
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Pattern recovery

Test the pattern recovery capabilities of our method on simulated data,
2
X" = sz s (uvy )+ €
k=1

where (u, vk) are chosen patterns of rank-1 and the activated coefficient
z][t] are drawn uniformly and their value are uniform in [0, 1].

The noise £ is generated as a gaussian white noise with variance o.

We set N = 100, L = 64 and T = 640
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Pattern recovery

Patterns recovered with P =1 and P = 5. The signals were generated
with the two simulated temporal patterns and with o = 1073.

Atoms

—— P=1— P=5 ---- Simulated

0 10 20 30 40 50 60
Times
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Pattern recovery

Evolution of the recovery loss with o for different values of P. Using more
channels improves the recovery of the original patterns.
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Experiments on MEG data

Even better time to wake-up!
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MNE somatosensory data

A selection of temporal waveforms of the atoms learned on the MNE
sample dataset.
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Learned atoms — Evoked response

Spatial pattern 3 Spatial pattern 15
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Learned atoms — Evoked response
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Learned atoms — Evoked response
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Learned atoms — Complex waveforms

A. Temporal waveform B. Spatial pattern
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alphacsc 03  Models  Examples APl GitHub  Site ~ Search

alphaCSC: Convolution sparse coding for time-
series
Python code online:

This is a library to perform shift-invariant sparse dictionary learning, also known at

time-series data. It includes a number of different models: https //a | ph acsc g|th u b iO
1. univariate CSC
2. multivariate CSC
3. multivariate CSC with a rank-1 constraint ['] pip install a]_phacs @

4. univariate CSC with an alpha-stable distribution (2!

A mathematical descriptions of these models is available in the documentation.

Installation :
Examples reproduce figures
To install this package, the easiest way is using pip . It will install this package anc

depends on numpy and cython for the installation so it is advised to install therr from thIS talkl

please run one of the two commands:

(Latest stable version)

pip install numpy cython
pip install alphacsc
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Thanks for your attention!

Code available online:
O alphacsc : alphacsc.github.io

© DiCoDile : github.com/tommoral/dicodile

Slides are on my web page:

€ tommoral.github.io O ©@tomamoral
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