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Context: Functional Neuroimaging

Goal: Study the brain mechanisms while it is functioning.

Outputs:

I Functional Atlases: Link areas of the brain to specific cognitive
functions.

I Functional Connectivity: Highlight the information flow in the
brain.

I Healthcare: Develop bio-markers for neurological disorders.

I . . .
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Context: Functional Neuroimaging

How to record living brains activity: Electrophysiology

Direct measurement of electrical activity.

High Localization Low Resolution Invasive
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Context: functional Neuroimaging

How to record living brains activity: Electrophysiology

Remote measurement of the electrical activity.

No Localization Global Non Invasive
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Neural signals
exhibit diverse and

complex
morphologies

[S. Cole, B. Voytek (2017) Trends in Cognitive Sciences]

Waveform shape can be related to diseases
e.g. Parkinson [Jackson et al. (2019)]

[Dupré la Tour, Tallot, Grabot, Doyère, van Wassenhove, Grenier, Gramfort

(2017) PLOS Computational biology]
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”Textbook” brain rythm
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Linear filtering

After Linear filters, everything looks like a sinusöıd.

⇒ Lose the asymmetry and the shape information.
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Fourier Fallacy

”Even though it may be possible to analyze the complex forms of
brain waves into a number of different sine-wave frequencies, this
may lead only to what might be termed a “Fourier fallacy”, if one
assumes ad hoc that all of the necessary frequencies actually occur

as periodic phenomena in cell groups within the brain.”

[Jasper (1948)]
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Learning the waveform:
Convolutional Dictionary Learning

References

I Grosse, R., Raina, R., Kwong, H., and Ng, A. Y. (2007). Shift-Invariant
Sparse Coding for Audio Classification.

Cortex, 8:9
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Local structure in signals

Key idea: decouple the localization of the patterns and their shape

xn
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Convolutional Dictionary Learning [Grosse2007]

For a set of N univariate signals xn, solve

Hypothesis: patterns dk are not present everywhere in the signal. They
are localized in time.

⇒ Sparse activation signals z

Technical hypothesis: the patterns are in the `2-ball: ‖dk‖2
2 ≤ 1.
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Optimization strategy

Bi-convex: The problem is not jointly convex in znk , and dk but it is
convex in each block of coordinate.

Alternate minimization (a.k.a. Bloc Coordinate Descent):

I Z-step: given a fixed estimate of the atom, compute the activation
signal znk associated to each signal xn.

I D-step: given a fixed estimate of the activation, update the atoms in
the dictionary dk .
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Learned atoms [Jas et al. (2017)]

Data:

What to do
in the case of
multivariate

signals?
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How to extend CSC to multivariate signals?

We can just use multivariate convolution,

X [t]︸︷︷︸
∈RP

=
K∑

k=1

(
zk ∗ Dk

)
[t] =

K∑
k=1

L∑
τ=1

zk [t − τ ]Dk [τ ]︸ ︷︷ ︸
∈RP

with:

I X a multivariate signal of length T in RP

I Dk a multivariate signal of length L in RP

I zk a univariate activation signal of length T̃ = T − L + 1

However, this model does not account for the physics of the problem.
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Rank-1 constrained dictionary learning

References

I Dupré la Tour, T., Moreau, T., Jas, M., and Gramfort, A. (2018).

Multivariate Convolutional Sparse Coding for Electromagnetic Brain Signals.

In Advances in Neural Information Processing Systems (NeurIPS), pages
3296–3306, Montreal, Canada
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EM wave diffusion

I Recording here with 8 sensors

I EM activity in the brain
I The electric field is spread linearly and instantaneously over all

sensors (Maxwell equations)
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Multivariate CSC with rank-1 constraint

Idea: Impose a rank-1 constraint on the dictionary atoms Dk

To make the problem tractable, we decided to use auxiliary variables uk
and vk s.t. Dk = ukv

>
k .

min
uk ,vk ,z

n
k

N∑
n=1

1

2

∥∥∥∥∥∥X n −
K∑

k=1

znk ∗ (ukv
>
k )

∥∥∥∥∥∥
2

2

+ λ

K∑
k=1

∥∥∥znk ∥∥∥
1
,

s.t. ‖uk‖2
2 ≤ 1 , ‖vk‖2

2 ≤ 1 and znk ≥ 0 .

(1)

Here,

I uk ∈ RP is the spatial pattern of our atom

I vk ∈ RL is the temporal pattern of our atom
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Optimization strategy

Tri-convex: The problem is not jointly convex in znk , uk and vk but it is
convex in each block of coordinate.

We can use a block coordinate descent, aka alternate minimization, to
converge to a local minima of this problem. The 3 following steps are
applied alternatively:

I Z-step: given a fixed estimate of the atom, compute the activation
signal znk associated to each signal X n.

I u-step: given a fixed estimate of the activation and temporal pattern,
update the spatial pattern uk .

I v-step: given a fixed estimate of the activation and spatial pattern,
update the temporal pattern vk .
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Z-step: Locally greedy coordinate descent (LGCD)

N independent problem such that

min
znk≥0

1

2

∥∥∥∥∥∥X n −
K∑

k=1

znk ∗ Dk

∥∥∥∥∥∥
2

2

+ λ

K∑
k=1

∥∥∥znk ∥∥∥
1
.

This problem is convex in zk and can be solved with different techniques:

I Greedy CD [Kavukcuoglu et al., 2010]

I Fista [Chalasani et al., 2013]

I ADMM [Bristow et al., 2013]

I L-BFGS [Jas et al., 2017]

⇒ These methods can be slow for long signals as the complexity of each
iteration is at least linear in the length of the signal.
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Z-step: Locally greedy coordinate descent (LGCD)

For the Greedy Coordinate Descent, only 1 coordinate is updated at each
iteration: [Kavukcuoglu et al., 2010]

1. The coordinate zk0 [t0] is updated to its optimal value z ′k0
[t0] when all

other coordinate are fixed.

z ′k [t] = max

(
βk [t]− λ
‖Dk‖2

2

, 0

)
,

with βk [t] =

[
D�k ∗

(
X −∑K

l=1 zl ∗ Dl + zk [t]et ∗ Dk

)]
[t]

For each coordinate update, it is possible to maintain the value of β
with O(KL) operations.

2. The updated coordinate is chosen
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For the Greedy Coordinate Descent, only 1 coordinate is updated at each
iteration: [Kavukcuoglu et al., 2010]

1. The coordinate zk0 [t0] is updated to its optimal value z ′k0
[t0] when all

other coordinate are fixed.

2. The updated coordinate is chosen

I Cyclic selection: O(1) [Friedman et al., 2007]

I Randomized selection: O(1) [Nesterov, 2010]

I Greedy selection: O(KT̃ ) [Osher and Li, 2009]

by maximizing |zk [t]− z ′k [t]|
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Locally Greedy Coordinate Descent [Moreau et al., 2018]

We introduced the LGCD method which is an extension of GCD.

coordinates of Z

T̃

K

C1 C2 C3

coordinates of Z

GCD has O(KT̃ ) computational complexity.

With a partition Cm of the signal domain [1,K ]× [0, T̃ [,

Cm = [1,K ]× [
(m − 1)T̃

M
,
mT̃

M
[

The coordinate to update is chosen greedily on a sub-domain Cm
T̃
M = 2L− 1 ⇒ O(Coordinate selection) = O(Coordinate Update)

The overall iteration complexity is O(KL) instead of O(KT̃ ).

⇒ Efficient for sparse Z

⇒ Can be efficiently parallelized.
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D-step: solving for the atoms

The dictionary update is performed by minimizing

min
‖Dk‖2≤1

E (D)
∆
=

N∑
n=1

1

2
‖X n −

K∑
k=1

znk ∗ Dk‖2
2 . (2)

Computing ∇dkE ({dk}k) can be done efficiently

∇DE (D) =
N∑

n=1

(znk )� ∗

xn −
K∑
l=1

znl ∗ Dl

 = Φk −
K∑
l=1

Ψk,l ∗ Dl ,

⇒ Save with Projected Gradient Descent (PGD) with an Armijo
backtracking line-search for the D-step [Wright and Nocedal, 1999].
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D-step: solving for the atoms

We use the projected gradient descent with an Armijo backtracking
line-search Wright and Nocedal [1999] for both u-step and v-step for

min
‖uk‖2≤1
‖vk‖2≤1

E (uk , vk)
∆
=

N∑
n=1

1

2
‖X n −

K∑
k=1

znk ∗ (ukv
>
k )‖2

2 . (3)

One important computation trick is for fast computation of the gradient.

∇ukE (uk , vk) = ∇Dk
E (uk , vk)vk ∈ RP ,

∇vkE (uk , vk) = u>k ∇Dk
E (uk , vk) ∈ RL ,

Computing ∇Dk
E (uk , vk) can be done efficiently

∇Dk
E (uk , vk) =

N∑
n=1

(znk )� ∗

X n −
K∑
l=1

znl ∗ Dl

 = Φk −
K∑
l=1

Ψk,l ∗ Dl ,
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Experiments

Good time to wake-up if you got lost in the previous section!
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Fast optimization

Comparison of the coordinate selection strategy for CD on simulated
signals
We set K = 10, L = 150, λ = 0.1λmax
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Fast optimization

Comparison with univariate methods on somato dataset with
T = 134, 700, K = 8 and L = 128

λ= 0.3 λ= 1.0 λ= 3.0 λ= 10.0

101

102

103

Ti
m

e 
(s

)

Garcia-Cardona et al (2017)
Jas et al (2017) FISTA

Jas et al (2017) LBFGS
Proposed (univariate)
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Fast optimization

Comparison with multivariate methods on somato dataset with
T = 134, 700, K = 8, P = 5 and L = 128

λ= 0.3 λ= 1.0 λ= 3.0 λ= 10.0

103

Ti
m

e 
(s

)

Wohlberg (2016) Proposed (multivariate) Proposed (rank-1)
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Good scaling in the number of channels P

Scaling relative to P on somato dataset with T = 134, 700, K = 2, and
L = 128

1 50 100 150 200
# of channels P

1

2

3

4

Re
la

tiv
e 

tim
e

Z-step D-step Z+D-steps
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Pattern recovery

Test the pattern recovery capabilities of our method on simulated data,

X n =
2∑

k=1

zk ∗ (ukv
>
k ) + E

where (uk , vk) are chosen patterns of rank-1 and the activated coefficient
znk [t] are drawn uniformly and their value are uniform in [0, 1].

The noise E is generated as a gaussian white noise with variance σ.

We set N = 100, L = 64 and T̃ = 640
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Pattern recovery

Patterns recovered with P = 1 and P = 5. The signals were generated
with the two simulated temporal patterns and with σ = 10−3.

0 10 20 30 40 50 60
Times

0.3

0.2

0.1

0.0

0.1

0.2

At
om

s

P= 1 P= 5 Simulated
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Pattern recovery

Evolution of the recovery loss with σ for different values of P. Using more
channels improves the recovery of the original patterns.

10-6 10-5 10-4 10-3 10-2 10-1

Noise level σ

10-3

10-2

10-1

100

lo
ss

(v̂
)

P= 1

P= 5

P= 25

P= 50
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Experiments on MEG data

Even better time to wake-up!
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MNE somatosensory data

A selection of temporal waveforms of the atoms learned on the MNE
sample dataset.

33/38



Learned atoms – Evoked response
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Learned atoms – Evoked response

Work in
progress!
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Learned atoms – Evoked response

Work in
progress!
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Learned atoms – Complex waveforms
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Python code online:
https://alphacsc.github.io

pip install alphacsc

Examples reproduce figures
from this talk!
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Thanks for your attention!

Code available online:

alphacsc : alphacsc.github.io

DiCoDiLe : github.com/tommoral/dicodile

Slides are on my web page:

tommoral.github.io @tomamoral
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