Learning to optimize with unrolled algorithms

Thomas Moreau INRIA Saclay

Joint work with Pierre Ablin; Mathurin Massias; Alexandre Gramfort; Hamza Cherkaoui; Jeremias Sulam; Joan Bruna

Electrophysiology

Magnetoencephalography

Electroencephalography

Inverse problems

Electrical activity

Observed signal

Forward model: $x=D z$

Inverse problems

Electrical activity
Forward model: $x=D z$

Observed signal
Inverse problem: $z=f(x)$ (ill-posed)

Inverse problems

Electrical activity
Forward model: $x=D z$

Observed signal
Inverse problem: $z=f(x)$ (ill-posed)

Optimization with a regularization \mathcal{R} encoding prior knowledge

$$
\operatorname{argmin}_{z}\|x-D z\|_{2}^{2}+\mathcal{R}(z)
$$

Example: sparsity with $\mathcal{R}=\lambda\|\cdot\|_{1}$

Other Inverse Problems

fMRI - compress sensing

Astrophysic
galaxies ...tell us about...
structures here

redshift z

Given a forward operator $D \in \mathbb{R}^{n \times m}$ and $\lambda>0$, the Lasso for $x \in \mathbb{R}^{n}$ is

$$
z^{*}=\underset{z}{\operatorname{argmin}} F_{x}(z)=\underbrace{\frac{1}{2}\|x-D z\|_{2}^{2}}_{f_{x}(z)}+\lambda\|z\|_{1}
$$

a.k.a. sparse coding, sparse linear regression, ...

We are interested in the over-complete case where $m>n$.

Given a forward operator $D \in \mathbb{R}^{n \times m}$ and $\lambda>0$, the Lasso for $x \in \mathbb{R}^{n}$ is

$$
z^{*}=\underset{z}{\operatorname{argmin}} F_{x}(z)=\underbrace{\frac{1}{2}\|x-D z\|_{2}^{2}}_{f_{x}(z)}+\lambda\|z\|_{1}
$$

a.k.a. sparse coding, sparse linear regression, ...

We are interested in the over-complete case where $m>n$.

Some Properties

- The problem is convex in z but not strongly convex in general.
- The problem is L-smooth and proximable.
- Most of the time, there is a unique solution (but not always).

Solving the Lasso - classical optimization

Classical Optimizationd

- (Fast-) Iterative Shrinkage-Thresholding Algorithm (ISTA).
[Daubechies et al. 2004; Beck and Teboulle 2009]
- Coordinate Descent.
[Friedman et al. 2007; Osher and Li 2009]
- Least-Angle Regression (LARS).
[Efron et al. 2004]

Convergence rates - Worst case analysis: For any x,

$$
F_{x}\left(z^{(t)}\right)-F_{x}^{*} \leq \mathcal{O}\left(\frac{1}{t^{2}}\right)
$$

\Rightarrow Guaranteed convergence for any x.

How to solve efficiently many inverse problems

Given multiple inputs x_{i}, we would like to solve efficiently:

$$
\min _{z_{i}} \sum_{i=1}^{N} F_{x_{i}}\left(z_{i}\right)
$$

How to solve efficiently many inverse problems

Given multiple inputs x_{i}, we would like to solve efficiently:

$$
\min _{z_{i}} \sum_{i=1}^{N} F_{x_{i}}\left(z_{i}\right)
$$

Here, each problem is independent, so with an infinite budget, there is no point in considering this problem.

How to solve efficiently many inverse problems

Given multiple inputs x_{i}, we would like to solve efficiently:

$$
\min _{z_{i}} \sum_{i=1}^{N} F_{x_{i}}\left(z_{i}\right)
$$

Here, each problem is independent, so with an infinite budget, there is no point in considering this problem.

However, if your aim is to chose an algorithm f_{L} for a given computational budget L such that

$$
\underset{f_{L}}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} F_{x_{i}}\left(f_{L}\left(x_{i}\right)\right)
$$

Can you do better than worst case algorithms?

How to solve efficiently many inverse problems

Given multiple inputs x_{i}, we would like to solve efficiently:

$$
\min _{z_{i}} \sum_{i=1}^{N} F_{x_{i}}\left(z_{i}\right)
$$

Here, each problem is independent, so with an infinite budget, there is no point in considering this problem.

However, if your aim is to chose an algorithm f_{L} for a given computational budget L such that

$$
\underset{f_{L}}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} F_{x_{i}}\left(f_{L}\left(x_{i}\right)\right)
$$

Can you do better than worst case algorithms?
Related to average case complexity analysis?
[Scieur and Pedregosa 2020; Pedregosa and Scieur 2020]

Unrolled optimization algorithms

ISTA:

f_{x} is a L-smooth function with $L=\|D\|_{2}^{2}$ and

$$
\nabla f_{x}\left(z^{(t)}\right)=D^{\top}\left(D z^{(t)}-x\right)
$$

The ℓ_{1}-norm is proximable with a separable proximal operator

$$
\operatorname{prox}_{\mu\|\cdot\|_{1}}(x)=\operatorname{sign}(x) \max (0,|x|-\mu)=S T(x, \mu)
$$

ISTA:

Iterative Shrinkage-Thresholding Algorithm

f_{x} is a L-smooth function with $L=\|D\|_{2}^{2}$ and

$$
\nabla f_{x}\left(z^{(t)}\right)=D^{\top}\left(D z^{(t)}-x\right)
$$

The ℓ_{1}-norm is proximable with a separable proximal operator

$$
\operatorname{prox}_{\mu\|\cdot\|_{1}}(x)=\operatorname{sign}(x) \max (0,|x|-\mu)=S T(x, \mu)
$$

We can use the proximal gradient descent algorithm (ISTA)

$$
z^{(t+1)}=\mathrm{ST}(z^{(t)}-\rho \underbrace{\nabla f_{x}\left(z^{(t)}\right)}_{D^{\top}\left(D z^{(t)}-x\right)}, \rho \lambda)
$$

Here, ρ play the role of a step size (in $\left[0, \frac{2}{L}[\right.$).

ISTA

$$
z^{(t+1)}=\operatorname{ST}\left(z^{(t)}-\rho D^{\top}\left(D z^{(t)}-x\right), \rho \lambda\right)
$$

Let $W_{z}=I_{m}-\rho D^{\top} D$ and $W_{x}=\rho D^{\top}$. Then

$$
z^{(t+1)}=\operatorname{ST}\left(W_{z} z^{(t)}+W_{x} x, \rho \lambda\right)
$$

One step of ISTA

ISTA

$$
z^{(t+1)}=\mathrm{ST}\left(z^{(t)}-\rho D^{\top}\left(D z^{(t)}-x\right), \rho \lambda\right)
$$

Let $W_{z}=I_{m}-\rho D^{\top} D$ and $W_{x}=\rho D^{\top}$. Then

$$
z^{(t+1)}=\operatorname{ST}\left(W_{z} z^{(t)}+W_{x} x, \rho \lambda\right)
$$

RNN equivalent to ISTA

Recurrence relation of ISTA define a RNN

$$
z^{(t+1)}=\mathrm{ST}\left(z^{(t)}-\frac{1}{L} D^{\top}\left(D z^{(t)}-x\right), \frac{\lambda}{L}\right)^{x \rightarrow W_{x} \rightarrow \rightarrow z_{z}}
$$

This RNN can be unfolded as a feed-forward network.

Let $\Phi_{\Theta(T)}$ denote a network with T layers parametrized with $\Theta^{(T)}$.
If $W_{x}^{(i)}=W_{x}$ and $W_{z}^{(i)}=W_{z}$, then $\Phi_{\Theta} T(x)=z^{(t)}$.

LISTA - Training

Empirical risk minimization: We need a training set of $\left\{x_{1}, \ldots x_{N}\right\}$ training sample and our goad is to accelerate ISTA on unseen data $x \sim p$.

The training solves

$$
\tilde{\Theta}^{(T)} \in \arg \min _{\Theta(T)} \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}_{x}\left(\Phi_{\Theta(T)}\left(x_{i}\right)\right)
$$

for a loss \mathcal{L}_{X}.
\Rightarrow Choice of loss \mathcal{L}_{x} ?

LISTA - Training

Supervised: a ground truth $z^{*}(x)$ is known

$$
\mathcal{L}_{x}(z)=\frac{1}{2}\left\|z-z^{*}(x)\right\|
$$

Solving the inverse problem.

LISTA - Training

Supervised: a ground truth $z^{*}(x)$ is known

$$
\mathcal{L}_{x}(z)=\frac{1}{2}\left\|z-z^{*}(x)\right\|
$$

Solving the inverse problem.

Semi-supervised: the solution of the Lasso $z^{*}(x)$ is known

$$
\mathcal{L}_{x}(z)=\frac{1}{2}\left\|z-z^{*}(x)\right\|
$$

Accelerating the resolution of the Lasso.

LISTA - Training

Supervised: a ground truth $z^{*}(x)$ is known

$$
\mathcal{L}_{x}(z)=\frac{1}{2}\left\|z-z^{*}(x)\right\|
$$

Solving the inverse problem.

Semi-supervised: the solution of the Lasso $z^{*}(x)$ is known

$$
\mathcal{L}_{x}(z)=\frac{1}{2}\left\|z-z^{*}(x)\right\|
$$

Accelerating the resolution of the Lasso.

Unsupervised: there is no ground truth

$$
\mathcal{L}_{x}(z)=F_{x}(z)=\frac{1}{2}\|x-D z\|_{2}^{2}+\lambda\|z\|_{1}
$$

Solving the Lasso.

LISTA - Training

Supervised: a ground truth $z^{*}(x)$ is known

$$
\mathcal{L}_{x}(z)=\frac{1}{2}\left\|z-z^{*}(x)\right\|
$$

Solving the inverse problem.

Semi-supervised: the solution of the Lasso $z^{*}(x)$ is known

$$
\mathcal{L}_{x}(z)=\frac{1}{2}\left\|z-z^{*}(x)\right\|
$$

Accelerating the resolution of the Lasso.

Unsupervised: there is no ground truth

$$
\mathcal{L}_{x}(z)=F_{x}(z)=\frac{1}{2}\|x-D z\|_{2}^{2}+\lambda\|z\|_{1}
$$

Solving the Lasso.

General LISTA model

$$
z^{(t+1)}=\mathrm{ST}\left(\mathrm{~W}_{\mathrm{e}}^{(\mathrm{t})} z^{(t)}+\mathrm{W}_{x}^{(\mathrm{t})} x, \theta^{(\mathrm{t})}\right)
$$

The structure of D is lost in the linear transform.

Coupled LISTA

$$
z^{(t+1)}=\mathrm{ST}\left(z^{(t)}-\alpha^{(\mathrm{t})} \mathrm{W}^{(\mathrm{t})}\left(D z^{(t)}-x\right), \beta^{(\mathrm{t})}\right)
$$

Can be seen as learning

- Pre-conditionner $W^{(t)} \in \mathbb{R}^{m \times n}$
- Step-size
$\alpha^{(t)} \in \mathbb{R}_{+}$
- Threshold
$\beta^{(t)} \in \mathbb{R}_{+}$

LISTA - Parametrizations

General LISTA model

The structure of D is lost in the linear transform.

Coupled LISTA

$$
z^{(t+1)}=\mathrm{ST}\left(z^{(t)}-\alpha^{(\mathrm{t})} \mathrm{W}^{(\mathrm{t})}\left(D z^{(t)}-x\right), \beta^{(\mathrm{t})}\right)
$$

Can be seen as learning

- Pre-conditionner $W^{(t)} \in \mathbb{R}^{m \times n}$
- Step-size
$\alpha^{(t)} \in \mathbb{R}_{+}$
- Threshold
$\beta^{(t)} \in \mathbb{R}_{+}$
\Rightarrow Justified theoretically for (un)supervised convergence

TV regularized problems

TV regularized problems

Given a forward operator $D \in \mathbb{R}^{n \times m}$ and $\lambda>0$, the Lasso for $x \in \mathbb{R}^{n}$ is

$$
z^{*}=\underset{z}{\operatorname{argmin}} P_{x}(z)=\underbrace{\frac{1}{2}\|x-D z\|_{2}^{2}}_{f_{x}(z)}+\lambda\|z\|_{T V}
$$

where $\|z\|_{T V}=\|\nabla z\|_{1}$, and $\nabla=\left[\begin{array}{ccccc}-1 & 1 & 0 & \cdots & 0 \\ 0 & -1 & 1 & \ddots & \vdots \\ \vdots & \cdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & -1 & 1\end{array}\right] \in \mathbb{R}^{k-1 \times k}$

Why consider this? equivalent formulation with Lasso:

$$
\min _{u \in \mathbb{R}^{k}} S_{x}(u)=\frac{1}{2}\|x-D L u\|_{2}^{2}+\lambda\|R u\|_{1} .
$$

where R is diagonal and L is the discrete integration operator.

Why not just use the synthesis formulation?

Convergence rate comparison

Both cvg rates are in $\mathcal{O}(1 / t)$ but scale with $\rho=\|D\|_{2}^{2}$ or $\widetilde{\rho}=\|D \nabla\|_{2}^{2}$.

Theorem (Lower bound for the ratio $\frac{\widetilde{\rho}}{\rho}$ expectation)
Let D be a random matrix in $\mathbb{R}^{m \times k}$ with iid normal entries. The expectation of $\widetilde{\rho} / \rho$ is asymptotically lower bounded when k tends to ∞ by

$$
\mathbb{E}\left[\frac{\widetilde{\rho}}{\rho}\right] \geq \frac{2 k+1}{4 \pi^{2}}+o(1)
$$

Empirical evidences also push for a $\mathcal{O}\left(k^{2}\right)$ scaling.

Analysis is more efficient in terms of iterations than Synthesis.

Unrolling iterative algorithms

Figure: LPGD - Unfolded network for Learned PGD with $T=3$

Main blocker:

How to compute prox $_{\mu g}$ efficiently and in a differentiable way?

- Use dedicated solver and compute gradient with implicit function theorem.
- Use an unrolled algorithm (LISTA) to solve the prox.

Simulation

Performance investigation

Very low dimensional simulation $k, m=5,8$ (because of memory issue).

Figure: Performance comparison for different regularisation levels (left) $\lambda=0.1$, $($ right $) \lambda=0.8$.

fMRI data deconvolution (UKBB)

We retain only 8000 time-series of 250 time-frames (3 minute 03 seconds), Deconvolution for a fixed kernel h and estimate the neural activity signal z for each voxels.

Figure: Performance comparison $\lambda=0.1 \lambda_{\max }$ between LPGD-Taut and iterative PGD for the analysis formulation for the HRF deconvolution problem with fMRI data.

What is learned in unrolled algorithms?

Coupled LISTA Parametrizations

Coupled LISTA
[Chen et al. 2018]

$$
z^{(t+1)}=\mathrm{ST}\left(z^{(t)}-\alpha^{(\mathrm{t})} \mathrm{W}^{(\mathrm{t})}\left(D z^{(t)}-x\right), \beta^{(\mathrm{t})}\right)
$$

Can be seen as learning

- Pre-conditionner
$W^{(t)} \in \mathbb{R}^{m \times n}$
- Step-size
$\alpha^{(t)} \in \mathbb{R}_{+}$
- Threshold

$$
\beta^{(t)} \in \mathbb{R}_{+}
$$

Theorem - Asymptotic convergence of the weights
Consider a sequence of nested networks $\Phi_{\Theta(T)}$ s.t.
$\Phi_{\Theta^{(t)}}(x)=\phi_{\theta^{(t)}}\left(\Phi_{\Theta^{(t+1)}}(x), x\right)$. Assume that

1. the sequence of parameters converges i.e.

$$
\theta^{(t)} \underset{t \rightarrow \infty}{\longrightarrow} \theta^{*}=\left(W^{*}, \alpha^{*}, \beta^{*}\right)
$$

2. the output of the network converges toward a solution $z^{*}(x)$ of the Lasso uniformly over the equiregularization set \mathcal{B}_{∞}, i.e.

$$
\sup _{x \in \mathcal{B}_{\infty}}\left\|\Phi_{\Theta(T)}(x)-z^{*}(x)\right\| \xrightarrow[T \rightarrow \infty]{ } 0
$$

Then $\frac{\alpha^{*}}{\beta^{*}} W^{*}=D$.

Idea of the proof: each unit vector needs to be a fixed point of the network.

Numerical verification

40-layers LISTA network trained on a 10×20 problem with $\lambda=0.1$ The weights $W^{(t)}$ align with D and α, β get coupled.

Is there a point to unrolled algorithms?

Using deep learning to approximate OISTA Step LISTA

LISTA with restricted parametrization : Only learn a step-size $\alpha^{(t)}$

$$
z^{(t+1)}=\mathrm{ST}\left(z^{(t)}-\alpha^{(\mathrm{t})} D^{\top}\left(D z^{(t)}-x\right), \lambda \alpha^{(\mathrm{t})}\right)
$$

Fewer parameters: T instead of $(2+m n) T$.

$$
\Rightarrow \text { Easier to learn }
$$

\Rightarrow Reduced performances?

Goal: Learn step sizes for ISTA adapted to input distribution.

Performances

Simulated data: $m=256$ and $n=64$

$$
D_{k} \sim \mathcal{U}\left(\mathcal{S}^{n-1}\right) \text { and } x=\frac{\tilde{x}}{\left\|D^{T}\right\|_{\infty}} \text { with } \widetilde{x}_{i} \sim \mathcal{N}(0,1)
$$

Performance on semi-real datasets

Digits: 8×8 images from scikit-learn
D_{k} and \tilde{x} sampled uniformly from the digits and $x=\frac{\tilde{x}}{\left\|D^{\top} \tilde{x}\right\|_{\infty}}$.

ISTA: Majoration-Minimization

Taylor expansion of f_{x} in $z^{(t)}$

$$
\begin{aligned}
F_{x}(z) & =f_{x}\left(z^{(t)}\right)+\nabla f_{x}\left(z^{(t)}\right)^{\top}\left(z-z^{(t)}\right)+\frac{1}{2}\left\|D\left(z-z^{(t)}\right)\right\|_{2}^{2}+\lambda\|z\|_{1} \\
& \leq f_{x}\left(z^{(t)}\right)+\nabla f_{x}\left(z^{(t)}\right)^{\top}\left(z-z^{(t)}\right)+\frac{L}{2}\left\|z-z^{(t)}\right\|_{2}^{2}+\lambda\|z\|_{1}
\end{aligned}
$$

\Rightarrow Replace the Hessian $D^{\top} D$ by L Id.

Separable function that can be minimized in close form

$$
\begin{aligned}
\underset{z}{\operatorname{argmin}} \frac{L}{2}\left\|z^{(t)}-\frac{1}{L} \nabla f_{x}\left(z^{(t)}\right)-z\right\|_{2}^{2}+\lambda\|z\|_{1} & =\operatorname{prox}_{\frac{\lambda}{L}}\left(z^{(t)}-\frac{1}{L} \nabla f_{x}\left(z^{(t)}\right)\right) \\
& =\mathrm{ST}\left(z^{(t)}-\frac{1}{L} \nabla f_{x}\left(z^{(t)}\right), \frac{\lambda}{L}\right)
\end{aligned}
$$

ISTA: Majoration for the data-fit

- Level sets from $z^{\top} D^{\top} D z$

ISTA: Majoration for the data-fit

Level sets from $z^{\top} D^{\top} D z \leq L\|z\|_{2}$

ISTA: Majoration for the data-fit

Level sets from $z^{\top} D^{\top} D z \leq z^{\top} A^{\top} \Lambda A z$
[Moreau and Bruna 2017]

ISTA: Majoration for the data-fit

Level sets from $z^{\top} D^{\top} D z \leq L_{S}\|z\|_{2} \quad$ for $\operatorname{Supp}(z) \subset S$

Oracle ISTA: Majoration-Minimization

For all z such that $\operatorname{Supp}(z) \subset S \doteq \operatorname{Supp}\left(z^{(t)}\right)$,

$$
F_{x}(z) \leq f_{x}\left(z^{(t)}\right)+\nabla f_{x}\left(z^{(t)}\right)^{\top}\left(z-z^{(t)}\right)+\frac{L_{S}}{2}\left\|z-z^{(t)}\right\|_{2}^{2}+\lambda\|z\|_{1}
$$

with $L_{S}=\left\|D_{., S}\right\|_{2}^{2}$.

$$
-F_{x}-Q_{x, L}\left(\cdot, z^{(t)}\right)-Q_{x, L_{S}}\left(\cdot, z^{(t)}\right)
$$

Better step-sizes for ISTA

Oracle ISTA (OISTA):

1. Get the Lipschitz constant L_{S} associated with support $S=\operatorname{Supp}\left(z^{(t)}\right)$.
2. Compute $y^{(t+1)}$ as a step of ISTA with a step-size of $1 / L_{S}$

$$
y^{(t+1)}=\mathrm{ST}\left(z^{(t)}-\frac{1}{L_{S}} D^{\top}\left(D z^{(t)}-x\right), \frac{\lambda}{L_{S}}\right)
$$

3. If $\operatorname{Supp}\left(y^{t+1}\right) \subset S$, accept the update $z^{(t+1)}=y^{(t+1)}$.
4. Else, $z^{(t+1)}$ is computed with step size $1 / L$.

OISTA: Performances

—ISTA —FISTA —OISTA (proposed)

Number of iterations

OISTA - Step-size

OISTA - Limitation

- OISTA is not practical, as you need to compute L_{S} at each iteration and this is costly.
- No precomputation possible: there is an exponential number of supports S.

Link with SLISTA

Learned steps $\quad-1 / L_{S} \quad-2 / L_{S}$

The learned step-sizes are linked to the distribution of $1 / L_{S}$

My take on unrolled algorithms

What unrolled algorithms can do:

- Improve constants in convergence rate.
[Moreau and Bruna 2017]
- Learn to better optimize for a non-uniform input distribution.
[Ablin et al. 2019]
- Make inverse problem solution differentiable.
[Ablin et al. 2020; Mehmood and Ochs 2020]

My take on unrolled algorithms

What unrolled algorithms can do:

- Improve constants in convergence rate.
[Moreau and Bruna 2017]
- Learn to better optimize for a non-uniform input distribution.
[Ablin et al. 2019]
- Make inverse problem solution differentiable.
[Ablin et al. 2020; Mehmood and Ochs 2020]
What unrolled algorithms can't do:
- Faster convergence rates for solvers.
- Uniform convergence with modified structure.

My take on unrolled algorithms

What unrolled algorithms can do:

- Improve constants in convergence rate.
[Moreau and Bruna 2017]
- Learn to better optimize for a non-uniform input distribution.
[Ablin et al. 2019]
- Make inverse problem solution differentiable.
[Ablin et al. 2020; Mehmood and Ochs 2020]
What unrolled algorithms can't do:
- Faster convergence rates for solvers.
- Uniform convergence with modified structure.
\Rightarrow Can we extend these results to other problems?

Conclusion

Take home messages:
First order structure is needed in optimization. No hope to learn an algorithm better than ISTA.

Unrolled algorithms are useful to learn to solve optimization problems in average.
(typical in bi-level optimization?)
Code to reproduce the figures is available online:
© adopty: github.com/tommoral/adopty
© carpet : github.com/hcherkaoui/carpet
Slides will be on my web page:
© tommoral.github.io
O Otomamoral

Interlude - regularization λ

Importance of the parameter λ

$$
\begin{gathered}
\mathcal{L}_{x}(z)=\frac{1}{2}\|x-D z\|_{2}^{2}+\lambda\|z\|_{1} \\
z^{(t+1)}=\operatorname{ST}\left(z^{(t)}-\alpha^{(\mathrm{t})} D^{\top}\left(D z^{(t)}-x\right), \lambda \alpha^{(\mathrm{t})}\right)
\end{gathered}
$$

Control the distribution of $z^{*}(x)$ sparsity.

Maximal value
$\lambda_{\text {max }}=\left\|D^{\top} x\right\|_{\infty}$ is the minimal value of λ for which

$$
z^{*}(x)=0
$$

Equiregularization set

Set in \mathbb{R}^{n} for which $\lambda_{\max }=1$

$$
\mathcal{B}_{\infty}=\left\{x \in \mathbb{R}^{n} ;\left\|D^{\top} x\right\|_{\infty}=1\right\}
$$

\Rightarrow Training performed with points sampled in \mathcal{B}_{∞}

Weights coupling

We denote $\theta=(W, \alpha, \beta)$ the parameters of a given layer ϕ_{θ}.

$$
\phi_{\theta}(z, x)=\mathrm{ST}\left(z-\alpha D^{\top}(D z-x), \lambda \alpha\right)
$$

Assumption 1:
$D \in \mathbb{R}^{n \times m}$ is a dictionary with non-duplicated unit-normed columns.

Lemma 4.3 - Weight coupling

If for all the couples $\left(z^{*}(x), x\right) \in \mathbb{R}^{m} \times \mathcal{B}_{\infty}$ such that $z^{*}(x) \in \operatorname{argmin} F_{x}(z)$, it holds $\phi_{\theta}\left(z^{*}(x), x\right)=z^{*}(x)$. Then, $\frac{\alpha}{\beta} W=D$.

The solution of the Lasso is a fixed point of a given layer ϕ_{θ} if and only if ϕ_{θ} is equivalent to a step of ISTA with a given step-size.

ISTA - Convergence

Convergence rates

If f_{x} is μ-strongly convex, i.e. $\sigma_{\min }\left(D^{T} D\right) \geq \mu>0$

$$
F_{x}\left(z^{(t)}\right)-F_{x}\left(z^{*}\right) \leq\left(1-\frac{\mu}{L}\right)^{t}\left(F_{x}(0)-F_{x}\left(z^{*}\right)\right)
$$

In the general case, $F_{x}\left(z^{(t)}\right)-F_{x}\left(z^{*}\right) \leq \frac{L\left\|z^{*}\right\|_{2}}{t}$

OISTA - Convergence

Proposition 3.1: Convergence

When D is such that the solution is unique for all x and $\lambda>0$, the sequence $\left(z^{(t)}\right)$ generated by the algorithm converges to $z^{*}=\operatorname{argmin} F_{X}$.
Further, there exists an iteration T^{*} such that for $t \geq T^{*}$, $\operatorname{Supp}\left(z^{(t)}\right)=\operatorname{Supp}\left(z^{*}\right) \triangleq S^{*}$.

Proposition 3.2: Convergence rate

For $t>T^{*}$,

$$
F_{x}\left(z^{(t)}\right)-F_{x}\left(z^{*}\right) \leq L_{S^{*}} \frac{\left\|z^{*}-z^{\left(T^{*}\right)}\right\|^{2}}{2\left(t-T^{*}\right)} .
$$

If moreover, $\lambda_{\min }\left(D_{S^{*}}^{\top} D_{S^{*}}\right)=\mu^{*}>0$, then

$$
F_{x}\left(z^{(t)}\right)-F_{x}\left(z^{*}\right) \leq\left(1-\frac{\mu^{*}}{L_{S^{*}}}\right)^{t-T^{*}}\left(F_{x}\left(z^{\left(T^{*}\right)}\right)-F_{x}\left(z^{*}\right)\right) .
$$

