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Electrophysiology

Magnetoencephalography Electroencephalography
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Inverse problems

Maxwell’s
Equations

xxx

Observed signal

zzz

Electrical activity
DDD

Inverse Problem

Forward model: xxx = DDDzzz

Inverse problem: zzz = f (xxx) (ill-posed)

Optimization with a regularization R encoding prior knowledge
argminzzz ‖xxx −DDDzzz‖22 +R(zzz)

Example: sparsity with R = λ‖ · ‖1
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Other Inverse Problems

Ultra sound fMRI - compress sensing

Astrophysic
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Classical Sparse IP resolution - the Lasso [Tibshirani 1996]

Given a forward operator D ∈ Rn×m and λ > 0, the Lasso for x ∈ Rn is

z∗ = argmin
z

Fx(z) =
1
2
‖x − Dz‖22
︸ ︷︷ ︸

fx (z)

+λ‖z‖1

a.k.a. sparse coding, sparse linear regression, ...

We are interested in the over-complete case where m > n.

Some Properties
I The problem is convex in z but not strongly convex in general.

I The problem is L-smooth and proximable.

I Most of the time, there is a unique solution (but not always).
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Solving the Lasso – classical optimization

Classical Optimizationd
I (Fast-) Iterative Shrinkage-Thresholding Algorithm (ISTA).

[Daubechies et al. 2004; Beck and Teboulle 2009]

I Coordinate Descent. [Friedman et al. 2007; Osher and Li 2009]

I Least-Angle Regression (LARS). [Efron et al. 2004]

Convergence rates – Worst case analysis: For any x ,

Fx(z(t))− F ∗x ≤ O
(

1
t2

)

⇒ Guaranteed convergence for any x .
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How to solve efficiently many inverse problems

Given multiple inputs xi , we would like to solve efficiently:

min
zi

N∑

i=1

Fxi (zi )

Here, each problem is independent, so with an infinite budget, there is no
point in considering this problem.

However, if your aim is to chose an algorithm fL for a given computational
budget L such that

argmin
fL

1
N

N∑

i=1

Fxi (fL(xi ))

Can you do better than worst case algorithms?

Related to average case complexity analysis?
[Scieur and Pedregosa 2020; Pedregosa and Scieur 2020]
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Unrolled optimization algorithms
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ISTA: [Daubechies et al. 2004]
Iterative Shrinkage-Thresholding Algorithm

fx is a L-smooth function with L = ‖D‖22 and

∇fx(z(t)) = D>(Dz(t) − x)

The `1-norm is proximable with a separable proximal operator

proxµ‖·‖1(x) = sign(x) max(0, |x | − µ) = ST (x , µ)

We can use the proximal gradient descent algorithm (ISTA)

z(t+1) = ST


z(t) − ρ ∇fx(z(t))︸ ︷︷ ︸

D>(Dz(t)−x)

, ρλ




Here, ρ play the role of a step size (in [0, 2
L [).
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ISTA is a “Neural Network” [Gregor and Le Cun 2010]

ISTA

z(t+1) = ST
(
z(t) − ρD>(Dz(t) − x), ρλ

)

Let Wz = Im − ρD>D and Wx = ρD>. Then

z(t+1) = ST(Wzz(t) + Wxx , ρλ)

One step of ISTA
Wxx

Wzz(t)

ST(·, ρλ) z(t+1)
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Learned ISTA [Gregor and Le Cun 2010]

Recurrence relation of ISTA define a RNN

z(t+1) = ST
(

z(t) − 1
L
D>(Dz(t) − x),

λ

L

) Wxx ST(·, ρλ) z∗

Wz

This RNN can be unfolded as a feed-forward network.

x

W (0)
x

ST(·, θ(0)) W (1)
z

W (1)
x

ST(·, θ(1)) W (2)
z

W (2)
x

ST(·, θ(2)) z(2)

Let ΦΘ(T ) denote a network with T layers parametrized with Θ(T ).

If W (i)
x = Wx and W (i)

z = Wz , then ΦΘT (x) = z(t).
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LISTA – Training

Empirical risk minimization : We need a training set of {x1, . . . xN}
training sample and our goad is to accelerate ISTA on unseen data x ∼ p.

The training solves

Θ̃(T ) ∈ arg min
Θ(T )

1
N

N∑

i=1

Lx(ΦΘ(T )(xi )) .

for a loss Lx .

⇒ Choice of loss Lx?
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LISTA – Training

Supervised: a ground truth z∗(x) is known

Lx(z) =
1
2
‖z − z∗(x)‖

Solving the inverse problem.

Semi-supervised: the solution of the Lasso z∗(x) is known

Lx(z) =
1
2
‖z − z∗(x)‖

Accelerating the resolution of the Lasso.

Unsupervised: there is no ground truth

Lx(z) = Fx(z) =
1
2
‖x − Dz‖22 + λ‖z‖1

Solving the Lasso.
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LISTA – Parametrizations

General LISTA model [Gregor and Le Cun 2010]

z(t+1) = ST
(
W(t)

e z(t) + W(t)
x x , θ(t)

)

The structure of D is lost in the linear transform.

Coupled LISTA [Chen et al. 2018]

z(t+1) = ST
(
z(t) − α(t)W(t)(Dz(t) − x), β(t)

)

Can be seen as learning

I Pre-conditionner
W (t) ∈ Rm×n

I Step-size
α(t) ∈ R+

I Threshold
β(t) ∈ R+

⇒ Justified theoretically for (un)supervised convergence
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Performances

0 10 20 30

Number of Layers

10−2

10−1

100
F
x
−
F
∗ x

Simulated data λ = 0.1

ISTA FISTA LISTA
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What is learned in unrolled algorithms?

16/33



Coupled LISTA Parametrizations

Coupled LISTA [Chen et al. 2018]
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)

Can be seen as learning

I Pre-conditionner
W (t) ∈ Rm×n

I Step-size
α(t) ∈ R+

I Threshold
β(t) ∈ R+

17/33



What does LISTA learn? [Ablin et al. 2019]

Theorem – Asymptotic convergence of the weights
Consider a sequence of nested networks ΦΘ(T ) s.t.
ΦΘ(t)(x) = φθ(t)(ΦΘ(t+1)(x), x) . Assume that

1. the sequence of parameters converges i.e.
θ(t) −−−→

t→∞
θ∗ = (W ∗, α∗, β∗) ,

2. the output of the network converges toward a solution z∗(x) of the
Lasso uniformly over the equiregularization set B∞ , i.e.
supx∈B∞ ‖ΦΘ(T )(x)− z∗(x)‖ −−−−→

T→∞
0 .

Then α∗

β∗W
∗ = D .

Idea of the proof: each unit vector needs to be a fixed point of the network.
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Numerical verification

1 10 20 30 40

Layers

0

5

10
‖α

(t
) W

(t
)
−
β

(t
) D
‖ F

LISTA

40-layers LISTA network trained on a 10× 20 problem with λ = 0.1
The weights W (t) align with D and α, β get coupled.
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Is there a point in learning step sizes?
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Step LISTA [Ablin et al. 2019]

LISTA with restricted parametrization : Only learn a step-size α(t)

z(t+1) = ST
(
z(t) − α(t)D>(Dz(t) − x), λα(t)

)

Fewer parameters: T instead of (2 + mn)T .

⇒ Easier to learn ⇒ Reduced performances?

Goal: Learn step sizes for ISTA adapted to input distribution.
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Performances

Simulated data: m = 256 and n = 64

Dk ∼ U(Sn−1) and x = x̃
‖D>x̃‖∞ with x̃i ∼ N (0, 1)

0 10 20 30

Number of Layers

10−2

10−1

100

F
x
−
F
∗ x

Simulated data λ = 0.1

0 10 20 30

Number of Layers

10−6

10−4

10−2

Simulated data λ = 0.8

ISTA LISTA SLISTA (proposed)
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Performance on semi-real datasets

Digits: 8× 8 images from scikit-learn

Dk and x̃ sampled uniformly from the digits and x = x̃
‖D>x̃‖∞ .

0 10 20 30

Number of Layers

10−1

F
x
−
F
∗ x

Digits data λ = 0.1

0 10 20 30

Number of Layers

10−2

Digits data λ = 0.8

ISTA LISTA SLISTA (proposed)
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ISTA: Majoration-Minimization

Taylor expansion of fx in z(t)

Fx(z) = fx(z(t)) +∇fx(z(t))>(z − z(t)) +
1
2
‖D(z − z(t))‖22 + λ‖z‖1

≤ fx(z(t)) +∇fx(z(t))>(z − z(t)) +
L
2
‖z − z(t)‖22 + λ‖z‖1

⇒ Replace the Hessian D>D by L Id.

Separable function that can be minimized in close form

argmin
z

L
2

∥∥∥∥z(t) − 1
L
∇fx(z(t))− z

∥∥∥∥
2

2
+ λ‖z‖1 = proxλ

L

(
z(t) − 1

L
∇fx(z(t))

)

= ST
(

z(t) − 1
L
∇fx(z(t)),

λ

L

)
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ISTA: Majoration for the data-fit

I Level sets from z>D>Dz
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ISTA: Majoration for the data-fit

I Level sets from z>D>Dz ≤ L‖z‖2
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ISTA: Majoration for the data-fit

I Level sets from z>D>Dz ≤ z>A>ΛAz [Moreau and Bruna 2017]
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ISTA: Majoration for the data-fit

I Level sets from z>D>Dz ≤ LS‖z‖2 for Supp(z) ⊂ S
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Oracle ISTA: Majoration-Minimization

For all z such that Supp(z) ⊂ S .
= Supp(z(t)),

Fx(z) ≤ fx(z(t)) +∇fx(z(t))>(z − z(t)) +
LS

2
‖z − z(t)‖22 + λ‖z‖1

with LS = ‖D·,S‖22.

0 1
L

1
LS

Step size

C
os

t
fu

nc
ti

on

Fx Qx,L(·, z(t)) Qx,LS(·, z(t))
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Better step-sizes for ISTA

Oracle ISTA (OISTA):

1. Get the Lipschitz constant LS associated with support S = Supp(z(t)).

2. Compute y (t+1) as a step of ISTA with a step-size of 1/LS

y (t+1) = ST
(

z(t) − 1
LS

D>(Dz(t) − x),
λ

LS

)

3. If Supp(y t+1) ⊂ S , accept the update z(t+1) = y (t+1).

4. Else, z(t+1) is computed with step size 1/L.
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OISTA: Performances
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OISTA – Step-size
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Number of iterations
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OISTA – Limitation

I OISTA is not practical, as you need to compute LS at each iteration
and this is costly.

I No precomputation possible: there is an exponential number of
supports S .

30/33



Link with SLISTA

1 10 20

Layer

1/L

2/L

3/L

4/L

S
te

p

1/L

Learned steps 1/LS 2/LS

The learned step-sizes are linked to the distribution of 1/LS
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My take on unrolled algorithms

What unrolled algorithms can do:

I Improve constants in convergence rate.
[Moreau and Bruna 2017]

I Learn to better optimize for a non-uniform input distribution.
[Ablin et al. 2019]

I Make inverse problem solution differentiable.
[Ablin et al. 2020; Mehmood and Ochs 2020]

What unrolled algorithms can’t do:

I Faster convergence rates for solvers.
I Uniform convergence with modified structure.

⇒ Can we extend these results to other problems?
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Conclusion

Take home messages:

First order structure is needed in optimization.
No hope to learn an algorithm better than ISTA.

(except for step-sizes!)

Unrolled algorithms are useful to learn to solve optimization
problems in average.

(typical in bi-level optimization?)

Code to reproduce the figures is available online:

adopty : github.com/tommoral/adopty

carpet : github.com/hcherkaoui/carpet

Slides will be on my web page:

tommoral.github.io @tomamoral
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Interlude – regularization λ

Importance of the parameter λ

Lx(z) =
1
2
‖x − Dz‖22 + λ‖z‖1

z(t+1) = ST
(
z(t) − α(t)D>(Dz(t) − x), λα(t)

)

Control the distribution of z∗(x) sparsity.

Maximal value
λmax = ‖D>x‖∞ is the minimal
value of λ for which

z∗(x) = 0

Equiregularization set
Set in Rn for which λmax = 1

B∞ = {x ∈ Rn ; ‖D>x‖∞ = 1}

⇒ Training performed with points sampled in B∞

1/10



TV regularized problems

2/10



TV regularized problems

Given a forward operator D ∈ Rn×m and λ > 0, the Lasso for x ∈ Rn is

z∗ = argmin
z

Px(z) =
1
2
‖x − Dz‖22
︸ ︷︷ ︸

fx (z)

+λ‖z‖TV

where ‖z‖TV = ‖∇z‖1, and ∇ =




−1 1 0 . . . 0

0 −1 1
. . .

...
...

. . . . . . . . . 0
0 . . . 0 −1 1



∈ Rk−1×k

Why consider this? equivalent formulation with Lasso:

min
u∈Rk

Sx(u) =
1
2
‖x − DLu‖22 + λ‖Ru‖1.

where R is diagonal and L is the discrete integration operator.

⇒
3/10



Why not just use the synthesis formulation? [?]

Convergence rate comparison

Both cvg rates are in O(1/t) but scale with ρ = ‖D‖22 or ρ̃ = ‖D∇‖22.

Theorem (Lower bound for the ratio ρ̃
ρ
expectation)

Let D be a random matrix in Rm×k with iid normal entries. The expectation
of ρ̃/ρ is asymptotically lower bounded when k tends to ∞ by

E
[
ρ̃

ρ

]
≥ 2k + 1

4π2 + o(1)

Empirical evidences also push for a O(k2) scaling.

Analysis is more efficient in terms of iterations than Synthesis.

4/10



Unrolling iterative algorithms [?]

x

W (0)
x

proxµ(1)g W (1)
z

W (1)
x

proxµ(2)g W (2)
z

W (2)
x

proxµ(3)g z(3)

Figure: LPGD - Unfolded network for Learned PGD with T = 3

Main blocker:

How to compute proxµg efficiently and in a differentiable way?

I Use dedicated solver and compute gradient with implicit function
theorem.

I Use an unrolled algorithm (LISTA) to solve the prox.
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Simulation

Performance investigation
Very low dimensional simulation k ,m = 5, 8 (because of memory issue).

0 1 2 3 5 7 11 17 26 40
Layers t

10−2

10−1

E
[ P

x
(u

(t
) )
−
P
x
(u
∗ )
]

0 1 2 3 5 7 11 17 26 40
Layers t

10−4

10−2

100

FISTA - synthesis

LISTA - synthesis

PGD - analysis

Accelerated PGD - analysis

LPGD-Taut

LPGD-LISTA[50]

Figure: Performance comparison for different regularisation levels (left) λ = 0.1,
(right) λ = 0.8.
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fMRI data deconvolution (UKBB)

We retain only 8000 time-series of 250 time-frames (3 minute 03 seconds),
Deconvolution for a fixed kernel h and estimate the neural activity signal z
for each voxels.

0 5 10 15 20 25
Layers t

10−3

E
[ P

x
(u

(t
) )
−
P
x
(u
∗ )
] Accelerated PGD - analysis

LPGD-Taut

Figure: Performance comparison λ = 0.1λmax between LPGD-Taut and iterative
PGD for the analysis formulation for the HRF deconvolution problem with fMRI
data.
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Weights coupling

We denote θ = (W , α, β) the parameters of a given layer φθ.

φθ(z , x) = ST
(
z − αD>(Dz − x), λα

)

Assumption 1:
D ∈ Rn×m is a dictionary with non-duplicated unit-normed columns.

Lemma 4.3 – Weight coupling
If for all the couples (z∗(x), x) ∈ Rm × B∞ such that z∗(x) ∈ argmin Fx(z),
it holds φθ(z∗(x), x) = z∗(x). Then, αβW = D .

The solution of the Lasso is a fixed point of a given layer φθ if and
only if φθ is equivalent to a step of ISTA with a given step-size.

8/10



ISTA – Convergence

Convergence rates

If fx is µ-strongly convex, i.e. σmin(DTD) ≥ µ > 0

Fx(z(t))− Fx(z∗) ≤
(
1− µ

L

)t
(Fx(0)− Fx(z∗))

In the general case, Fx(z(t))− Fx(z∗) ≤ L‖z∗‖2
t

9/10



OISTA – Convergence

Proposition 3.1: Convergence
When D is such that the solution is unique for all x and λ > 0,
the sequence (z(t)) generated by the algorithm converges to
z∗ = argmin Fx .
Further, there exists an iteration T ∗ such that for t ≥ T ∗ ,
Supp(z(t)) = Supp(z∗) , S∗.

Proposition 3.2: Convergence rate
For t > T ∗ ,

Fx(z(t))− Fx(z∗) ≤ LS∗
‖z∗−z(T∗)‖2

2(t−T∗) .

If moreover, λmin(D>S∗DS∗) = µ∗ > 0 , then

Fx(z(t))− Fx(z∗) ≤ (1− µ∗

LS∗
)t−T∗(Fx(z(T∗))− Fx(z∗)) .
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