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Inverse problems

MEG

Inverse Problem

T

Maxwell's
Equations

(o)

Electrical activity Observed signal

Forward model: x = Dz Inverse problem: z = f(x) (ill-posed)

Optimization with a regularization R encoding prior knowledge
argmin, ||x — Dz||3 + R(z2)

Example: sparsity with R = A|| - |l1
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Other Inverse Problems
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Classical Sparse IP resolution - the Lasso [Tibshirani 1996]

Given a forward operator D € R™™ and X > 0, the Lasso for x € R" is

z" = argmin F(z) = §||x — Dz||§ +||z||1
z —_——
fx(2)

a.k.a. sparse coding, sparse linear regression, ...

We are interested in the over-complete case where m > n.
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Classical Sparse IP resolution - the Lasso [Tibshirani 1996]

Given a forward operator D € R"*™ and X\ > 0, the Lasso for x € R" is

. 1
z" = argmin F(z) = §||x — Dz||§ +||z||1
z —_——
f(2)

a.k.a. sparse coding, sparse linear regression, ...

We are interested in the over-complete case where m > n.

Some Properties

» The problem is convex in z but not strongly convex in general.
» The problem is L-smooth and proximable.

» Most of the time, there is a unique solution (but not always).
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Solving the Lasso — classical optimization

Classical Optimizationd

» (Fast-) Iterative Shrinkage-Thresholding Algorithm (ISTA).
[Daubechies et al. 2004; Beck and Teboulle 2009]

» Coordinate Descent. [Friedman et al. 2007; Osher and Li 2009]

> Least-Angle Regression (LARS). [Efron et al. 2004]

Convergence rates — Worst case analysis: For any x,

F(Z)-Fr <0 (l)

t2

= Guaranteed convergence for any x.
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How to solve efficiently many inverse problems

Given multiple inputs x;, we would like to solve efficiently:

N

mzi'n Z Fs:(zi)

i=1
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How to solve efficiently many inverse problems

Given multiple inputs x;, we would like to solve efficiently:

N
mzi'n Z Fs:(zi)

Here, each problem is independent, so with an infinite budget, there is no
point in considering this problem.

However, if your aim is to chose an algorithm f; for a given computational
budget L such that

argmm — Z Fy; (fL(xi))

Can you do better than worst case algorithms?

Related to average case complexity analysis?
[Scieur and Pedregosa 2020; Pedregosa and Scieur 2020]
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Unrolled optimization algorithms
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ISTA: [Daubechies et al. 2004]
Iterative Shrinkage-Thresholding Algorithm

f. is a L-smooth function with L = ||D||3 and
Vh(z®)) = DT(Dz() — x)
The ¢1-norm is proximable with a separable proximal operator

prox,,|.j, (x) = sign(x) max(0, [x| — u) = ST(x, )
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ISTA: [Daubechies et al. 2004]
Iterative Shrinkage-Thresholding Algorithm

f. is a L-smooth function with L = ||D||3 and
V£ (z®) = DT (Dz") — x)
The ¢1-norm is proximable with a separable proximal operator
prox,,|.j, (x) = sign(x) max(0, [x| — u) = ST(x, )

We can use the proximal gradient descent algorithm (ISTA)

2D = ST | 20 — p VE(D) | pA
——

DT (Dz(t) —x)

Here, p play the role of a step size (in [0, Z[).
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ISTA is a “Neural Network” [Gregor and Le Cun 2010]

ISTA
(D) = ST (z(t) — pDT(Dz(") — x), pA)

Let W, = I, — pD" D and W, = pDT. Then

Z(t+1) — ST( W,z(®) + Wix, pA)

ST(, pA)l—> (t+1)

One step of ISTA
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ISTA is a “Neural Network” [Gregor and Le Cun 2010]

ISTA
J(t41) _ s (z(t) _ DT (D2 — x) pA>

Let W, = I, — pD" D and W, = pDT. Then

2D = ST(W,2(0) + Wiex, pA)

RNN equivalent to
ISTA
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Learned ISTA [Gregor and Le Cun 2010]

Recurrence relation of ISTA define a RNN

264 =T (20 - 70709 = ,3)

This RNN can be unfolded as a feed-forward network.

ST('79(°))—’[WZ(1) © 5T('79(”)—’[W§2) (D-{5T(-, 60> @

X

Let ®g(r) denote a network with T layers parametrized with oM.

If W = W, and W) = W, then dgr(x) = 2().
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LISTA — Training

Empirical risk minimization : We need a training set of {xi,...xy}
training sample and our goad is to accelerate ISTA on unseen data x ~ p.

The training solves

q)e(T X, ) o

||M2

6T ¢ arg min
o(T)

for a loss L

= Choice of loss L7
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LISTA — Training

Supervised: a ground truth z*(x) is known
L .
L«(2) = 5llz = 2" (x)]

Solving the inverse problem.
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Supervised: a ground truth z*(x) is known
L .
L«(2) = 5llz = 2" (x)]

Solving the inverse problem.

Semi-supervised: the solution of the Lasso z*(x) is known

Lud2) = 5l ()

Accelerating the resolution of the Lasso.
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LISTA — Parametrizations

General LISTA model [Gregor and Le Cun 2010]
240 = T (W00 1+ W, )

The structure of D is lost in the linear transform.

Coupled LISTA [Chen et al. 2018]
A1) _gT (z(f) — aOWO (DO _ x), 5(t))

Can be seen as learning

» Pre-conditionner > Step-size » Threshold
W) ¢ Rmxn o) e Ry 5 e R,
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LISTA — Parametrizations

Coupled LISTA [Chen et al. 2018]
A1) _gT (z(f) — aOWO (D _ x), 5(t))

Can be seen as learning

» Pre-conditionner > Step-size » Threshold
W) ¢ Rmxn o) e Ry 5 e R,

= Justified theoretically for (un)supervised convergence
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Performances

m— |STA FISTA == LISTA
Simulated data A = 0.1
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What is learned in unrolled algorithms?
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Coupled LISTA Parametrizations

Coupled LISTA [Chen et al. 2018]
AHDZST@m_Qme@Hﬂ_@ﬁm)

Can be seen as learning

» Pre-conditionner > Step-size » Threshold
W(t) ¢ Rmxn o) e Ry B0 e R,
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What does LISTA learn? [Ablin et al. 2019]

Theorem — Asymptotic convergence of the weights
Consider a sequence of nested networks ®¢g(r) s.t.
Do) (X) = Py (Porern) (x), x) . Assume that
1. the sequence of parameters converges i.e.
e(t) S/ L. (W*,CM*,B*) 7
t—o0

2. the output of the network converges toward a solution z*(x) of the
Lasso uniformly over the equiregularization set B , i.e.
supxes,, [Pom (x) = 2*(x) ——0
T—o0

Then %W* =D .

Idea of the proof: each unit vector needs to be a fixed point of the network.
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Numerical verification

= | |STA

I 1 1 1 1

1 10 20 30 40
Layers

40-layers LISTA network trained on a 10 x 20 problem with A = 0.1
The weights W(9 align with D and «, 5 get coupled.
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Is there a point in learning step sizes?
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Step LISTA [Ablin et al. 2019]

LISTA with restricted parametrization : Only learn a step-size a(?)

() — §T (z(t) — DT (DY) — x), )\(x(t))

Fewer parameters: T instead of (2+ mn)T .

= Easier to learn = Reduced performances?

Goal: Learn step sizes for ISTA adapted to input distribution.
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Performances

Simulated data: m = 256 and n = 64

Dy ~U(S" 1) and x = with Xx; ~ N(0,1)

IIDT~H

me= |STA === LISTA === SLISTA (proposed)
Simulated data A = 0.1 Simulated data A = 0.8
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Performance on semi-real datasets

Digits: 8 x 8 images from scikit-learn

Dy and x sampled uniformly from the digits and x = ﬁ.

mm |STA === LISTA === SLISTA (proposed)

Digits data A = 0.1 Digits data A = 0.8
28
LLN 10°!
6 1}) Zﬁ] 30 0 1}) 2}) 30
Number of Layers Number of Layers
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ISTA: Majoration-Minimization

Taylor expansion of f; in z(t)
=) = GEY) - TEE) e — 2 4 %HD(Z — zM)|E + Azl
L
< £(2) + VEENT (z - 2) + Sllz = 2913 + Alzlh

= Replace the Hessian DD by L Id.

Separable function that can be minimized in close form

2
argmin L A8 — 1fo(z(t)) —z|| + A|lz|]1 = proxa (2 — 1Vﬂ(z(t))
, 2 L 5 L L
1 A
= (1) _ = ty 2
ST <z LVfX(z )s L)
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ISTA: Majoration for the data-fit

» Level sets from z' DT Dz
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ISTA: Majoration for the data-fit

> Level sets from z' D" Dz < L| z||>

Zdn
N A
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ISTA: Majoration for the data-fit

> Level sets from z' DDz < zTATAAz [Moreau and Bruna 2017]
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ISTA: Majoration for the data-fit

> Level sets from z' DT Dz < Ls||z|[> for Supp(z) C S

ZdAN
\J

25/33



Oracle ISTA: Majoration-Minimization

For all z such that Supp(z) C S = Supp(z(),
Fu(2) < £(21) + V(2) (2 - 29) + %HZ — 2913+ Alzllx

with Ls = [|D. s]3.

_F;E _Qx,L('az(t)) _Qx,LS('wZ(t))

Cost function

Step size
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Better step-sizes for ISTA

Oracle ISTA (OISTA):

1. Get the Lipschitz constant Ls associated with support S = Supp(z(")).

N

. Compute y(t*+1) as a step of ISTA with a step-size of 1/Ls

Y ST (20— L0702 - ), 1)

S S

w

. If Supp(ytt1) C S, accept the update z(t+1) =y (t+1),

4. Else, z(t*1) is computed with step size 1/L.
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OISTA: Performances

—ISTA —FISTA —OISTA (proposed)

£ 107°
|

8

10—12_

Number of iterations
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OISTA — Step-size

Oracle step

0 50 100 150
Number of iterations
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OISTA — Limitation

» OISTA is not practical, as you need to compute Ls at each iteration
and this is costly.

» No precomputation possible: there is an exponential number of
supports S.
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Link with SLISTA

=== earned steps ==1/Lg ==2/Lg

4/L-

o S/L -
/?

1/L fm======= |/ P —

1 10 20
Layer

Ste

The learned step-sizes are linked to the distribution of 1/Lg
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My take on unrolled algorithms

What unrolled algorithms can do:

» Improve constants in convergence rate.
[Moreau and Bruna 2017]

» Learn to better optimize for a non-uniform input distribution.
[Ablin et al. 2019]

» Make inverse problem solution differentiable.
[Ablin et al. 2020; Mehmood and Ochs 2020]
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My take on unrolled algorithms

What unrolled algorithms can do:

» Improve constants in convergence rate.
[Moreau and Bruna 2017]

» Learn to better optimize for a non-uniform input distribution.
[Ablin et al. 2019]

» Make inverse problem solution differentiable.
[Ablin et al. 2020; Mehmood and Ochs 2020]

What unrolled algorithms can’t do:

» Faster convergence rates for solvers.

» Uniform convergence with modified structure.

= Can we extend these results to other problems?
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Conclusion

Take home messages:

First order structure is needed in optimization.
No hope to learn an algorithm better than ISTA.
(except for step-sizes!)

Unrolled algorithms are useful to learn to solve optimization
problems in average.

(typical in bi-level optimization?)
Code to reproduce the figures is available online:
© adopty : github.com/tommoral/adopty
O carpet : github.com/hcherkaoui/carpet

Slides will be on my web page:

€ tommoral.github.io O @tomamoral
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Interlude — regularization \

Importance of the parameter A
1 2
L£x(2) = 5lx = Dz|jz + Allz]lx

ZtH) = 5T (z(t) — DT (D) — x), /\a(t)>

Control the distribution of z*(x) sparsity.

Maximal value Equiregularization set

Amax = ||D T X||so is the minimal Set in R” for which Apax = 1
value of A for which
Boo = {x€R"; [|D"x|oo =1}
z"(x) =0

= Training performed with points sampled in B,

1/10



TV regularized problems
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TV regularized problems

Given a forward operator D € R"*™ and X\ > 0, the Lasso for x € R" is

z" = argmin Py(z) = %Hx — Dz|3+\|z||rv
Z |
£(2)
-1 1 0 ... 0
where ||z||rv = ||Vz]|1, and V = [‘_’ o

o ... 0 -11

c Rk—lxk

Why consider this? equivalent formulation with Lasso:
) 1

min S,(u) = =||x — DLu||3 + \||Rul|1.
ueRk 2

where R is diagonal and L is the discrete integration operator.
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Why not just use the synthesis formulation? [7]

Convergence rate comparison
Both cvg rates are in O(1/t) but scale with p = ||D||3 or p = | DV||3.

Theorem (Lower bound for the ratio ~ expectation)

Let D be a random matrix in R™*¥ with iid normal entries. The expectation
of p/p is asymptotically lower bounded when k tends to oo by

pl _2k+1
- >
E [p} Z +o(1)

Empirical evidences also push for a O(k?) scaling.

Analysis is more efficient in terms of iterations than Synthesis.
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Unrolling iterative algorithms

[7]

50

Figure: LPGD - Unfolded network for Learned PGD with T =3

Main blocker:

How to compute prox,, efficiently and in a differentiable way?

» Use dedicated solver and compute gradient with implicit function
theorem.

» Use an unrolled algorithm (LISTA) to solve the prox.
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Simulation

Performance investigation
Very low dimensional simulation k, m = 5,8 (because of memory issue).

== FISTA - synthesis =@~ PGD - analysis == LPGD-Taut
== LISTA - synthesis =k Accelerated PGD - analysis === LPGD-LISTA[50]

LS -

2 107! -

Q:

|

=102

N

=

0 1 2 3 5 7 11 17 26 40 0 1 2 3 5 7 11 17 26 40
Layers ¢ Layers ¢

Figure: Performance comparison for different regularisation levels (left) A = 0.1,
(right) A =0.8.
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fMRI data deconvolution (UKBB)

We retain only 8000 time-series of 250 time-frames (3 minute 03 seconds),
Deconvolution for a fixed kernel h and estimate the neural activity signal z
for each voxels.

Accelerated PGD - analysis
s | PGD-Taut

10—3 i

—
—
Z

S

S
&

\
=
=
2
A
i
=

0 5 10 15 20 %
Layers ¢

Figure: Performance comparison \ = 0.1\, between LPGD-Taut and iterative
PGD for the analysis formulation for the HRF deconvolution problem with fMRI
data.
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Weights coupling

We denote 0 = (W, «, B) the parameters of a given layer ¢y.
¢o(z,x) =ST (z —aD"(Dz - x), Aa)

Assumption 1:
D € R"™ ™ is a dictionary with non-duplicated unit-normed columns.

Lemma 4.3 — Weight coupling

If for all the couples (z*(x), x) € R™ x By such that z*(x) € argmin F(z),
it holds ¢g(z*(x),x) = z*(x). Then, GW =D .

The solution of the Lasso is a fixed point of a given layer ¢y if and
only if ¢y is equivalent to a step of ISTA with a given step-size.
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ISTA — Convergence

Convergence rates

If £, is p-strongly convex, i.e. am;n(DTD) >u>0

Fo(29) - Fu(z) < (1 — %)t (Fx(0) — Fe(2"))

In the general case, Fx(z(t)) — F(z%) < M:”z
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OISTA - Convergence

Proposition 3.1: Convergence

When D is such that the solution is unique for all x and A > 0,
the sequence (z(*)) generated by the algorithm converges to
z* = argmin F .

Further, there exists an iteration T* such that for t > T* |
Supp(z(")) = Supp(z*) £ S*.

Proposition 3.2: Convergence rate
Fort>T%*,

2 AATH)|2
Fu(z®)) = Fu(z*) < Ls- 1552

If moreover, )\m;n(DST* Ds+) = p* > 0, then

*

Fu(2®) = Fu(z*) < (L= £)7 T (F(@T)) = Fu(2) -

10/10
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