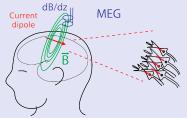
Learning to optimize with unrolled algorithms

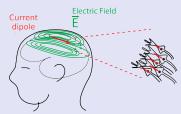
Thomas Moreau INRIA Saclay

Joint work with Pierre Ablin; Mathurin Massias; Alexandre Gramfort; Hamza Cherkaoui; Jeremias Sulam; Joan Bruna

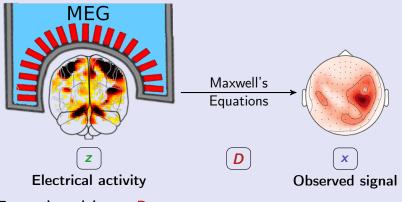
Magnetoencephalography



Electroencephalography

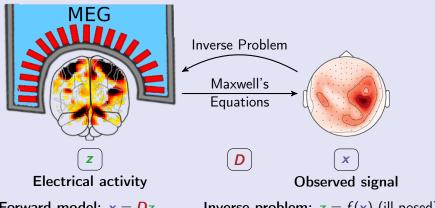


Inverse problems



Forward model: x = Dz

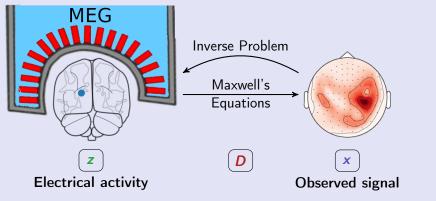
Inverse problems



Forward model: x = Dz

Inverse problem: z = f(x) (ill-posed)

Inverse problems



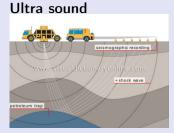
Forward model: x = Dz

Inverse problem: z = f(x) (ill-posed)

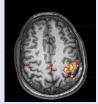
Optimization with a regularization \mathcal{R} encoding prior knowledge $\operatorname{argmin}_{z} \|x - Dz\|_{2}^{2} + \mathcal{R}(z)$

Example: sparsity with $\mathcal{R} = \lambda \| \cdot \|_1$

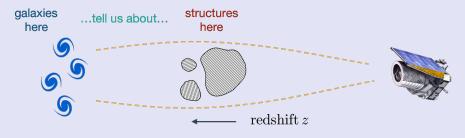
Other Inverse Problems



fMRI - compress sensing



Astrophysic



Classical Sparse IP resolution - the Lasso

Given a forward operator $D \in \mathbb{R}^{n \times m}$ and $\lambda > 0$, the Lasso for $x \in \mathbb{R}^n$ is

$$z^* = \underset{z}{\operatorname{argmin}} F_x(z) = \underbrace{\frac{1}{2} ||x - Dz||_2^2}_{f_x(z)} + \lambda ||z||_1$$

a.k.a. sparse coding, sparse linear regression, ...

We are interested in the over-complete case where m > n.

Given a forward operator $D \in \mathbb{R}^{n \times m}$ and $\lambda > 0$, the Lasso for $x \in \mathbb{R}^n$ is

$$z^* = \underset{z}{\operatorname{argmin}} F_x(z) = \underbrace{\frac{1}{2} \|x - Dz\|_2^2}_{f_x(z)} + \lambda \|z\|_1$$

a.k.a. sparse coding, sparse linear regression, ...

We are interested in the over-complete case where m > n.

Some Properties

- ▶ The problem is convex in *z* but not strongly convex in general.
- ► The problem is L-smooth and proximable.
- Most of the time, there is a unique solution (but not always).

Classical Optimizationd

- (Fast-) Iterative Shrinkage-Thresholding Algorithm (ISTA).
 [Daubechies et al. 2004; Beck and Teboulle 2009]
- Coordinate Descent. [Friedman et al. 2007; Osher and Li 2009]

Least-Angle Regression (LARS).

[Efron et al. 2004]

Convergence rates – Worst case analysis: For any *x*,

$$F_x(z^{(t)}) - F_x^* \leq \mathcal{O}\left(rac{1}{t^2}
ight)$$

 \Rightarrow Guaranteed convergence for any *x*.

Given multiple inputs x_i , we would like to solve efficiently:

$$\min_{z_i}\sum_{i=1}^N F_{x_i}(z_i)$$

Given multiple inputs x_i , we would like to solve efficiently:

$$\min_{z_i}\sum_{i=1}^N F_{x_i}(z_i)$$

Here, each problem is independent, so with an infinite budget, there is no point in considering this problem.

Given multiple inputs x_i , we would like to solve efficiently:

$$\min_{z_i}\sum_{i=1}^N F_{x_i}(z_i)$$

Here, each problem is independent, so with an infinite budget, there is no point in considering this problem.

However, if your aim is to chose an algorithm f_L for a given computational budget L such that

$$\underset{f_L}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} F_{x_i}(f_L(x_i))$$

Can you do better than worst case algorithms?

Given multiple inputs x_i , we would like to solve efficiently:

$$\min_{z_i}\sum_{i=1}^N F_{x_i}(z_i)$$

Here, each problem is independent, so with an infinite budget, there is no point in considering this problem.

However, if your aim is to chose an algorithm f_L for a given computational budget L such that

$$\underset{f_{L}}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} F_{x_{i}}(f_{L}(x_{i}))$$

Can you do better than worst case algorithms?

Related to average case complexity analysis?

[Scieur and Pedregosa 2020; Pedregosa and Scieur 2020]

Unrolled optimization algorithms

ISTA: [Daubechies et al. 2004] Iterative Shrinkage-Thresholding Algorithm

 f_x is a L-smooth function with $L = ||D||_2^2$ and

$$\nabla f_x(z^{(t)}) = D^\top (Dz^{(t)} - x)$$

The ℓ_1 -norm is proximable with a separable proximal operator

$$\operatorname{prox}_{\mu \|\cdot\|_1}(x) = \operatorname{sign}(x) \max(0, |x| - \mu) = ST(x, \mu)$$

ISTA: [Daubechies et al. 2004] Iterative Shrinkage-Thresholding Algorithm

 f_x is a L-smooth function with $L = ||D||_2^2$ and

$$\nabla f_x(z^{(t)}) = D^\top (Dz^{(t)} - x)$$

The ℓ_1 -norm is proximable with a separable proximal operator

$$\mathsf{prox}_{\mu\|\cdot\|_1}(x) = \mathsf{sign}(x) \max(0,|x|-\mu) = \mathsf{ST}(x,\mu)$$

We can use the proximal gradient descent algorithm (ISTA)

$$z^{(t+1)} = \mathsf{ST}\left(z^{(t)} - \rho \underbrace{\nabla f_x(z^{(t)})}_{D^\top(Dz^{(t)}-x)}, \rho\lambda\right)$$

Here, ρ play the role of a step size (in $[0, \frac{2}{L}]$).

ISTA

$$z^{(t+1)} = \mathsf{ST}\left(z^{(t)} - \rho D^{\top} (Dz^{(t)} - x), \rho \lambda\right)$$

Let $W_z = I_m - \rho D^\top D$ and $W_x = \rho D^\top$. Then

$$z^{(t+1)} = \mathsf{ST}(W_z z^{(t)} + W_x x, \rho \lambda)$$

One step of ISTA

$$x \rightarrow W_{x} \rightarrow f \qquad ST(\cdot, \rho\lambda) \rightarrow z^{(t+1)}$$

ISTA

$$z^{(t+1)} = \mathsf{ST}\left(z^{(t)} - \rho D^{\top} (Dz^{(t)} - x), \rho \lambda\right)$$

Let $W_z = I_m - \rho D^{\top} D$ and $W_x = \rho D^{\top}$. Then

$$z^{(t+1)} = \mathsf{ST}(W_z z^{(t)} + W_x x, \rho \lambda)$$

RNN equivalent to ISTA

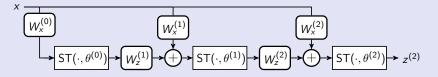
$$x \rightarrow W_{x} \rightarrow \bigoplus ST(\cdot, \rho\lambda) \xrightarrow{} z^{*}$$

Learned ISTA

Recurrence relation of ISTA define a RNN

$$z^{(t+1)} = \mathsf{ST}\left(z^{(t)} - \frac{1}{L}D^{\top}(Dz^{(t)} - x), \frac{\lambda}{L}\right) \xrightarrow{X \to W_x} \xrightarrow{\mathsf{ST}(\cdot, \rho\lambda)} \xrightarrow{z^*} U_x$$

This RNN can be unfolded as a feed-forward network.



Let $\Phi_{\Theta^{(T)}}$ denote a network with T layers parametrized with $\Theta^{(T)}$.

If
$$W_x^{(i)} = W_x$$
 and $W_z^{(i)} = W_z$, then $\Phi_{\Theta^T}(x) = z^{(t)}$.

Empirical risk minimization : We need a training set of $\{x_1, \ldots x_N\}$ training sample and our goad is to accelerate ISTA on unseen data $x \sim p$.

The training solves

$$\tilde{\Theta}^{(T)} \in \arg\min_{\Theta^{(T)}} \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}_{x}(\Phi_{\Theta^{(T)}}(x_{i}))$$
.

for a loss \mathcal{L}_{x} .

\Rightarrow Choice of loss \mathcal{L}_x ?

Supervised: a ground truth $z^*(x)$ is known

$$\mathcal{L}_x(z) = rac{1}{2} \|z-z^*(x)\|$$

Solving the inverse problem.

Supervised: a ground truth $z^*(x)$ is known

$$\mathcal{L}_x(z) = \frac{1}{2} \|z - z^*(x)\|$$

Solving the inverse problem.

Semi-supervised: the solution of the Lasso $z^*(x)$ is known

$$\mathcal{L}_{x}(z) = \frac{1}{2} \|z - z^{*}(x)\|$$

Accelerating the resolution of the Lasso.

Supervised: a ground truth $z^*(x)$ is known

$$\mathcal{L}_x(z) = \frac{1}{2} \|z - z^*(x)\|$$

Solving the inverse problem.

Semi-supervised: the solution of the Lasso $z^*(x)$ is known

$$\mathcal{L}_x(z) = rac{1}{2} \|z-z^*(x)\|$$

Accelerating the resolution of the Lasso.

Unsupervised: there is no ground truth

$$\mathcal{L}_{x}(z) = F_{x}(z) = \frac{1}{2} \|x - Dz\|_{2}^{2} + \lambda \|z\|_{1}$$

Solving the Lasso.

Supervised: a ground truth $z^*(x)$ is known

$$\mathcal{L}_{x}(z) = \frac{1}{2} \|z - z^{*}(x)\|$$

Solving the inverse problem.

Semi-supervised: the solution of the Lasso $z^*(x)$ is known

$$\mathcal{L}_{x}(z) = \frac{1}{2} \|z - z^{*}(x)\|$$

Accelerating the resolution of the Lasso.

Unsupervised: there is no ground truth

$$\mathcal{L}_{x}(z) = F_{x}(z) = rac{1}{2} \|x - Dz\|_{2}^{2} + \lambda \|z\|_{1}$$

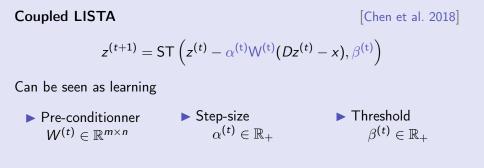
Solving the Lasso.

General LISTA model

[Gregor and Le Cun 2010]

$$z^{(t+1)} = \mathsf{ST}\left(\mathsf{W}_{\mathsf{e}}^{(t)} z^{(t)} + \mathsf{W}_{\mathsf{x}}^{(t)} x, \theta^{(t)}\right)$$

The structure of D is lost in the linear transform.

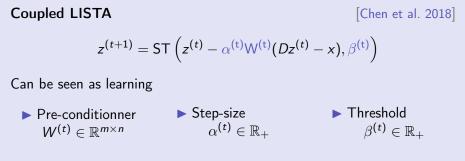


General LISTA model

[Gregor and Le Cun 2010]

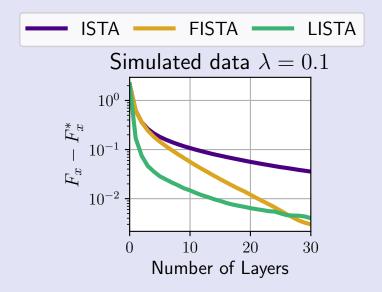
$$z^{(t+1)} = \mathsf{ST}\left(\mathsf{W}_{\mathsf{e}}^{(t)} z^{(t)} + \mathsf{W}_{\mathsf{x}}^{(t)} x, \theta^{(t)}\right)$$

The structure of D is lost in the linear transform.



 \Rightarrow Justified theoretically for (un)supervised convergence

Performances



What is learned in unrolled algorithms?

Coupled LISTA Parametrizations

Coupled LISTA

[Chen et al. 2018]

$$z^{(t+1)} = \mathsf{ST}\left(z^{(t)} - \alpha^{(t)}\mathsf{W}^{(t)}(Dz^{(t)} - x), \beta^{(t)}\right)$$

Can be seen as learning

► Pre-conditionner $W^{(t)} \in \mathbb{R}^{m \times n}$ ► Step-size $\alpha^{(t)} \in \mathbb{R}_+$ ► Threshold $\beta^{(t)} \in \mathbb{R}_+$

Theorem – Asymptotic convergence of the weights

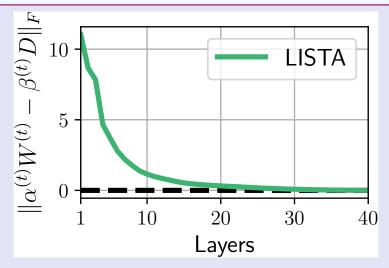
Consider a sequence of nested networks $\Phi_{\Theta^{(T)}} s.t. \Phi_{\Theta^{(t)}}(x) = \phi_{\theta^{(t)}}(\Phi_{\Theta^{(t+1)}}(x), x)$. Assume that

- 1. the sequence of parameters converges *i.e.* $\theta^{(t)} \xrightarrow[t \to \infty]{} \theta^* = (W^*, \alpha^*, \beta^*) ,$
- 2. the output of the network converges toward a solution $z^*(x)$ of the Lasso uniformly over the equiregularization set \mathcal{B}_{∞} , *i.e.* $\sup_{x \in \mathcal{B}_{\infty}} \|\Phi_{\Theta(\tau)}(x) - z^*(x)\| \xrightarrow[T \to \infty]{} 0$.

Then $rac{lpha^*}{eta^*} W^* = D$.

Idea of the proof: each unit vector needs to be a fixed point of the network.

Numerical verification



40-layers LISTA network trained on a 10 × 20 problem with $\lambda = 0.1$ The weights $W^{(t)}$ align with D and α, β get coupled.

Is there a point in learning step sizes?

LISTA with restricted parametrization : Only learn a step-size $\alpha^{(t)}$

$$z^{(t+1)} = \mathsf{ST}\left(z^{(t)} - \alpha^{(t)}D^{\top}(Dz^{(t)} - x), \lambda\alpha^{(t)}\right)$$

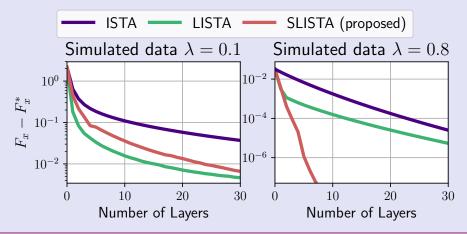
Fewer parameters: T instead of (2 + mn)T.

 \Rightarrow Easier to learn \Rightarrow Reduced performances?

<u>Goal:</u> Learn step sizes for ISTA adapted to input distribution.

Performances

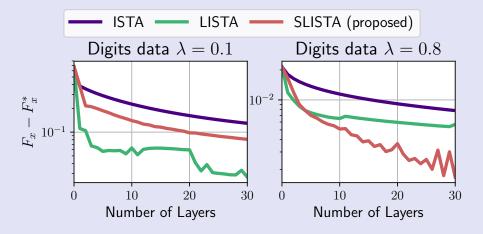
Simulated data: m = 256 and n = 64 $D_k \sim \mathcal{U}(S^{n-1})$ and $x = \frac{\tilde{x}}{\|D^\top \tilde{x}\|_{\infty}}$ with $\tilde{x}_i \sim \mathcal{N}(0, 1)$



Performance on semi-real datasets

Digits: 8×8 images from scikit-learn

 D_k and \tilde{x} sampled uniformly from the digits and $x = \frac{\tilde{x}}{\|D^\top \tilde{x}\|_{\infty}}$.



ISTA: Majoration-Minimization

Taylor expansion of f_x in $z^{(t)}$

$$F_{x}(z) = f_{x}(z^{(t)}) + \nabla f_{x}(z^{(t)})^{\top}(z - z^{(t)}) + \frac{1}{2} \|D(z - z^{(t)})\|_{2}^{2} + \lambda \|z\|_{1}$$

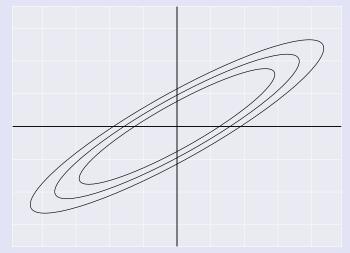
$$\leq f_{x}(z^{(t)}) + \nabla f_{x}(z^{(t)})^{\top}(z - z^{(t)}) + \frac{1}{2} \|z - z^{(t)}\|_{2}^{2} + \lambda \|z\|_{1}$$

 \Rightarrow Replace the Hessian $D^{\top}D$ by L Id.

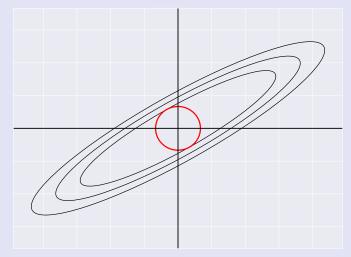
Separable function that can be minimized in close form

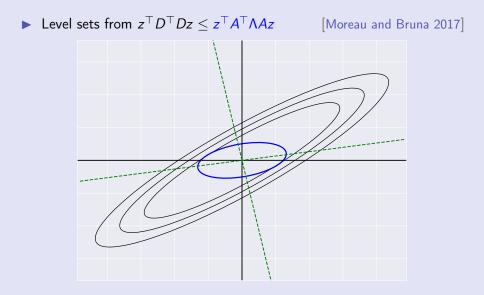
$$\begin{aligned} \underset{z}{\operatorname{argmin}} \frac{L}{2} \left\| z^{(t)} - \frac{1}{L} \nabla f_{x}(z^{(t)}) - z \right\|_{2}^{2} + \lambda \|z\|_{1} &= \operatorname{prox}_{\frac{\lambda}{L}} \left(z^{(t)} - \frac{1}{L} \nabla f_{x}(z^{(t)}) \right) \\ &= \operatorname{ST} \left(z^{(t)} - \frac{1}{L} \nabla f_{x}(z^{(t)}), \frac{\lambda}{L} \right) \end{aligned}$$

► Level sets from $z^{\top}D^{\top}Dz$

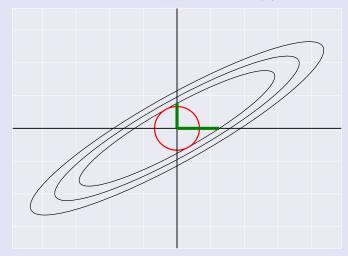


• Level sets from $z^{\top}D^{\top}Dz \leq L \|z\|_2$



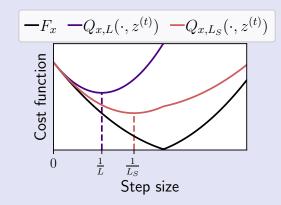


• Level sets from $z^{\top}D^{\top}Dz \leq L_S ||z||_2$ for $Supp(z) \subset S$



Oracle ISTA: Majoration-Minimization

For all z such that $\text{Supp}(z) \subset S \doteq \text{Supp}(z^{(t)})$, $F_x(z) \leq f_x(z^{(t)}) + \nabla f_x(z^{(t)})^\top (z - z^{(t)}) + \frac{L_S}{2} ||z - z^{(t)}||_2^2 + \lambda ||z||_1$ with $L_S = ||D_{\cdot,S}||_2^2$.



Oracle ISTA (OISTA):

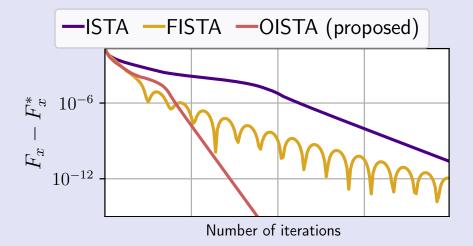
- 1. Get the Lipschitz constant L_S associated with support $S = \text{Supp}(z^{(t)})$.
- 2. Compute $y^{(t+1)}$ as a step of ISTA with a step-size of $1/L_S$

$$y^{(t+1)} = \mathsf{ST}\left(z^{(t)} - \frac{1}{L_S}D^{\top}(Dz^{(t)} - x), \frac{\lambda}{L_S}\right)$$

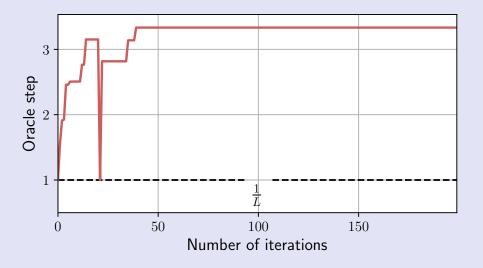
3. If $\operatorname{Supp}(y^{t+1}) \subset S$, accept the update $z^{(t+1)} = y^{(t+1)}$.

4. Else, $z^{(t+1)}$ is computed with step size 1/L.

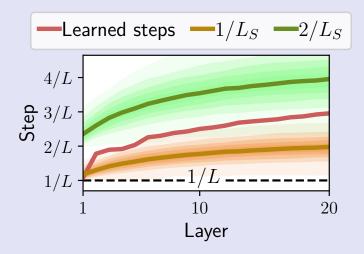
OISTA: Performances



OISTA – Step-size



- OISTA is not practical, as you need to compute L_S at each iteration and this is costly.
- No precomputation possible: there is an exponential number of supports S.



The learned step-sizes are linked to the distribution of $1/L_S$

What unrolled algorithms can do:

Improve constants in convergence rate.

```
[Moreau and Bruna 2017]
```

Learn to better optimize for a non-uniform input distribution.

[Ablin et al. 2019]

Make inverse problem solution differentiable.
 [Ablin et al. 2020; Mehmood and Ochs 2020]

What unrolled algorithms can do:

Improve constants in convergence rate.

```
[Moreau and Bruna 2017]
```

► Learn to better optimize for a non-uniform input distribution.

[Ablin et al. 2019]

Make inverse problem solution differentiable.
 [Ablin et al. 2020; Mehmood and Ochs 2020]

What unrolled algorithms can't do:

- Faster convergence rates for solvers.
- Uniform convergence with modified structure.

What unrolled algorithms can do:

Improve constants in convergence rate.

```
[Moreau and Bruna 2017]
```

► Learn to better optimize for a non-uniform input distribution.

[Ablin et al. 2019]

Make inverse problem solution differentiable.
 [Ablin et al. 2020; Mehmood and Ochs 2020]

What unrolled algorithms can't do:

- ► Faster convergence rates for solvers.
- Uniform convergence with modified structure.

 \Rightarrow Can we extend these results to other problems?

Take home messages:

First order structure is needed in optimization. No hope to learn an algorithm better than ISTA. (except for step-sizes!)

Unrolled algorithms are useful to learn to solve optimization problems in average.

(typical in bi-level optimization?)

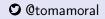
Code to reproduce the figures is available online:

O adopty : github.com/tommoral/adopty

O carpet : github.com/hcherkaoui/carpet

Slides will be on my web page:

tommoral.github.io



Interlude – regularization λ

Importance of the parameter λ

$$\mathcal{L}_{x}(z) = \frac{1}{2} \|x - Dz\|_{2}^{2} + \lambda \|z\|_{1}$$
$$z^{(t+1)} = \mathsf{ST}\left(z^{(t)} - \alpha^{(t)}D^{\top}(Dz^{(t)} - x), \lambda \alpha^{(t)}\right)$$

Control the distribution of $z^*(x)$ sparsity.

Maximal value $\lambda_{\max} = \|D^{\top}x\|_{\infty}$ is the minimal value of λ for which $z^*(x) = 0$ Equiregularization set Set in \mathbb{R}^n for which $\lambda_{max} = 1$ $\mathcal{B}_{\infty} = \{x \in \mathbb{R}^n ; \|D^{\top}x\|_{\infty} = 1\}$

 \Rightarrow Training performed with points sampled in \mathcal{B}_∞

TV regularized problems

TV regularized problems

Given a forward operator $D \in \mathbb{R}^{n \times m}$ and $\lambda > 0$, the Lasso for $x \in \mathbb{R}^n$ is

$$z^{*} = \underset{z}{\operatorname{argmin}} P_{x}(z) = \underbrace{\frac{1}{2} \|x - Dz\|_{2}^{2}}_{f_{x}(z)} + \lambda \|z\|_{TV}$$

where $\|z\|_{TV} = \|\nabla z\|_{1}$, and $\nabla = \begin{bmatrix} \begin{bmatrix} -1 & 1 & 0 & \dots & 0 \\ 0 & -1 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & -1 & 1 \end{bmatrix} \in \mathbb{R}^{k-1 \times k}$

Why consider this? equivalent formulation with Lasso:

$$\min_{u\in\mathbb{R}^k}S_x(u)=\frac{1}{2}\|x-DLu\|_2^2+\lambda\|Ru\|_1.$$

where R is diagonal and L is the discrete integration operator.

$$\Rightarrow$$

Convergence rate comparison

Both cvg rates are in $\mathcal{O}(1/t)$ but scale with $\rho = \|D\|_2^2$ or $\tilde{\rho} = \|D\nabla\|_2^2$.

Theorem (Lower bound for the ratio $\frac{\tilde{\rho}}{\rho}$ expectation)

Let D be a random matrix in $\mathbb{R}^{m \times k}$ with iid normal entries. The expectation of $\tilde{\rho}/\rho$ is asymptotically lower bounded when k tends to ∞ by

$$\mathbb{E}\left[rac{\widetilde{
ho}}{
ho}
ight] \geq rac{2k+1}{4\pi^2} + o(1)$$

Empirical evidences also push for a $\mathcal{O}(k^2)$ scaling.

Analysis is more efficient in terms of iterations than Synthesis.

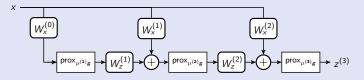


Figure: LPGD - Unfolded network for Learned PGD with T = 3

Main blocker:

How to compute $prox_{\mu g}$ efficiently and in a differentiable way?

- Use dedicated solver and compute gradient with implicit function theorem.
- Use an unrolled algorithm (LISTA) to solve the prox.

Simulation

Performance investigation

Very low dimensional simulation k, m = 5, 8 (because of memory issue).

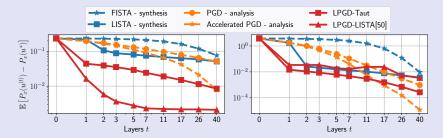


Figure: Performance comparison for different regularisation levels (*left*) $\lambda = 0.1$, (*right*) $\lambda = 0.8$.

fMRI data deconvolution (UKBB)

We retain only 8000 time-series of 250 time-frames (3 minute 03 seconds), Deconvolution for a fixed kernel h and estimate the neural activity signal z for each voxels.

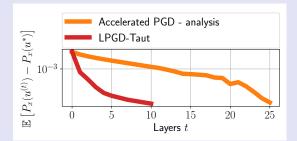


Figure: Performance comparison $\lambda = 0.1\lambda_{max}$ between LPGD-Taut and iterative PGD for the analysis formulation for the HRF deconvolution problem with fMRI data.

Weights coupling

We denote $\theta = (W, \alpha, \beta)$ the parameters of a given layer ϕ_{θ} .

$$\phi_{\theta}(z, x) = \mathsf{ST}\left(z - \alpha D^{\top}(Dz - x), \lambda \alpha\right)$$

Assumption 1:

 $D \in \mathbb{R}^{n \times m}$ is a dictionary with non-duplicated unit-normed columns.

Lemma 4.3 – Weight coupling

If for all the couples $(z^*(x), x) \in \mathbb{R}^m \times \mathcal{B}_\infty$ such that $z^*(x) \in \operatorname{argmin} F_x(z)$, it holds $\phi_\theta(z^*(x), x) = z^*(x)$. Then, $\frac{\alpha}{\beta}W = D$.

The solution of the Lasso is a fixed point of a given layer ϕ_{θ} if and only if ϕ_{θ} is equivalent to a step of ISTA with a given step-size.

Convergence rates

If f_x is μ -strongly convex, *i.e.* $\sigma_{\min}(D^T D) \ge \mu > 0$

$$F_x(z^{(t)}) - F_x(z^*) \le \left(1 - \frac{\mu}{L}\right)^t (F_x(0) - F_x(z^*))$$

In the general case, $F_x(z^{(t)}) - F_x(z^*) \leq \frac{L \|z^*\|_2}{t}$

Proposition 3.1: Convergence

When D is such that the solution is unique for all x and $\lambda > 0$, the sequence $(z^{(t)})$ generated by the algorithm converges to $z^* = \operatorname{argmin} F_x$. Further, there exists an iteration T^* such that for $t \ge T^*$, $\operatorname{Supp}(z^{(t)}) = \operatorname{Supp}(z^*) \triangleq S^*$.

Proposition 3.2: Convergence rate
For
$$t > T^*$$
,
 $F_x(z^{(t)}) - F_x(z^*) \le L_{S^*} \frac{\|z^* - z^{(T^*)}\|^2}{2(t - T^*)}$.

If moreover, $\lambda_{\min}(D_{S^*}^{ op}D_{S^*})=\mu^*>0$, then

$$F_x(z^{(t)}) - F_x(z^*) \le (1 - \frac{\mu^*}{L_{s^*}})^{t-T^*}(F_x(z^{(T^*)}) - F_x(z^*))$$
.