
Learning to optimize with
unrolled algorithms
Thomas Moreau INRIA Saclay

Joint work with Pierre Ablin; Mathurin Massias; Alexandre Gramfort;
Hamza Cherkaoui; Jeremias Sulam; Joan Bruna

1/33

Electrophysiology

Magnetoencephalography Electroencephalography

2/33

Inverse problems

Maxwell’s
Equations

xxx

Observed signal

zzz

Electrical activity
DDD

Inverse Problem

Forward model: xxx = DDDzzz

Inverse problem: zzz = f (xxx) (ill-posed)

Optimization with a regularization R encoding prior knowledge
argminzzz ‖xxx −DDDzzz‖22 +R(zzz)

Example: sparsity with R = λ‖ · ‖1

3/33

Inverse problems

Maxwell’s
Equations

xxx

Observed signal

zzz

Electrical activity
DDD

Inverse Problem

Forward model: xxx = DDDzzz Inverse problem: zzz = f (xxx) (ill-posed)

Optimization with a regularization R encoding prior knowledge
argminzzz ‖xxx −DDDzzz‖22 +R(zzz)

Example: sparsity with R = λ‖ · ‖1

3/33

Inverse problems

Maxwell’s
Equations

xxx

Observed signal

zzz

Electrical activity
DDD

Inverse Problem

Forward model: xxx = DDDzzz Inverse problem: zzz = f (xxx) (ill-posed)

Optimization with a regularization R encoding prior knowledge
argminzzz ‖xxx −DDDzzz‖22 +R(zzz)

Example: sparsity with R = λ‖ · ‖1
3/33

Other Inverse Problems

Ultra sound fMRI - compress sensing

Astrophysic

4/33

Classical Sparse IP resolution - the Lasso [Tibshirani 1996]

Given a forward operator D ∈ Rn×m and λ > 0, the Lasso for x ∈ Rn is

z∗ = argmin
z

Fx(z) =
1
2
‖x − Dz‖22
︸ ︷︷ ︸

fx (z)

+λ‖z‖1

a.k.a. sparse coding, sparse linear regression, ...

We are interested in the over-complete case where m > n.

Some Properties
I The problem is convex in z but not strongly convex in general.

I The problem is L-smooth and proximable.

I Most of the time, there is a unique solution (but not always).

5/33

Classical Sparse IP resolution - the Lasso [Tibshirani 1996]

Given a forward operator D ∈ Rn×m and λ > 0, the Lasso for x ∈ Rn is

z∗ = argmin
z

Fx(z) =
1
2
‖x − Dz‖22
︸ ︷︷ ︸

fx (z)

+λ‖z‖1

a.k.a. sparse coding, sparse linear regression, ...

We are interested in the over-complete case where m > n.

Some Properties
I The problem is convex in z but not strongly convex in general.

I The problem is L-smooth and proximable.

I Most of the time, there is a unique solution (but not always).

5/33

Solving the Lasso – classical optimization

Classical Optimizationd
I (Fast-) Iterative Shrinkage-Thresholding Algorithm (ISTA).

[Daubechies et al. 2004; Beck and Teboulle 2009]

I Coordinate Descent. [Friedman et al. 2007; Osher and Li 2009]

I Least-Angle Regression (LARS). [Efron et al. 2004]

Convergence rates – Worst case analysis: For any x ,

Fx(z(t))− F ∗x ≤ O
(

1
t2

)

⇒ Guaranteed convergence for any x .

6/33

How to solve efficiently many inverse problems

Given multiple inputs xi , we would like to solve efficiently:

min
zi

N∑

i=1

Fxi (zi)

Here, each problem is independent, so with an infinite budget, there is no
point in considering this problem.

However, if your aim is to chose an algorithm fL for a given computational
budget L such that

argmin
fL

1
N

N∑

i=1

Fxi (fL(xi))

Can you do better than worst case algorithms?

Related to average case complexity analysis?
[Scieur and Pedregosa 2020; Pedregosa and Scieur 2020]

7/33

How to solve efficiently many inverse problems

Given multiple inputs xi , we would like to solve efficiently:

min
zi

N∑

i=1

Fxi (zi)

Here, each problem is independent, so with an infinite budget, there is no
point in considering this problem.

However, if your aim is to chose an algorithm fL for a given computational
budget L such that

argmin
fL

1
N

N∑

i=1

Fxi (fL(xi))

Can you do better than worst case algorithms?

Related to average case complexity analysis?
[Scieur and Pedregosa 2020; Pedregosa and Scieur 2020]

7/33

How to solve efficiently many inverse problems

Given multiple inputs xi , we would like to solve efficiently:

min
zi

N∑

i=1

Fxi (zi)

Here, each problem is independent, so with an infinite budget, there is no
point in considering this problem.

However, if your aim is to chose an algorithm fL for a given computational
budget L such that

argmin
fL

1
N

N∑

i=1

Fxi (fL(xi))

Can you do better than worst case algorithms?

Related to average case complexity analysis?
[Scieur and Pedregosa 2020; Pedregosa and Scieur 2020]

7/33

How to solve efficiently many inverse problems

Given multiple inputs xi , we would like to solve efficiently:

min
zi

N∑

i=1

Fxi (zi)

Here, each problem is independent, so with an infinite budget, there is no
point in considering this problem.

However, if your aim is to chose an algorithm fL for a given computational
budget L such that

argmin
fL

1
N

N∑

i=1

Fxi (fL(xi))

Can you do better than worst case algorithms?

Related to average case complexity analysis?
[Scieur and Pedregosa 2020; Pedregosa and Scieur 2020]

7/33

Unrolled optimization algorithms

8/33

ISTA: [Daubechies et al. 2004]
Iterative Shrinkage-Thresholding Algorithm

fx is a L-smooth function with L = ‖D‖22 and

∇fx(z(t)) = D>(Dz(t) − x)

The `1-norm is proximable with a separable proximal operator

proxµ‖·‖1(x) = sign(x) max(0, |x | − µ) = ST (x , µ)

We can use the proximal gradient descent algorithm (ISTA)

z(t+1) = ST


z(t) − ρ ∇fx(z(t))︸ ︷︷ ︸

D>(Dz(t)−x)

, ρλ




Here, ρ play the role of a step size (in [0, 2
L [).

9/33

ISTA: [Daubechies et al. 2004]
Iterative Shrinkage-Thresholding Algorithm

fx is a L-smooth function with L = ‖D‖22 and

∇fx(z(t)) = D>(Dz(t) − x)

The `1-norm is proximable with a separable proximal operator

proxµ‖·‖1(x) = sign(x) max(0, |x | − µ) = ST (x , µ)

We can use the proximal gradient descent algorithm (ISTA)

z(t+1) = ST


z(t) − ρ ∇fx(z(t))︸ ︷︷ ︸

D>(Dz(t)−x)

, ρλ




Here, ρ play the role of a step size (in [0, 2
L [).

9/33

ISTA is a “Neural Network” [Gregor and Le Cun 2010]

ISTA

z(t+1) = ST
(
z(t) − ρD>(Dz(t) − x), ρλ

)

Let Wz = Im − ρD>D and Wx = ρD>. Then

z(t+1) = ST(Wzz(t) + Wxx , ρλ)

One step of ISTA
Wxx

Wzz(t)

ST(·, ρλ) z(t+1)

10/33

ISTA is a “Neural Network” [Gregor and Le Cun 2010]

ISTA

z(t+1) = ST
(
z(t) − ρD>(Dz(t) − x), ρλ

)

Let Wz = Im − ρD>D and Wx = ρD>. Then

z(t+1) = ST(Wzz(t) + Wxx , ρλ)

RNN equivalent to
ISTA

Wxx ST(·, ρλ) z∗

Wz

10/33

Learned ISTA [Gregor and Le Cun 2010]

Recurrence relation of ISTA define a RNN

z(t+1) = ST
(

z(t) − 1
L
D>(Dz(t) − x),

λ

L

) Wxx ST(·, ρλ) z∗

Wz

This RNN can be unfolded as a feed-forward network.

x

W (0)
x

ST(·, θ(0)) W (1)
z

W (1)
x

ST(·, θ(1)) W (2)
z

W (2)
x

ST(·, θ(2)) z(2)

Let ΦΘ(T) denote a network with T layers parametrized with Θ(T).

If W (i)
x = Wx and W (i)

z = Wz , then ΦΘT (x) = z(t).

11/33

LISTA – Training

Empirical risk minimization : We need a training set of {x1, . . . xN}
training sample and our goad is to accelerate ISTA on unseen data x ∼ p.

The training solves

Θ̃(T) ∈ arg min
Θ(T)

1
N

N∑

i=1

Lx(ΦΘ(T)(xi)) .

for a loss Lx .

⇒ Choice of loss Lx?

12/33

LISTA – Training

Supervised: a ground truth z∗(x) is known

Lx(z) =
1
2
‖z − z∗(x)‖

Solving the inverse problem.

Semi-supervised: the solution of the Lasso z∗(x) is known

Lx(z) =
1
2
‖z − z∗(x)‖

Accelerating the resolution of the Lasso.

Unsupervised: there is no ground truth

Lx(z) = Fx(z) =
1
2
‖x − Dz‖22 + λ‖z‖1

Solving the Lasso.

13/33

LISTA – Training

Supervised: a ground truth z∗(x) is known

Lx(z) =
1
2
‖z − z∗(x)‖

Solving the inverse problem.

Semi-supervised: the solution of the Lasso z∗(x) is known

Lx(z) =
1
2
‖z − z∗(x)‖

Accelerating the resolution of the Lasso.

Unsupervised: there is no ground truth

Lx(z) = Fx(z) =
1
2
‖x − Dz‖22 + λ‖z‖1

Solving the Lasso.

13/33

LISTA – Training

Supervised: a ground truth z∗(x) is known

Lx(z) =
1
2
‖z − z∗(x)‖

Solving the inverse problem.

Semi-supervised: the solution of the Lasso z∗(x) is known

Lx(z) =
1
2
‖z − z∗(x)‖

Accelerating the resolution of the Lasso.

Unsupervised: there is no ground truth

Lx(z) = Fx(z) =
1
2
‖x − Dz‖22 + λ‖z‖1

Solving the Lasso.

13/33

LISTA – Training

Supervised: a ground truth z∗(x) is known

Lx(z) =
1
2
‖z − z∗(x)‖

Solving the inverse problem.

Semi-supervised: the solution of the Lasso z∗(x) is known

Lx(z) =
1
2
‖z − z∗(x)‖

Accelerating the resolution of the Lasso.

Unsupervised: there is no ground truth

Lx(z) = Fx(z) =
1
2
‖x − Dz‖22 + λ‖z‖1

Solving the Lasso.

13/33

LISTA – Parametrizations

General LISTA model [Gregor and Le Cun 2010]

z(t+1) = ST
(
W(t)

e z(t) + W(t)
x x , θ(t)

)

The structure of D is lost in the linear transform.

Coupled LISTA [Chen et al. 2018]

z(t+1) = ST
(
z(t) − α(t)W(t)(Dz(t) − x), β(t)

)

Can be seen as learning

I Pre-conditionner
W (t) ∈ Rm×n

I Step-size
α(t) ∈ R+

I Threshold
β(t) ∈ R+

⇒ Justified theoretically for (un)supervised convergence

14/33

LISTA – Parametrizations

General LISTA model [Gregor and Le Cun 2010]

z(t+1) = ST
(
W(t)

e z(t) + W(t)
x x , θ(t)

)

The structure of D is lost in the linear transform.

Coupled LISTA [Chen et al. 2018]

z(t+1) = ST
(
z(t) − α(t)W(t)(Dz(t) − x), β(t)

)

Can be seen as learning

I Pre-conditionner
W (t) ∈ Rm×n

I Step-size
α(t) ∈ R+

I Threshold
β(t) ∈ R+

⇒ Justified theoretically for (un)supervised convergence

14/33

Performances

0 10 20 30

Number of Layers

10−2

10−1

100
F
x
−
F
∗ x

Simulated data λ = 0.1

ISTA FISTA LISTA

15/33

What is learned in unrolled algorithms?

16/33

Coupled LISTA Parametrizations

Coupled LISTA [Chen et al. 2018]

z(t+1) = ST
(
z(t) − α(t)W(t)(Dz(t) − x), β(t)

)

Can be seen as learning

I Pre-conditionner
W (t) ∈ Rm×n

I Step-size
α(t) ∈ R+

I Threshold
β(t) ∈ R+

17/33

What does LISTA learn? [Ablin et al. 2019]

Theorem – Asymptotic convergence of the weights
Consider a sequence of nested networks ΦΘ(T) s.t.
ΦΘ(t)(x) = φθ(t)(ΦΘ(t+1)(x), x) . Assume that

1. the sequence of parameters converges i.e.
θ(t) −−−→

t→∞
θ∗ = (W ∗, α∗, β∗) ,

2. the output of the network converges toward a solution z∗(x) of the
Lasso uniformly over the equiregularization set B∞ , i.e.
supx∈B∞ ‖ΦΘ(T)(x)− z∗(x)‖ −−−−→

T→∞
0 .

Then α∗

β∗W
∗ = D .

Idea of the proof: each unit vector needs to be a fixed point of the network.

18/33

Numerical verification

1 10 20 30 40

Layers

0

5

10
‖α

(t
) W

(t
)
−
β

(t
) D
‖ F

LISTA

40-layers LISTA network trained on a 10× 20 problem with λ = 0.1
The weights W (t) align with D and α, β get coupled.

19/33

Is there a point in learning step sizes?

20/33

Step LISTA [Ablin et al. 2019]

LISTA with restricted parametrization : Only learn a step-size α(t)

z(t+1) = ST
(
z(t) − α(t)D>(Dz(t) − x), λα(t)

)

Fewer parameters: T instead of (2 + mn)T .

⇒ Easier to learn ⇒ Reduced performances?

Goal: Learn step sizes for ISTA adapted to input distribution.

21/33

Performances

Simulated data: m = 256 and n = 64

Dk ∼ U(Sn−1) and x = x̃
‖D>x̃‖∞ with x̃i ∼ N (0, 1)

0 10 20 30

Number of Layers

10−2

10−1

100

F
x
−
F
∗ x

Simulated data λ = 0.1

0 10 20 30

Number of Layers

10−6

10−4

10−2

Simulated data λ = 0.8

ISTA LISTA SLISTA (proposed)

22/33

Performance on semi-real datasets

Digits: 8× 8 images from scikit-learn

Dk and x̃ sampled uniformly from the digits and x = x̃
‖D>x̃‖∞ .

0 10 20 30

Number of Layers

10−1

F
x
−
F
∗ x

Digits data λ = 0.1

0 10 20 30

Number of Layers

10−2

Digits data λ = 0.8

ISTA LISTA SLISTA (proposed)

23/33

ISTA: Majoration-Minimization

Taylor expansion of fx in z(t)

Fx(z) = fx(z(t)) +∇fx(z(t))>(z − z(t)) +
1
2
‖D(z − z(t))‖22 + λ‖z‖1

≤ fx(z(t)) +∇fx(z(t))>(z − z(t)) +
L
2
‖z − z(t)‖22 + λ‖z‖1

⇒ Replace the Hessian D>D by L Id.

Separable function that can be minimized in close form

argmin
z

L
2

∥∥∥∥z(t) − 1
L
∇fx(z(t))− z

∥∥∥∥
2

2
+ λ‖z‖1 = proxλ

L

(
z(t) − 1

L
∇fx(z(t))

)

= ST
(

z(t) − 1
L
∇fx(z(t)),

λ

L

)

24/33

ISTA: Majoration for the data-fit

I Level sets from z>D>Dz

25/33

ISTA: Majoration for the data-fit

I Level sets from z>D>Dz ≤ L‖z‖2

25/33

ISTA: Majoration for the data-fit

I Level sets from z>D>Dz ≤ z>A>ΛAz [Moreau and Bruna 2017]

25/33

ISTA: Majoration for the data-fit

I Level sets from z>D>Dz ≤ LS‖z‖2 for Supp(z) ⊂ S

25/33

Oracle ISTA: Majoration-Minimization

For all z such that Supp(z) ⊂ S .
= Supp(z(t)),

Fx(z) ≤ fx(z(t)) +∇fx(z(t))>(z − z(t)) +
LS

2
‖z − z(t)‖22 + λ‖z‖1

with LS = ‖D·,S‖22.

0 1
L

1
LS

Step size

C
os

t
fu

nc
ti

on

Fx Qx,L(·, z(t)) Qx,LS(·, z(t))

26/33

Better step-sizes for ISTA

Oracle ISTA (OISTA):

1. Get the Lipschitz constant LS associated with support S = Supp(z(t)).

2. Compute y (t+1) as a step of ISTA with a step-size of 1/LS

y (t+1) = ST
(

z(t) − 1
LS

D>(Dz(t) − x),
λ

LS

)

3. If Supp(y t+1) ⊂ S , accept the update z(t+1) = y (t+1).

4. Else, z(t+1) is computed with step size 1/L.

27/33

OISTA: Performances

10−6

10−12

F
x
−
F
∗ x

0 50 100 150

Number of iterations

1
2
3

O
ra

cl
e

st
ep

1
L

ISTA FISTA OISTA (proposed)

Number of iterations

28/33

OISTA – Step-size

0 50 100 150

Number of iterations

1

2

3

O
ra

cl
e

st
ep

1
L

29/33

OISTA – Limitation

I OISTA is not practical, as you need to compute LS at each iteration
and this is costly.

I No precomputation possible: there is an exponential number of
supports S .

30/33

Link with SLISTA

1 10 20

Layer

1/L

2/L

3/L

4/L

S
te

p

1/L

Learned steps 1/LS 2/LS

The learned step-sizes are linked to the distribution of 1/LS

31/33

My take on unrolled algorithms

What unrolled algorithms can do:

I Improve constants in convergence rate.
[Moreau and Bruna 2017]

I Learn to better optimize for a non-uniform input distribution.
[Ablin et al. 2019]

I Make inverse problem solution differentiable.
[Ablin et al. 2020; Mehmood and Ochs 2020]

What unrolled algorithms can’t do:

I Faster convergence rates for solvers.
I Uniform convergence with modified structure.

⇒ Can we extend these results to other problems?

32/33

My take on unrolled algorithms

What unrolled algorithms can do:

I Improve constants in convergence rate.
[Moreau and Bruna 2017]

I Learn to better optimize for a non-uniform input distribution.
[Ablin et al. 2019]

I Make inverse problem solution differentiable.
[Ablin et al. 2020; Mehmood and Ochs 2020]

What unrolled algorithms can’t do:

I Faster convergence rates for solvers.
I Uniform convergence with modified structure.

⇒ Can we extend these results to other problems?

32/33

My take on unrolled algorithms

What unrolled algorithms can do:

I Improve constants in convergence rate.
[Moreau and Bruna 2017]

I Learn to better optimize for a non-uniform input distribution.
[Ablin et al. 2019]

I Make inverse problem solution differentiable.
[Ablin et al. 2020; Mehmood and Ochs 2020]

What unrolled algorithms can’t do:

I Faster convergence rates for solvers.
I Uniform convergence with modified structure.

⇒ Can we extend these results to other problems?

32/33

Conclusion

Take home messages:

First order structure is needed in optimization.
No hope to learn an algorithm better than ISTA.

(except for step-sizes!)

Unrolled algorithms are useful to learn to solve optimization
problems in average.

(typical in bi-level optimization?)

Code to reproduce the figures is available online:

adopty : github.com/tommoral/adopty

carpet : github.com/hcherkaoui/carpet

Slides will be on my web page:

tommoral.github.io @tomamoral

33/33

Interlude – regularization λ

Importance of the parameter λ

Lx(z) =
1
2
‖x − Dz‖22 + λ‖z‖1

z(t+1) = ST
(
z(t) − α(t)D>(Dz(t) − x), λα(t)

)

Control the distribution of z∗(x) sparsity.

Maximal value
λmax = ‖D>x‖∞ is the minimal
value of λ for which

z∗(x) = 0

Equiregularization set
Set in Rn for which λmax = 1

B∞ = {x ∈ Rn ; ‖D>x‖∞ = 1}

⇒ Training performed with points sampled in B∞

1/10

TV regularized problems

2/10

TV regularized problems

Given a forward operator D ∈ Rn×m and λ > 0, the Lasso for x ∈ Rn is

z∗ = argmin
z

Px(z) =
1
2
‖x − Dz‖22
︸ ︷︷ ︸

fx (z)

+λ‖z‖TV

where ‖z‖TV = ‖∇z‖1, and ∇ =




−1 1 0 . . . 0

0 −1 1
. . .

...
...

. 0
0 . . . 0 −1 1



∈ Rk−1×k

Why consider this? equivalent formulation with Lasso:

min
u∈Rk

Sx(u) =
1
2
‖x − DLu‖22 + λ‖Ru‖1.

where R is diagonal and L is the discrete integration operator.

⇒
3/10

Why not just use the synthesis formulation? [?]

Convergence rate comparison

Both cvg rates are in O(1/t) but scale with ρ = ‖D‖22 or ρ̃ = ‖D∇‖22.

Theorem (Lower bound for the ratio ρ̃
ρ
expectation)

Let D be a random matrix in Rm×k with iid normal entries. The expectation
of ρ̃/ρ is asymptotically lower bounded when k tends to ∞ by

E
[
ρ̃

ρ

]
≥ 2k + 1

4π2 + o(1)

Empirical evidences also push for a O(k2) scaling.

Analysis is more efficient in terms of iterations than Synthesis.

4/10

Unrolling iterative algorithms [?]

x

W (0)
x

proxµ(1)g W (1)
z

W (1)
x

proxµ(2)g W (2)
z

W (2)
x

proxµ(3)g z(3)

Figure: LPGD - Unfolded network for Learned PGD with T = 3

Main blocker:

How to compute proxµg efficiently and in a differentiable way?

I Use dedicated solver and compute gradient with implicit function
theorem.

I Use an unrolled algorithm (LISTA) to solve the prox.

5/10

Simulation

Performance investigation
Very low dimensional simulation k ,m = 5, 8 (because of memory issue).

0 1 2 3 5 7 11 17 26 40
Layers t

10−2

10−1

E
[P

x
(u

(t
))
−
P
x
(u
∗)
]

0 1 2 3 5 7 11 17 26 40
Layers t

10−4

10−2

100

FISTA - synthesis

LISTA - synthesis

PGD - analysis

Accelerated PGD - analysis

LPGD-Taut

LPGD-LISTA[50]

Figure: Performance comparison for different regularisation levels (left) λ = 0.1,
(right) λ = 0.8.

6/10

fMRI data deconvolution (UKBB)

We retain only 8000 time-series of 250 time-frames (3 minute 03 seconds),
Deconvolution for a fixed kernel h and estimate the neural activity signal z
for each voxels.

0 5 10 15 20 25
Layers t

10−3

E
[P

x
(u

(t
))
−
P
x
(u
∗)
] Accelerated PGD - analysis

LPGD-Taut

Figure: Performance comparison λ = 0.1λmax between LPGD-Taut and iterative
PGD for the analysis formulation for the HRF deconvolution problem with fMRI
data.

7/10

Weights coupling

We denote θ = (W , α, β) the parameters of a given layer φθ.

φθ(z , x) = ST
(
z − αD>(Dz − x), λα

)

Assumption 1:
D ∈ Rn×m is a dictionary with non-duplicated unit-normed columns.

Lemma 4.3 – Weight coupling
If for all the couples (z∗(x), x) ∈ Rm × B∞ such that z∗(x) ∈ argmin Fx(z),
it holds φθ(z∗(x), x) = z∗(x). Then, αβW = D .

The solution of the Lasso is a fixed point of a given layer φθ if and
only if φθ is equivalent to a step of ISTA with a given step-size.

8/10

ISTA – Convergence

Convergence rates

If fx is µ-strongly convex, i.e. σmin(DTD) ≥ µ > 0

Fx(z(t))− Fx(z∗) ≤
(
1− µ

L

)t
(Fx(0)− Fx(z∗))

In the general case, Fx(z(t))− Fx(z∗) ≤ L‖z∗‖2
t

9/10

OISTA – Convergence

Proposition 3.1: Convergence
When D is such that the solution is unique for all x and λ > 0,
the sequence (z(t)) generated by the algorithm converges to
z∗ = argmin Fx .
Further, there exists an iteration T ∗ such that for t ≥ T ∗ ,
Supp(z(t)) = Supp(z∗) , S∗.

Proposition 3.2: Convergence rate
For t > T ∗ ,

Fx(z(t))− Fx(z∗) ≤ LS∗
‖z∗−z(T∗)‖2

2(t−T∗) .

If moreover, λmin(D>S∗DS∗) = µ∗ > 0 , then

Fx(z(t))− Fx(z∗) ≤ (1− µ∗

LS∗
)t−T∗(Fx(z(T∗))− Fx(z∗)) .

10/10

	Unrolled optimization algorithms
	What is learned in unrolled algorithms?
	Is there a point in learning step sizes?
	Appendix
	TV regularized problems

