Bi-level optimization in Machine Learning

Thomas Moreau INRIA Saclay

Setup:

- ▶ Binary classification task $(X_i, y_i)_{i=1}^N \in \mathbb{R}^p \times \{-1, 1\}$
- Linear model: predict y from X with sign($\langle \theta, X \rangle$).

Logistic loss:

$$G(heta) = rac{1}{N}\sum_{i=1}^N \log(1+e^{-y_i\langle heta, X_i
angle})$$

Training the model:

 $heta^* = \operatorname*{argmin}_{ heta} G(heta)$

Avoiding overfitting

Here, the second feature is uninformative,

$$G(heta,\lambda) = rac{1}{N}\sum_{i=1}^N \log(1+e^{-y_i\langle heta, X_i
angle}) + \lambda \| heta\|_2^2$$

Training the model:

$$heta^*(\lambda) = \operatorname*{argmin}_{ heta} G(heta, \lambda)$$

$$G(heta,\lambda) = rac{1}{N}\sum_{i=1}^N \log(1+e^{-y_i\langle heta, X_i
angle}) + \lambda \| heta\|_2^2$$

Training the model:

$$heta^*(\lambda) = \operatorname*{argmin}_{ heta} G(heta, \lambda)$$

 \Rightarrow How to choose λ ?

We want to find λ that ensure the best generalization of $\theta^*(\lambda)$.

Validation loss: use held out data $(X_i^{val}, y_i^{val})_{i=1}^M$

$$F(\theta) = \frac{1}{M} \sum_{i=1}^{M} \log(1 + e^{-y_i^{\mathsf{val}} \langle \theta, X_i^{\mathsf{val}} \rangle})$$

Independent estimate of the risk of the model.

We want to find λ that ensure the best generalization of $\theta^*(\lambda)$.

Validation loss: use held out data $(X_i^{val}, y_i^{val})_{i=1}^M$

$$F(heta) = rac{1}{M} \sum_{i=1}^{M} \log(1 + e^{-y_i^{\mathsf{val}}\langle heta, X_i^{\mathsf{val}}
angle})$$

Independent estimate of the risk of the model.

 \Rightarrow Find λ that gives a model $\theta^*(\lambda)$ with a good validation loss.

The Grid Search

- Select a grid of parameters $\{\lambda_1, \ldots, \lambda_K\}$.
- Train a model for each parameter λ_k : $\theta^*(\lambda_k)$.
- Evaluate the performance with the validation loss $F(\theta^*(\lambda_k))$.
- Keep the value λ_k with the best performance.

- Select a grid of parameters $\{\lambda_1, \ldots, \lambda_K\}$.
- Train a model for each parameter λ_k : $\theta^*(\lambda_k)$.
- Evaluate the performance with the validation loss $F(\theta^*(\lambda_k))$.
- Keep the value λ_k with the best performance.

Mathematical rewritting:

$$\begin{cases} \min_{\lambda \in \{\lambda_1, \dots, \lambda_K\}} F(\theta^*(\lambda)) \\ s.t. \quad \theta^*(\lambda) = \operatorname{argmin}_{\theta} G(\theta, \lambda) \end{cases}$$

$$G(heta, \lambda) = rac{1}{N} \sum_{i=1}^{N} \log(1 + e^{-y_i \langle heta, X_i
angle}) + \lambda \| heta\|_2^2$$

$$G(\theta,\lambda) = rac{1}{N} \sum_{i=1}^{N} \log(1 + e^{-y_i \langle \theta, X_i \rangle}) + \sum_{k=1}^{p} \lambda_k \theta_k^2$$

Grid search is inefficient as the grid increases exponentially with the number of parameters.

$$G(\theta,\lambda) = rac{1}{N} \sum_{i=1}^{N} \log(1 + e^{-y_i \langle \theta, X_i \rangle}) + \sum_{k=1}^{p} \lambda_k \theta_k^2$$

Grid search is inefficient as the grid increases exponentially with the number of parameters.

⇒ Can we use first-order methods to minimize $h(\lambda) = F(\theta^*(\lambda))$?

Bi-level problem: Optimization problem with two levels

Goal: Optimize the value function h whose value depends on the result of another optimization problem.

Selecting the best model:

- G is the training loss and θ are the parameters of the model.
- Select the hyper-parameter λ to get the best validation loss F.

Hyperparameter optimization: λ is a regularization parameter:

Selecting the best model:

- G is the training loss and θ are the parameters of the model.
- Select the hyper-parameter λ to get the best validation loss F.

Data augmentation: λ parametrizes the transformations distribution.

Selecting the best model:

- G is the training loss and θ are the parameters of the model.
- Select the hyper-parameter λ to get the best validation loss F.

Neural Architecture Search: λ parametrizes the architecture.

Bi-level optimization problems: Implicit Deep Learning

Deep Equilibrium Network:

$$\begin{cases} \min_{\lambda} h(\lambda) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(y_i, \theta^*(X_i, \lambda)) \\ s.t. \quad \theta^*(X_i, \lambda) = g_{\lambda}(\theta^*(X_i, \lambda)) \end{cases}$$

Output of the network is the root of $G(\theta, \lambda) = \theta - g_{\lambda}(\theta) = 0$.

Mimic infinite depth:

$$heta^{(t+1)} = g_\lambda(heta^{(t)}) \quad t o \infty$$

Efficient memorySlow runtime

<u>Black box methods</u>: Take $\{\lambda_k\}_k$ and compute min_k $h(\lambda_k)$

► Grid-Search ► Random-Search ► Bayesian-Optimization

\Rightarrow Do not scale well with the dimension

First order methods: Gradient descent on h

Iterate in the steepest direction:

$$\lambda^{t+1} = \lambda^t - \rho^t \nabla h(\lambda)$$

Value function definition:

 $h(\lambda) = F(\lambda, \theta^*(\lambda))$

Chain rule:

$$\nabla_{\lambda} h(\lambda) = \nabla_1 F(\lambda, \theta^*(\lambda)) + (d\theta^*(\lambda))^T \nabla_2 F(\lambda, \theta^*(\lambda))$$

Optimality condition for θ^{\ast}

 $\nabla_2 G(\lambda, \theta^*(\lambda)) = 0$

Optimality condition for θ^{\ast}

 $abla_2 G(\lambda, \theta^*(\lambda)) = 0$

Derivating this equation relative to λ gives:

$$abla^2_{22} \mathcal{G}(\lambda, heta^*(\lambda)) d heta^*(\lambda) +
abla^2_{21} \mathcal{G}(\lambda, heta^*(\lambda)) = 0,$$

Optimality condition for θ^{\ast}

 $\nabla_2 G(\lambda, \theta^*(\lambda)) = 0$

Derivating this equation relative to λ gives:

$$abla^2_{22} \mathcal{G}(\lambda, heta^*(\lambda)) d heta^*(\lambda) +
abla^2_{21} \mathcal{G}(\lambda, heta^*(\lambda)) = 0,$$

Implicit function theorem

$$d\theta^*(\lambda) = -\left[\nabla_{22}^2 \mathcal{G}(\lambda, \theta^*(\lambda))\right]^{-1} \nabla_{21}^2 \mathcal{G}(\lambda, \theta^*(\lambda))$$

Value function gradient:

$$\nabla h(\lambda) = \nabla_1 F(\lambda, \theta^*) - \nabla_{21}^2 G(\lambda, \theta^*) [\nabla_{22}^2 G(\lambda, \theta^*)]^{-1} \nabla_2 F(\lambda, \theta^*)$$

Value function gradient:

$$\nabla h(\lambda) = \nabla_1 F(\lambda, \theta^*) - \nabla_{21}^2 G(\lambda, \theta^*) [\nabla_{22}^2 G(\lambda, \theta^*)]^{-1} \nabla_2 F(\lambda, \theta^*)$$

Need to compute the solution of the inner

Value function gradient:

$$\nabla h(\lambda) = \nabla_1 F(\lambda, \theta^*) - \nabla_{21}^2 G(\lambda, \theta^*) \left[\nabla_{22}^2 G(\lambda, \theta^*) \right]^{-1} \nabla_2 F(\lambda, \theta^*)$$

- Need to compute the solution of the inner
- Need to solve a $p \times p$ linear system

$$\mathbf{v}^*(\lambda) = \left[
abla_{22}^2 \mathcal{G}(\lambda, heta^*)
ight]^{-1}
abla_2 \mathcal{F}(\lambda, heta^*)$$

Approximate bi-level optimization

References

 Pedregosa, F. (2016). Hyperparameter optimization with approximate gradient. In International Conference on Machine Learning (ICML), pages 737–746, New-York, NY, USA Hyperparameter optimization with Approximate Gradient HOAG [Pedregosa 2016]

Do we need to compute θ^* and v^* precisely?

Idea: Approximate $\theta^*(\lambda^t)$ and $v^*(\lambda^t) = \left[\nabla_{22}^2 \mathcal{G}(\lambda^t, \theta^*)\right]^{-1} \nabla_2 \mathcal{F}(\lambda^t, \theta^*)$

Hyperparameter optimization with Approximate Gradient HOAG [Pedregosa 2016]

Do we need to compute θ^* and v^* precisely?

Idea: Approximate $\theta^*(\lambda^t)$ and $v^*(\lambda^t) = \left[\nabla_{22}^2 \mathcal{G}(\lambda^t, \theta^*)\right]^{-1} \nabla_2 \mathcal{F}(\lambda^t, \theta^*)$

• Compute
$$\theta^t$$
 such that $\|\theta^t - \theta^*(\lambda^t)\|_2 \le \epsilon_t$,
iterative solver *e.g.* L-BFGS

• Compute v^t such that $\|\frac{\partial^2 G}{\partial \theta^2}(\lambda^t, \theta^t)v^t + \frac{\partial F}{\partial \theta}(\lambda^t, \theta^t)\|_2 \le \epsilon_t$, L-BFGS or CG

• Compute the approximate gradient $g_t = \frac{\partial F}{\partial \lambda}(\lambda^t, \theta^t) + \frac{\partial^2 G}{\partial \theta \partial \lambda}(\lambda^t, \theta^t) v^t$

• Update the outer variable
$$\lambda^{t+1} = \lambda^t - \rho^t g^t$$

Theorem: If $\sum_t \epsilon_t < \infty$ and the step-sizes are chosen appropriatly, then the algorithm converges to a stationary point *i.e.*

 $\|
abla h(\lambda^t)\|_2 o 0$.

Further linear system approximation v^*

Linear system solution $v^*(\lambda^t)$ is a by product.

 \Rightarrow Avoid computing it as much as possible.

Proposed Methods:

- L-BFGS
- Jacobian-Free method
 - $\nabla_{22}^2 G(\lambda^t, \theta^t) \approx Id$

- Conjugate Gradient
- Neumann iterations

$$abla_{22}^2 G(\lambda^t, heta^t)^{-1} pprox \sum_k (\mathit{Id} -
abla_{22}^2 G(\lambda^t, heta^t))^k$$

Algorithm unrolling

[Pedregosa 2016, Lorraine et al. 2020, Luketina et al. 2016]

SHINE - Sharing the INverse Estimate

References

Ramzi, Z., Mannel, F., Bai, S., Starck, J.-L., Ciuciu, P., and Moreau, T. (2022). SHINE: SHaring the INverse Estimate from the forward pass for bi-level optimization and implicit models. In *International Conference on Learning Representations (ICLR)*, online

Quasi Newton 101:

Solving
$$heta^* = \operatorname{argmin}_ heta \, {\sf G}(heta)$$

Newton Method

Quasi-Newton Method

 $\theta^{t+1} = \theta^t - \left[\nabla^2 G(\theta^t)\right]^{-1} \nabla G(\theta^t)$

- $\theta^{t+1} = \theta^t B_t^{-1} \nabla G(\theta^t)$
- B_t : low-rank approx. of $\nabla^2 G(\theta^t)$. Inverse with Sherman-Morrison

Quasi Newton 101:

Solving
$$\theta^* = \operatorname{argmin}_{\theta} G(\theta)$$

Newton Method

Quasi-Newton Method

$$\theta^{t+1} = \theta^t - \left[\nabla^2 G(\theta^t)\right]^{-1} \nabla G(\theta^t) \qquad \qquad \theta^{t+1} = \theta^t - B_t^{-1} \nabla G(\theta^t)$$
$$B_t: \text{ low-rank approx. of } \nabla^2 G(\theta^t).$$
Inverse with Sherman-Morrison

 \Rightarrow The Hessian for v^* is the same as the one from the inner problem.

Idea: reuse the approximation of the Hessian B_t computed by L-BFGS for the inner problem.

$$\begin{cases} \tilde{v}_t = B_t^{-1} \nabla_2 F(\lambda, \theta^t) \\ \tilde{\nabla} h(\lambda) = \nabla_1 F(\lambda, \theta^t) + \nabla_{12}^2 G(\lambda, \theta^t) \tilde{v}_t \end{cases}$$

Properties of *B*:
Idea: reuse the approximation of the Hessian B_t computed by L-BFGS for the inner problem.

$$\begin{cases} \tilde{v}_t = B_t^{-1} \nabla_2 F(\lambda, \theta^t) \\ \tilde{\nabla} h(\lambda) = \nabla_1 F(\lambda, \theta^t) + \nabla_{12}^2 G(\lambda, \theta^t) \tilde{v}_t \end{cases}$$

Properties of *B*:

▶ It is computed when solving $\theta^* = \operatorname{argmin}_{\theta} G(\theta)$ using a quasi-Newton method.

Idea: reuse the approximation of the Hessian B_t computed by L-BFGS for the inner problem.

$$\begin{cases} \tilde{v}_t = B_t^{-1} \nabla_2 F(\lambda, \theta^t) \\ \tilde{\nabla} h(\lambda) = \nabla_1 F(\lambda, \theta^t) + \nabla_{12}^2 G(\lambda, \theta^t) \tilde{v}_t \end{cases}$$

Properties of *B*:

- ► It is computed when solving $\theta^* = \operatorname{argmin}_{\theta} G(\theta)$ using a quasi-Newton method.
- It is easily invertible using the Sherman-Morrison formula, because low-rank.

Theorem (Convergence of SHINE to the Hypergradient using ULI)

Under the Uniform Linear Independence (ULI) assumption and some additional smoothness and convexity assumptions, for a given parameter λ , (θ^t) converges q-superlinearly to θ^* and

$$\lim_{t\to\infty} \nabla_1 F(\lambda,\theta^t) + \nabla_{12}^2 G(\lambda,\theta^t) \tilde{v}_t = \nabla h(\lambda).$$

Logistic Regression with ℓ_2 -regularisation on 2 datasets:

Multiscale DEQ on CIFAR10:

Stochastic Bi-level Optimization

A framework for linear updates

References

Dagréou, M., Ablin, P., Vaiter, S., and Moreau, T. (2022). A framework for bilevel optimization that enables stochastic and global variance reduction algorithms. *preprint ArXiv*, 2201.13409 Classical ML setting:

$$F(\lambda,\theta) = \frac{1}{m} \sum_{j=1}^{m} F_j(\lambda,\theta), \quad G(\lambda,\theta) = \frac{1}{n} \sum_{i=1}^{n} G_i(\lambda,\theta)$$

Classical ML setting:

$$F(\lambda,\theta) = \frac{1}{m} \sum_{j=1}^{m} F_j(\lambda,\theta), \quad G(\lambda,\theta) = \frac{1}{n} \sum_{i=1}^{n} G_i(\lambda,\theta)$$

Consequence: For large m and n, any single derivative is cumbersome to compute.

Aside: Stochastic optimization for single level problems

Single level problem:

$$\min_{\theta} f(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$$

Single level problem:

$$\min_{\theta} f(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$$

First order stochastic optimization:

$$\theta^{t+1} = \theta^t - \rho^t g^t, \quad \mathbb{E}[g^t|\theta^t] = \nabla f(\theta^t)$$

Single level problem:

$$\min_{\theta} f(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$$

First order stochastic optimization:

$$\theta^{t+1} = \theta^t - \rho^t g^t, \quad \mathbb{E}[g^t | \theta^t] = \nabla f(\theta^t)$$

Example: stochastic gradient descent [Robbins and Monro 1951] :

$$\theta^{t+1} = \theta^t - \rho^t \nabla f_i(\theta^t), \quad i \sim \mathcal{U}(\{1, \dots, n\})$$

Bilevel optimization case

$$F(\lambda,\theta) = \frac{1}{m} \sum_{j=1}^{m} F_j(\lambda,\theta), \quad G(\lambda,\theta) = \frac{1}{n} \sum_{i=1}^{n} G_i(\lambda,\theta)$$

Bilevel optimization case

$$F(\lambda,\theta) = \frac{1}{m} \sum_{j=1}^{m} F_j(\lambda,\theta), \quad G(\lambda,\theta) = \frac{1}{n} \sum_{i=1}^{n} G_i(\lambda,\theta)$$

 $\nabla h(\lambda) = \nabla_1 F(\lambda, \theta^*(\lambda)) - \nabla_{12}^2 G(\lambda, \theta^*(\lambda)) \left[\nabla_{22}^2 G(\lambda, \theta^*(\lambda))\right]^{-1} \nabla_2 F(\lambda, \theta^*(\lambda))$

Bilevel optimization case

$$F(\lambda,\theta) = \frac{1}{m} \sum_{j=1}^{m} F_j(\lambda,\theta), \quad G(\lambda,\theta) = \frac{1}{n} \sum_{i=1}^{n} G_i(\lambda,\theta)$$

 $\nabla h(\lambda) = \nabla_1 F(\lambda, \theta^*(\lambda)) - \nabla_{12}^2 G(\lambda, \theta^*(\lambda)) \left[\nabla_{22}^2 G(\lambda, \theta^*(\lambda))\right]^{-1} \nabla_2 F(\lambda, \theta^*(\lambda))$

Problem:

$$\left[\sum_{i=1}^{n} \nabla_{22}^{2} G_{i}(\lambda, \theta^{*}(\lambda))\right]^{-1} \neq \sum_{i=1}^{n} \left[\nabla_{22}^{2} G_{i}(\lambda, \theta^{*}(\lambda))\right]^{-1}$$

1 for t = 1, ..., T do 1. Take for θ^t an approximation of $\theta^*(\lambda^t)$ 2. Take for v^t an approximation of $[\nabla_{22}^2 G(\lambda^t, \theta^t)]^{-1} \nabla_2 F(\lambda^t, \theta^t)$ 3. Set $p^t = \underbrace{\nabla_1 F(\lambda^t, \theta^t) - \nabla_{12}^2 G(\lambda^t, \theta^t) v^t}_{\approx \nabla h(\lambda^t)}$

4. Update the outer variable

$$\lambda^{t+1} = \lambda^t - \gamma^t p^t$$

Two loops [Ghadimi et al. 2018]: $\theta^*(\lambda^t)$ is approximated by output of K steps of SGD:

$$\theta^{t,k+1} = \theta^{t,k} - \rho^t \nabla_2 G_i(\lambda^t, \theta^{t,k})$$

Warm start strategy [Ji et al. 2021, Arbel and Mairal 2022]: Initialize the inner SGD by the previous iterate θ^{t-1} .

Approximate $v^t = \left[\nabla_{22}^2 G(\lambda^t, \theta^t)\right]^{-1} \nabla_2 F(\lambda^t, \theta^t)$ with:

▶ Neumann approximations [Ghadimi et al. 2018, Ji et al. 2021]:

$$\mathbf{v}^{t} \approx \eta \sum_{q=0}^{Q} \prod_{k=0}^{q} \left(I - \eta \nabla_{22}^{2} G_{i_{k}}(\lambda^{t}, \theta^{t}) \right) \nabla_{1} F_{j}(\lambda^{t}, \theta^{t})$$

Approximate $v^t = \left[\nabla_{22}^2 G(\lambda^t, \theta^t)\right]^{-1} \nabla_2 F(\lambda^t, \theta^t)$ with:

▶ Neumann approximations [Ghadimi et al. 2018, Ji et al. 2021]:

$$\mathbf{v}^{t} \approx \eta \sum_{q=0}^{Q} \prod_{k=0}^{q} \left(I - \eta \nabla_{22}^{2} G_{i_{k}}(\lambda^{t}, \theta^{t}) \right) \nabla_{1} F_{j}(\lambda^{t}, \theta^{t})$$

Stochastic Gradient Descent [Grazzi et al. 2021] since

$$\mathbf{v}^t \in \operatorname*{argmin}_{\mathbf{v} \in \mathbb{R}^p} rac{1}{2} \langle
abla^2_{22} G(\lambda^t, heta^t) \mathbf{v}, \mathbf{v}
angle + \langle
abla_2 F(\lambda^t, heta^t), \mathbf{v}
angle$$

Alternate steps in θ and λ [Hong et al. 2020, Yang et al. 2021]:

$$\theta^{t+1} = \theta^t - \rho^t \nabla_2 G_i(\lambda^t, \theta^t) \quad \text{SGD step}$$
$$v^{t+1} = \eta \sum_{q=1}^Q \prod_{k=0}^q \left(I - \eta \nabla_{22}^2 G_{i_k}(\lambda^t, \theta^{t+1}) \right) \nabla_2 F_j(\lambda^t, \theta^{t+1})$$

Neumann approximation

$$\lambda^{t+1} = \lambda^t - \gamma^t (\underbrace{\nabla_1 F_j(\lambda^t, \theta^{t+1}) - \nabla_{12}^2 G_i(\lambda^t, \theta^{t+1}) v^{t+1}}_{\approx \nabla h(\lambda^t)})$$

Three variables to maintain:

- $\blacktriangleright \ \theta \rightarrow \text{inner optimization problem}$
- \triangleright $v \rightarrow$ linear system
- ▶ $\lambda \rightarrow$ outer optimization problem

Idea: evolve in θ , v and λ at the same time following well chosen directions.

 $D_{\theta}(\theta, \mathbf{v}, \lambda) = \nabla_2 G(\lambda, \theta)$ gradient step toward $\theta^*(\lambda)$

$$\begin{split} D_{\theta}(\theta, \mathbf{v}, \lambda) &= \nabla_2 G(\lambda, \theta) \quad \text{gradient step toward } \theta^*(\lambda) \\ D_{\mathbf{v}}(\theta, \mathbf{v}, \lambda) &= \nabla_{22}^2 G(\lambda, \theta) \mathbf{v} + \nabla_2 F(\lambda, \theta) \\ & \text{gradient step toward } - \left[\nabla_{11}^2 G(\lambda, \theta)\right]^{-1} \nabla_2 F(\lambda, \theta) \end{split}$$

$$\begin{split} D_{\theta}(\theta, \mathbf{v}, \lambda) &= \nabla_2 G(\lambda, \theta) \quad \text{gradient step toward } \theta^*(\lambda) \\ D_{\mathbf{v}}(\theta, \mathbf{v}, \lambda) &= \nabla_{22}^2 G(\lambda, \theta) \mathbf{v} + \nabla_2 F(\lambda, \theta) \\ & \text{gradient step toward } - \left[\nabla_{11}^2 G(\lambda, \theta)\right]^{-1} \nabla_2 F(\lambda, \theta) \\ D_{\lambda}(\theta, \mathbf{v}, \lambda) &= \nabla_{12}^2 G(\lambda, \theta) \mathbf{v} + \nabla_1 F(\lambda, \theta) \\ & \text{gradient step toward } \lambda^* \end{split}$$

$$D_{\theta}(\theta, \mathbf{v}, \lambda) = \frac{1}{n} \sum_{i=1}^{n} \nabla_2 G_i(\lambda, \theta)$$
$$D_{\mathbf{v}}(\theta, \mathbf{v}, \lambda) = \frac{1}{n} \sum_{i=1}^{n} \nabla_{22}^2 G_i(\lambda, \theta) \mathbf{v} + \frac{1}{m} \sum_{j=1}^{m} \nabla_2 F_j(\lambda, \theta)$$
$$D_{\lambda}(\theta, \mathbf{v}, \lambda) = \frac{1}{n} \sum_{i=1}^{n} \nabla_{12}^2 G_i(\lambda, \theta) \mathbf{v} + \frac{1}{m} \sum_{j=1}^{m} \nabla_1 F_j(\lambda, \theta)$$

Proposed framework

1 for t = 1, ..., T do 1. Update θ 2. Update v3. Update λ $v^{t+1} = v^t - \rho^t D_v^t$ $\lambda^{t+1} = \lambda^t - \gamma^t D_\lambda^t$ with D_v^t D_v^t stachastic estimators of $D_v(\theta_v^t, v_v^t, \lambda_v^t)$ $D_v(\theta_v^t, v_v^t, \lambda_v^t)$ and

with D_{θ}^{t} , D_{v}^{t} , D_{λ}^{t} stochastic estimators of $D_{\theta}(\theta^{t}, v^{t}, \lambda^{t})$, $D_{v}(\theta^{t}, v^{t}, \lambda^{t})$ and $D_{\lambda}(\theta^{t}, v^{t}, \lambda^{t})$.

Pick $i \in \{1, \ldots, n\}$ and $j \in \{1, \ldots, m\}$ and take

$$D_{\theta}^{t} = \nabla_{2}G_{i}(\lambda^{t}, \theta^{t})$$
$$D_{v}^{t} = \nabla_{22}^{2}G_{i}(\lambda^{t}, \theta^{t})v^{t} + \nabla_{2}F_{j}(\lambda^{t}, \theta^{t})$$
$$D_{\lambda}^{t} = \nabla_{12}^{2}G_{i}(\lambda^{t}, \theta^{t})v^{t} + \nabla_{1}F_{j}(\lambda^{t}, \theta^{t})$$

$$\mathbb{E}_{i,j}[D_{\theta}^{t}] = \frac{1}{n} \sum_{i=1}^{n} \nabla_{2} G_{i}(\lambda^{t}, \theta^{t}) = D_{\theta}(\theta^{t}, \mathbf{v}^{t}, \lambda^{t})$$
$$\mathbb{E}_{i,j}[D_{\mathbf{v}}^{t}] = \frac{1}{n} \sum_{i=1}^{n} \nabla_{22}^{2} G_{i}(\lambda^{t}, \theta^{t}) \mathbf{v}^{t} + \frac{1}{m} \sum_{j=1}^{m} \nabla_{2} F_{j}(\lambda^{t}, \theta^{t}) = D_{\mathbf{v}}(\theta^{t}, \mathbf{v}^{t}, \lambda^{t})$$
$$\mathbb{E}_{i,j}[D_{\lambda}^{t}] = \frac{1}{n} \sum_{i=1}^{n} \nabla_{12}^{2} G_{i}(\lambda^{t}, \theta^{t}) \mathbf{v}^{t} + \frac{1}{m} \sum_{j=1}^{m} \nabla_{1} F_{j}(\lambda^{t}, \theta^{t}) = D_{\lambda}(\theta^{t}, \mathbf{v}^{t}, \lambda^{t})$$

Theorem (Convergence of SOBA)

Under some regularity assumptions on F and G, if h is bounded, then for decreasing step sizes that verify $\rho^t = \alpha t^{-\frac{2}{5}}$ and $\gamma^t = \beta t^{-\frac{3}{5}}$ for some $\alpha, \beta > 0$, the iterates $(\lambda^t)_{1 < t < T}$ of SOBA verify

$$\inf_{t\leq T} \mathbb{E}[\|\nabla h(\lambda^t)\|^2] = \mathcal{O}(T^{-\frac{2}{5}}) \;\;.$$

Aside: SAGA for single level problems [Defazio et al. 2014]

Single level problem:

$$\min_{\theta \in \mathbb{R}^p} f(\theta) = \frac{1}{n} \sum_{i=1}^n f_i(\theta)$$

Single level problem:

$$\min_{\theta \in \mathbb{R}^p} f(\theta) = \frac{1}{n} \sum_{i=1}^n f_i(\theta)$$

Initialisation: Compute and store $m[i] = \nabla f_i(\theta^0)$ for any $i \in \{1, ..., n\}$ and $S[m] = \frac{1}{n} \sum_{i=1}^{n} m[i]$.

Single level problem:

$$\min_{\theta \in \mathbb{R}^p} f(\theta) = \frac{1}{n} \sum_{i=1}^n f_i(\theta)$$

Initialisation: Compute and store $m[i] = \nabla f_i(\theta^0)$ for any $i \in \{1, ..., n\}$ and $S[m] = \frac{1}{n} \sum_{i=1}^{n} m[i]$. At iteration *t*:

- **1.** Pick $i \in \{1, ..., n\}$
- **2.** Update θ

$$\theta^{t+1} = \theta^t - \rho(\nabla f_i(\theta^t) \underbrace{-m[i] + S[m]})$$

variance reduction

3. Update the memory

$$m[i] \leftarrow \nabla f_i(\theta^t)$$

To estimate

$$D_{\theta}(\theta^{t}, \mathbf{v}^{t}, \lambda^{t}) = \nabla_{2}G(\lambda^{t}, \theta^{t})$$
$$D_{\mathbf{v}}(\theta^{t}, \mathbf{v}^{t}, \lambda^{t}) = \nabla_{22}^{2}G(\lambda^{t}, \theta^{t})\mathbf{v}^{t} + \nabla_{2}F(\lambda^{t}, \theta^{t})$$
$$D_{\lambda}(\theta^{t}, \mathbf{v}^{t}, \lambda^{t}) = \nabla_{12}^{2}G(\lambda^{t}, \theta^{t})\mathbf{v}^{t} + \nabla_{1}F(\lambda^{t}, \theta^{t})$$

we have 5 quantities to estimate on the principle of SAGA:

$$\begin{aligned} \nabla_2 \mathcal{G}(\lambda^t, \theta^t), \quad \nabla_2 \mathcal{F}(\lambda^t, \theta^t), \quad \nabla_1 \mathcal{F}(\lambda^t, \theta^t) \\ \nabla_{12}^2 \mathcal{G}(\lambda^t, \theta^t) \mathbf{v}^t, \quad \nabla_{22}^2 \mathcal{G}(\lambda^t, \theta^t) \mathbf{v}^t \end{aligned}$$

 D_{θ}^{t} , D_{v}^{t} and D_{λ}^{t} given using these estimates = SABA directions

Theorem (Convergence of SABA)

Under some regularity assumptions on F and G, with constant and small enough step sizes, the iterates $(\lambda^t)_{1 \le t \le T}$ of SABA verify

$$\frac{1}{T}\sum_{i=1}^{T}\mathbb{E}[\|\nabla h(\lambda^t)\|^2] = \mathcal{O}(T^{-1}) .$$

- We match the convergence rate of gradient descent
- SABA converges with fixed step sizes
- Faster than SOBA

Number of calls to oracle to get an ϵ -stationary solution.

amIGOstoBiOTTSAMRBOSUSTAINSOBASABA
$$\mathcal{O}(\epsilon^{-2})$$
 $\tilde{\mathcal{O}}(\epsilon^{-2})$ $\tilde{\mathcal{O}}(\epsilon^{-5/2})$ $\tilde{\mathcal{O}}(\epsilon^{-3/2})$ $\mathcal{O}(\epsilon^{-3/2})$ $\mathcal{O}(\epsilon^{-5/2})$ $\mathcal{O}(\epsilon^{-1})$

SABA achieves SOTA complexity

Setting:

- ► Task: binary classification
- IJCNN1 dataset: 49 990 training samples, 91 701 validation samples, 22 features
- ► Training loss:

$$G(heta, \lambda) = rac{1}{n} \sum_{i=1}^{n} \log(1 + \exp(-y_i \langle x_i, heta
angle)) + rac{1}{2} \sum_{k=1}^{p} e^{\lambda_k} heta_k^2$$

► Validation loss: logistic loss

$$F(heta, \lambda) = rac{1}{m} \sum_{j=1}^m \log(1 + \exp(-y_i^{val} \langle x_i^{val}, heta
angle))$$
Hyperparameter selection on ℓ^2 regularized logistic regression

- It is possible to adapt any kind of single level stochastic optimizer to our framework.
- As in single level optimization, variance reduction allows to get convergence rate that matches rates of full batch gradient descent.

- Bi-level optimization is intrinsic in many ML problems.
- ► Classical optimization method can be used once we know how to compute the gradient requires approximating θ^* and v^* .
- Maybe linear dynamic is the solution (1-loop vs 2-loops)

Slides will be on my web page:

tommoral.github.io

Thanks to all my bi-level collaborators!

Algorithm Unrolling

Differentiable inner problem solvers

References

- Shaban, A., Cheng, C.-A., Hatch, N., and Boots, B. (2019). Truncated Back-propagation for Bilevel Optimization. In Artificial Intelligence and Statistics (AISTAT), pages 1723–1732, Okinawa, Japan
- Ablin, P., Peyré, G., and Moreau, T. (2020). Super-efficiency of automatic differentiation for functions defined as a minimum. In International Conference on Machine Learning (ICML)
- Malézieux, B., Moreau, T., and Kowalski, M. (2022). Understanding approximate and Unrolled Dictionary Learning for Pattern Recovery. In International Conference on Learning Representations (ICLR), online

Differentiable unrolling of θ^t

Idea: Compute $\frac{\partial \theta^t}{\partial \lambda}(\lambda) \approx \frac{\partial \theta^*}{\partial \lambda}(\lambda)$ using automatic differentiation through an iterative algorithm.

Differentiable unrolling of θ^t

Idea: Compute $\frac{\partial \theta^t}{\partial \lambda}(\lambda) \approx \frac{\partial \theta^*}{\partial \lambda}(\lambda)$ using automatic differentiation through an iterative algorithm.

For the gradient descent algorithm:

$$heta^{t+1} = heta^t -
ho rac{\partial {m {G}}}{\partial heta}(\lambda, heta^t)$$

The Jacobian reads,

$$\frac{\partial \theta^{t+1}}{\partial \lambda}(\lambda) = \left(Id - \rho \frac{\partial^2 G}{\partial \theta^2}(\lambda, \theta^t) \right) \frac{\partial \theta^t}{\partial \lambda}(\lambda) - \rho \frac{\partial^2 G}{\partial \theta \partial \lambda}(\lambda, \theta^t)$$

Differentiable unrolling of θ^t

Idea: Compute $\frac{\partial \theta^t}{\partial \lambda}(\lambda) \approx \frac{\partial \theta^*}{\partial \lambda}(\lambda)$ using automatic differentiation through an iterative algorithm.

For the gradient descent algorithm:

$$heta^{t+1} = heta^t -
ho rac{\partial \mathsf{G}}{\partial heta}(\lambda, heta^t)$$

The Jacobian reads,

$$\frac{\partial \theta^{t+1}}{\partial \lambda}(\lambda) = \left(\mathsf{Id} - \rho \frac{\partial^2 \mathsf{G}}{\partial \theta^2}(\lambda, \theta^t) \right) \frac{\partial \theta^t}{\partial \lambda}(\lambda) - \rho \frac{\partial^2 \mathsf{G}}{\partial \theta \partial \lambda}(\lambda, \theta^t)$$

⇒ Under smoothness conditions, if θ^t converges to θ^* , this converges toward $\frac{\partial \theta^*}{\partial \lambda}(\lambda)$

Analysis for min-min problems

[Ablin et al. 2020]

Context: min-min problems where F = G

$$\Rightarrow$$
 Here, $rac{\partial F}{\partial heta}(\lambda, heta^*) = 0$

Analysis for min-min problems

[Ablin et al. 2020]

Context: min-min problems where F = G

$$\Rightarrow$$
 Here, $\frac{\partial F}{\partial \theta}(\lambda, \theta^*) = 0$

We consider the 3 gradient estimates:

$$g_1 = \frac{\partial G}{\partial \lambda}(\lambda, \theta^t)$$
 Analysis

$$g_2 = \frac{\partial G}{\partial \lambda}(\lambda, \theta^t) + \frac{\partial G}{\partial \theta}(\lambda, \theta^t) \frac{\partial \theta^t}{\partial \lambda}$$
 Automatic

$$g_3 = \frac{\partial G}{\partial \lambda}(\lambda, \theta^t) - \frac{\partial G}{\partial \theta}(\lambda, \theta^t) \frac{\partial^2 G}{\partial \theta^2}(\lambda, \theta^t) \frac{\partial^2 G}{\partial \theta \partial \lambda}(\lambda, \theta^t)$$
 Implicit

Analysis for min-min problems

[Ablin et al. 2020]

Context: min-min problems where F = G

$$\Rightarrow$$
 Here, $\frac{\partial F}{\partial \theta}(\lambda, \theta^*) = 0$

We consider the 3 gradient estimates:

$$\begin{array}{l} \mathbf{g}_{1} = \frac{\partial G}{\partial \lambda}(\lambda, \theta^{t}) & \text{Analysis} \\ \mathbf{g}_{2} = \frac{\partial G}{\partial \lambda}(\lambda, \theta^{t}) + \frac{\partial G}{\partial \theta}(\lambda, \theta^{t}) \frac{\partial \theta^{t}}{\partial \lambda} & \text{Automatic} \\ \mathbf{g}_{3} = \frac{\partial G}{\partial \lambda}(\lambda, \theta^{t}) - \frac{\partial G}{\partial \theta}(\lambda, \theta^{t}) \frac{\partial^{2} G}{\partial \theta^{2}}^{-1}(\lambda, \theta^{t}) \frac{\partial^{2} G}{\partial \theta \partial \lambda}(\lambda, \theta^{t}) & \text{Implicit} \end{array}$$

Convergence rates: For G strongly convex in θ ,

$$\begin{split} |g_t^1(x) - g^*(x)| &= O\left(|\theta^t(\lambda) - \theta^*(\lambda)|\right), \\ |g_t^2(x) - g^*(x)| &= o\left(|\theta^t(\lambda) - \theta^*(\lambda)|\right), \\ |g_t^3(x) - g^*(x)| &= O\left(|\theta^t(\lambda) - \theta^*(\lambda)|^2\right). \end{split}$$

Context: dictionary learning, F = G with an ℓ_1 -regularization for θ .

Issue: The implicit gradient quality mostly depends on the support identifiaction,

$$\left(\frac{\partial \theta^*}{\partial D_l}\right)_{S^*} = -(D_{:,S^*}^\top D_{:,S^*})^{-1} (D_l \theta^{*\top} + (D_l^\top \theta^* - y_l) Id_n)_{S^*} ,$$

 \Rightarrow Is the autodiff approach better than the analytic one?

Analysis for non-smooth min-min problems [Malezieux et al. 2022]

On the support, the function is smooth and we recover the same convergence.

$$\|J_l^N - J_l^*\| - \|S_N - S^*\|_0$$

Outside of the support, errors can accumulate and the gradient can blow up.

Hypergradient computation

References

Lorraine, J., Vicol, P., and Duvenaud, D. (2020). Optimizing millions of hyperparameters by implicit differentiation. In International Conference on Artificial Intelligence and Statistics (AISTATS), pages 1540–1552. PMLR

Linear system approximation v^*

Solving the linear system for $v^*(\lambda^t)$,

• Core idea is to not inverse the hessian $\frac{\partial^2 G}{\partial \theta^2}(\lambda^t, \theta^t)$,

We are only interested in one direction.

• Only rely on Hessian-vector product (Hvp).

Can be computed efficiently

Proposed Methods:

- L-BFGS
- Jacobian-Free method
 - $\frac{\partial^2 G}{\partial \theta^2}(\lambda^t, \theta^t) \approx \mathit{Id}$

- Conjugate Gradient
- Neumann iterations

$$\frac{\partial^2 G}{\partial \theta^2} (\lambda^t, \theta^t)^{-1} \approx \sum_k (Id - \frac{\partial^2 G}{\partial \theta^2} (\lambda^t, \theta^t))^k$$

[Pedregosa 2016, Lorraine et al. 2020, Luketina et al. 2016]