Bi-level optimization in Machine
Learning

Thomas Moreau INRIA Saclay

v d

O PARIETAL 6 s 7 avent

1/50

Learning a linear ML model

Setup:

> Binary classification task (X, y)M, € RP x {-1,1}
» Linear model: predict y from X with sign((6, X)).

2

Learning a linear ML model

Logistic loss:

N
G(9) = Z (14 e7%il0Xi)

=1

Training the model:

6" = argmin G(0)
0

3/50

Avoiding overfitting

Here, the second feature is uninformative,

4/50

Avoiding overfitting with a regularization

Regularized Logistic loss:

G(9,)) Z|og(1+e—y'<"x)+ AlI6l13
i=1

Training the model:

0*(\) = argmin G(0, \)
0

5/50

Avoiding overfitting with a regularization

Regularized Logistic loss:

G(0,\) Zlog(l + e7¥$0X)) 1 \||0)13
i=1
Training the model:

0*(\) = argmin G(0, \)
0

= How to choose \?

5/50

Evaluating the generalization

We want to find A that ensure the best generalization of 6*(\).
Validation loss: use held out data (X2, y¥?)M,

M
F(9) = Z log(1 + e~ yi®! e, Xva/))
i=1

Independent estimate of the risk of the model.

6/50

Evaluating the generalization

We want to find A that ensure the best generalization of 6*(\).
Validation loss: use held out data (X2, y¥?)M,
F(0) = Zlog (1+e™¥ ’<6’Xiva’>)

Independent estimate of the risk of the model.

= Find \ that gives a model 6*(\) with a good validation loss.

6/50

The Grid Search

» Select a grid of parameters {\1,... Ak }.
» Train a model for each parameter Ag: 6% (k).
» Evaluate the performance with the validation loss F(6*(\k)).

» Keep the value Ay with the best performance.

7/50

The Grid Search

» Select a grid of parameters {\1,... Ak }.
» Train a model for each parameter Ax: 0* ().
» Evaluate the performance with the validation loss F(60*(\x)).

» Keep the value)y with the best performance.

Mathematical rewritting:

Minxe(a,.ax} F(07(A))
s.t. 0*(\) = argminy G(0, \)

7/50

The Grid Search with multiple hyperparameters

Regularized Logistic loss:

G(6,\) Zlog(we—%“’x)+ AlloI3

i=1

8/50

The Grid Search with multiple hyperparameters

Regularized Logistic loss:

N P
1
G(6.)) = 5 > log(1 + e Xy 43 "\, 07
i=1 k=1

Grid search is inefficient as the grid increases exponentially with the number
of parameters.

8/50

The Grid Search with multiple hyperparameters

Regularized Logistic loss:

N
Z (1 + e7vi0Xy +2Akek

k=1

= \

Grid search is inefficient as the grid increases exponentially with the number
of parameters.

= Can we use first-order methods to minimize

h(\) = F(6°()))?

8/50

Bi-level optimization

Bi-level problem: Optimization problem with two levels

min h(A) = F(A, 07(N)) T T = O e

s.t. 6%(\) =argmin G(\.0)
Value function ’

Inner function/Problem

Goal: Optimize the value function h whose value depends on the result of
another optimization problem.

9/50

Bi-level optimization problems: Model selection

Selecting the best model:

» G is the training loss and 6 are the parameters of the model.

» Select the hyper-parameter A to get the best validation loss F.

Hyperparameter optimization: \ is a regularization parameter:

2

1

' . ﬁ,’if!’.v:'- ¥ o

o e % Voo % S0°
‘.;:.\%0. ° o... c U

. . 'l? G

Bi-level optimization problems: Model selection

Selecting the best model:

» G is the training loss and 6 are the parameters of the model.

» Select the hyper-parameter A to get the best validation loss F.

Data augmentation:)\ parametrizes the transformations distribution.

—_ Randqm
operation —l
o il B

Trzlentlng Batch of inputs Augmented batch Classifier

“Lion” > “Lion”

10/50

Bi-level optimization problems: Model selection

Selecting the best model:

» G is the training loss and 6 are the parameters of the model.

» Select the hyper-parameter A to get the best validation loss F.

Neural Architecture Search:)\ parametrizes the architecture.

(a) (b)

10/50

Bi-level optimization problems: Implicit Deep Learning

Deep Equilibrium Network:
miny h(A) = § 223y L(yi, 0°(Xi, A)
s.t. 0%(Xi, A) = g (0%(Xi, \))
Output of the network is the root of G(6,\) =60 — g\(0) = 0.

CIFAR-10
40 6 %
35 E
» Mimic infinite depth: % %
L >
X5 B
>y Q
G(H_l) = g/\(e(t)) t— 00 . ‘g”“ 93 25 27 tg
w 15 oy
20
.. 0 14 o
» Efficient memory Toe3 10 62, >
. 9 2
» Slow runtime ; [| i 5
=

ResNet-101 DenseNet-121 MDEQ
(Benchmarked on Input Batch Size 32)

M Error (%) ® Memory (GB) Runtime

11/50

Solving bi-level optimization

Black box methods: Take {\;}x and compute minj h(\x)

» Grid-Search » Random-Search » Bayesian-Optimization

= Do not scale well with the dimension

12/50

Solving bi-level optimization

First order methods: Gradient descent on h

Iterate in the steepest direction:

)\t-i-]. —)\t o pch()\) -

: d F(L0* () -5

» Gradient Vh(\) = %)
» Step size pt. B

—— lterates of GD

12/50

Computing the gradient of h

Value function definition:

h(X) = F(\, 6%(N))
Chain rule:

Vah(A) = ViF(\, 0% (\)) + (d6° () TV2F (A, 0%(\))

13/50

Jacobian of 0* - implicit differentiation

Optimality condition for 6*

VaG(A, 0%(N) =0

14/50

Jacobian of 0* - implicit differentiation

Optimality condition for 6*

VaG(M\ 0% (A) =0
Derivating this equation relative to A gives:

V3G (A, 0%(V)d8*(A) + V3, 6(A, 0°(A)) = 0,

14/50

Jacobian of 0* - implicit differentiation

Optimality condition for 6*

VaG(M\ 0% (A) =0
Derivating this equation relative to A gives:

V3,G(\, 6%(\)do*(\) + V3,G(\, 0%(\)) =0,

Implicit function theorem

do*(N) = —[V3G(\, 05 (V)] 'V3,G(X, 0%(V)),

14/50

Computing the gradient of h

Value function gradient:

Vh(A) = V1F (A, 0%) — V3, G(X, 09)[V3,G (A, 0%)] " VaF (X, 6%)

15/50

Computing the gradient of h

Value function gradient:

Vh(A) = V1F(A,0°) = V3, G(X, 09)[V3G (A, 0%)] ' VaF (X, 6%)

» Need to compute the solution of the inner

15/50

Computing the gradient of h

Value function gradient:

Vh(A) = V1F(A,0%) — V3, G(X, 0%)[V3.G (N, 0%)] ' VaF (), 6%)

» Need to compute the solution of the inner
» Need to solve a p x p linear system

vi(A) = [V5G6(N,6%)] 'V2F (), 6%)

15/50

Approximate bi-level optimization

References

» Pedregosa, F. (2016). Hyperparameter optimization with approximate
gradient. In International Conference on Machine Learning (ICML), pages
737-746, New-York, NY, USA

16/50

Hyperparameter optimization with Approximate Gradient HOAG
[Pedregosa 2016]

Do we need to compute 0* and v* precisely?

Idea: Approximate 6*(*) and v*(\!) = [V%zG()\t,G*)]_1V2F()\t,9*)

17/50

Hyperparameter optimization with Approximate Gradient HOAG
[Pedregosa 2016]

Do we need to compute 0* and v* precisely?
Idea: Approximate §*(Af) and v*(A") = [V3,G(\, 9*)]_1V2F()\t,9*)

» Compute 6' such that ||#* — 6*(\')]2 < e,
iterative solver e.g. L-BFGS

» Compute v such that |2 892 TN + GE(XL, 09|12 < e,
L-BFGS or CG

» Compute the approximate gradient g; = 95 (\f, 0%) + g;g(x ot)vt

» Update the outer variable A\ft1 = \t — plgt

17/50

HOAG [Pedregosa 2016]

Theorem: If), €; < oo and the step-sizes are chosen appropriatly, then
the algorithm converges to a stationary point i.e.

IVA(A)]2 =0

18/50

Further linear system approximation v*

Linear system solution v*(A") is a by product.

= Avoid computing it as much as possible.

Proposed Methods:

» L-BFGS » Conjugate Gradient

» Jacobian-Free method » Neumann iterations

V2,G(\E, 0% ~ Id V3.G(AL 08t & > “(Id — V3,G(\, 0%)k
K
» Algorithm unrolling

[Pedregosa 2016, Lorraine et al. 2020, Luketina et al. 2016]

19/50

SHINE - Sharing the INverse Estimate

References

» Ramazi, Z., Mannel, F., Bai, S., Starck, J.-L., Ciuciu, P., and Moreau, T.
(2022). SHINE: SHaring the INverse Estimate from the forward pass for
bi-level optimization and implicit models. In International Conference on
Learning Representations (ICLR), online

20/50

SHINE: SHaring the INverse Estimate [Ramzi et al. 2022]

Quasi Newton 101:

Solving 6* = argming G(6)
Newton Method Quasi-Newton Method

0t+1 — 9t — [sz((gt)] —1vG(0t) pttl — gt _ Bt—lvG(et)
B;: low-rank approx. of V2G(6?).
Inverse with Sherman-Morrison

21/50

SHINE: SHaring the INverse Estimate [Ramzi et al. 2022]

Quasi Newton 101:

Solving 6* = argming G(6)
Newton Method Quasi-Newton Method

0t+1 — 9t — [V2G(9t):| _IVG(et) pttl — gt _ Bt—lvG(et)
B;: low-rank approx. of V2G(6?).
Inverse with Sherman-Morrison

= The Hessian for v* is the same as the one from the inner problem.

21/50

SHINE - Hyper-parameter optimization [Ramzi et al

. 2022]

Idea: reuse the approximation of the Hessian B; computed
by L-BFGS for the inner problem.

v = By 1VyF (), 0Y)
Vh()\) = V1iF(\, 6) + V3,G(\, 0%)7;

Properties of B:

22/50

SHINE - Hyper-parameter optimization [Ramzi et al. 2022]

Idea: reuse the approximation of the Hessian B; computed
by L-BFGS for the inner problem.

v = By 1VyF (), 0Y)
Vh()\) = V1iF(\, 6) + V3,G(\, 0%)7;

Properties of B:

» It is computed when solving 6* = argmin, G() using a quasi-Newton
method.

22/50

SHINE - Hyper-parameter optimization [Ramzi et al. 2022]

Idea: reuse the approximation of the Hessian B; computed
by L-BFGS for the inner problem.

U = By 'VaF (), 6%)
Vh()\) = V1F(\, 0%) + V2,G()\, %),

Properties of B:

» It is computed when solving 6* = argmin, G() using a quasi-Newton
method.

» It is easily invertible using the Sherman-Morrison formula, because
low-rank.

22/50

SHINE direction convergence

Theorem (Convergence of SHINE to the Hypergradient using ULI)
Under the Uniform Linear Independence (ULI) assumption and some
additional smoothness and convexity assumptions, for a given parameter \,
(0*) converges g-superlinearly to 6* and

lim ViF(),0%) 4+ V3,G(\, 050 = Vh(N).

t—o0

23/50

SHINE - Hyper-parameter optimization [Ramzi et al. 2022]

Logistic Regression with ¢>-regularisation on 2 datasets:

== SHINE (ours) == SHINE refine (ours)
=== HOAG _,. = = ===== Jacobian-Free = == Grid search
20news real-sim
103 T T T T T T T T T T
108 4
102
102 4

N -

10t

100

Test Loss Suboptimality

10~k ! ! ! ! ! 1071 ! ! 3

24/50

SHINE - Hyper-parameter optimization [Ramzi et al. 2022]

Multiscale DEQ on CIFAR10:

CIFAR10

Vanillal: Refined I 1
93.5 | - — ——% B Methods

1 Il Original Method
1 M Jacobian-Free

T

930 |]
X ! SHINE (ours)
1
§ 92.5 i 1 1 1 1 1 1 1
;5 25 50 75 100 125 150 175 200 # Backwacahiter?
3]
< ImageNet @ 0 - Vanilla
T T T T T T T T * 4
‘1 Vanilla : Reﬁned'] Al 2
o 1 1
ST Y 1 1 @5 410
! 1 % Full backward
[J 1 *
72 : J
1
1
L L1 L L L L L L L
0 100 200 300 400 500 600 700 800

Backward pass wall-clock time [ms]

25/50

Stochastic Bi-level Optimization

A framework for linear updates

References

» Dagréou, M., Ablin, P., Vaiter, S., and Moreau, T. (2022). A framework for
bilevel optimization that enables stochastic and global variance reduction
algorithms. preprint ArXiv, 2201.13409

26/50

Empirical Risk minimization

Classical ML setting:

%Z (A, 0), G(\0) = %i:c,-(x,e)
i=1

27/50

Empirical Risk minimization

Classical ML setting:

:%Z (), 6), G(A,e):%i:G;(A,G)
i=1

Consequence: For large m and n, any single derivative is cumbersome to
compute.

27/50

Aside: Stochastic optimization for single level problems

Single level problem:

28/50

Aside: Stochastic optimization for single level problems

Single level problem:

First order stochastic optimization:

0 =0t~ p'gt, Elg']6] = VA(O")

28/50

Aside: Stochastic optimization for single level problems

Single level problem:

First order stochastic optimization:

0 =0t~ p'gt, Elg']6] = VA(O")

Example: stochastic gradient descent [Robbins and Monro 1951] :

Ot = ot — ptVE(6Y), i~UL,...,n})

28/50

Bilevel optimization case

0-1%" 600

29/50

Bilevel optimization case

_ %Z G(\,0) = %Z Gi(\,0)

Vh(A) = V1iF(A, 05(N) = V2,6 (A, 0*(N) [V3G(A, 0% (V)] V2F(A, 05(\)

29/50

Bilevel optimization case

_ %Z G(\,0) = %Z Gi(\,0)

Vh(A) = V1iF(A, 05(N) = V2,6 (A, 0*(N) [V3G(A, 0% (V)] V2F(A, 05(\)

Problem:

n

[szz)\9*()\] £ [VRG(A6* ()]

i=1

29/50

General algorithm

1fort=1,...,T do
1. Take for 6 an approximation of 6*(\f)

2. Take for v* an approximation of [V%zG(At,Gt)]fl VaF (AL, 60Y)
3. Set
pt = ViF(X\L,0%) — V2,G(\E, 0%) vt

~V h(At)

4. Update the outer variable

)\t-i-l —)\t _ ,ytpt

30/50

Two loops algorithms

Two loops [Ghadimi et al. 2018]: 0*(\') is approximated by output of K
steps of SGD:

0t,k+1 — Ht’k . Ptvz Gi()\t, Gt’k)

Warm start strategy [Ji et al. 2021, Arbel and Mairal 2022]: Initialize the
inner SGD by the previous iterate 71,

31/50

What about the linear system?

Approximate v = [ngG()\tﬁt)]_l VaF (AL, 0%) with:

» Neumann approximations [Ghadimi et al. 2018, Ji et al. 2021]:

QR q
viag Z H (I =nV3,Gi (AF,0%)) ViF;(AE,0°)
q=0 k=0

32/50

What about the linear system?

Approximate v = [V%zG()\tﬁt)]_l VaF (AL, 0%) with:

» Neumann approximations [Ghadimi et al. 2018, Ji et al. 2021]:

QR q
viag Z H (I =nV3,Gi (AF,0%)) ViF;(AE,0°)
q=0 k=0

» Stochastic Gradient Descent [Grazzi et al. 2021] since

1
vt € argmin 5<V§2G(Af, 0")v, v) + (VaF (X', 0%), v)
veRP

32/50

One loop algorithms

Alternate steps in 6 and \ [Hong et al. 2020, Yang et al. 2021]:

011 = 9t — ptV,Gi(AF,0%) SGD step
QR q

vt = g Z H (I = nV3,Gi (A1, 0511)) VaF;(AE, 01H1)
qg=1 k=0

Neumann approximation
AL = N =y {(ViF(A 651) = VEH G, 654wt

~Vh(At)

33/50

Main idea

Three variables to maintain:
» 6 — inner optimization problem
» v — linear system

>)\ — outer optimization problem

Idea: evolve in 6, v and A at the same time following well chosen directions.

34/50

Motivation of the framework

Directions:

Dy(6,v,A) = V2G(A,0) gradient step toward 6*(\)

35/50

Motivation of the framework

Directions:
Dy(6,v,A) = V2G(A,0) gradient step toward 6*(\)
D, (0, v,\) = V3, G(\, 0)v + VaF(),0)
gradient step toward — [V3; G(\, 9)]71 VaF (A, 0)

35/50

Motivation of the framework

Directions:

Dy(6,v,A) = V2G(A,0) gradient step toward 6*(\)
D, (0, v,\) = V3, G(\, 0)v + VaF(),0)

gradient step toward — [V3; G(\, 9)]71 VaF (), 0)
Dx(0, v, \) = V3,G(\,0)v + V1F (), 0)

gradient step toward *

35/50

Motivation of the framework

Directions:

Dy(6, v, \)

D,(0,v,\) =

D)\(G v,)\

szc (A, 6)

Zv22G (A, 0)v + — szF (A, 0)
11

Zv i\ 0)v + = ZvlF (A.60)

36/50

Proposed framework

1fort=1,..., T do

1. Update 6

0t+1 — 91.‘ _ ptht'
2. Update v

2 S ptD‘f
3. Update A

At+1 _)\t . ,YtD;f\

with D}, DY, D} stochastic estimators of Dy(6*, vt, Af), D, (6%, v*, A*) and
Dy (6%, vt \Y).

37/50

SOBA (StOchastic Bilevel Algorithm) directions

Pick i € {1,...,n} and j € {1,..., m} and take

D} = V2G;(\t, 6Y)
D! = V3,Gi(\!, 0%) vt + VaF;(\E, 0%)
D! = V3, Gi(\5, 00 vt + ViF;(\', 0%)

38/50

SOBA (StOchastic Bilevel Algorithm) directions

1 n
Ei,[Dg] = ; > VaGi(AL,0%) = Dy(67, v*, \Y)
i=1

E,J[Dg]:%z:vgzc,(x,)yt 4 ZVZF()\tG)_ (08, v, D)

i=1 _] 1
E;;[Di] = Zv 4 — ZvlF (AL,0%) = Dy (6%, vE, \Y)
j 1

39/50

Theoretical guarantees of SOBA

Theorem (Convergence of SOBA)

Under some regularity assumptions on F and G, if h is bounded, then for
2 3

decreasing step sizes that verify p* = at™5 and vt = Bt~ 5 for some

a, 3 > 0, the iterates (\")1<¢<1 of SOBA verify

inf E[|VA(\)[?] = O(T %) .

40/50

Aside: SAGA for single level problems [Defazio et al. 2014]

Single level problem:

6’rr€1I|Rr}’ f(6) = Zf(@

41/50

Aside: SAGA for single level problems [Defazio et al. 2014]

Single level problem:

Grgllgr}) f(6) = Zf(@

Initialisation: Compute and store m[i] = V£;(6°) for any i € {1,...,

and S[m] = 1 3°7 | mli].

n}

41/50

Aside: SAGA for single level problems [Defazio et al. 2014]

Single level problem:

: 1
min £(0) = — ; fi(6)
Initialisation: Compute and store m[i] = V£(6°) for any i € {1,...,n}
and S[m] = 1 5°" mli].
At iteration t:
1. Pick i e {1,...,n}
2. Update 0
0t = 0t — p(V£(6Y) —m[i] + S[m])
———
variance reduction

3. Update the memory
m[i] < V£(0")

41/50

Bilevel case: SABA (Stochastic Average Bilevel Algorithm)

To estimate
Dy(6%, v, \t) = Va2 G(AE, 0Y)
D, (0%, v, \) = V3,G (AL, 0%)vE + Vo F (A, 6Y)
Dy (0%, vE, \Y) = V2,G(\E, 0Y)vE + V1 F(\E, 6%)
we have 5 quantities to estimate on the principle of SAGA:

VaG(AL,60Y), VaoF(AL,6Y), ViF(AL6Y)
V%2G()‘t70t)vtv v%QG()‘taet)vt

D}, DY and Dj given using these estimates = SABA directions

42 /50

Theoretical guarantees

Theorem (Convergence of SABA)

Under some regularity assumptions on F and G, with constant and small
enough step sizes, the iterates (\')1<¢<7 of SABA verify

T
i=1

43/50

Remarks

» We match the convergence rate ‘
of gradient descent E 102+
c
"q:'; 1077 .
> SABA converges with fixed step g - SABA
sizes o — SOBA

0 100 200 300
Iterations

» Faster than SOBA

400

44/50

Complexity

Number of calls to oracle to get an e-stationary solution.

amlGO

stoBiO

TTSA

MRBO

SUSTAIN

SOBA

SABA

O(e72)

O(e2)

0(6_5 2)

0(6_3 2)

0(6_3 2)

0(6_5/2)

O(e 1)

SABA achieves SOTA complexity

45/50

Hyperparameter selection on (? regularized logistic regression

Setting:
» Task: binary classification

» [JCNN1 dataset: 49990 training samples, 91 701 validation samples, 22
features

» Training loss:

p

G(0,)) Zlog (1 + exp(—yi(xi, 0 Z kgi

S k

» Validation loss: logistic loss

1 m
F(0,0) = — > log(1 +exp(—y/" (x*,6))
j=1

46/50

Hyperparameter selection on ¢? regularized logistic regression

= 1071
|
gg] LN I
= 1072 4
2]
=]
£ 1073 5
= E
o]
©]

10~% 3

1 1 1 T
100 200 300 400
Time [sec]

===+ MRBO === TTSA == = StocBiO s SABA

+ SUSTAIN - - AmIGO BSA === SOBA

47/50

Stochastic bi-level framework

> It is possible to adapt any kind of single level stochastic optimizer to
our framework.

» As in single level optimization, variance reduction allows to get
convergence rate that matches rates of full batch gradient descent.

48/50

Conclusion

» Bi-level optimization is intrinsic in many ML problems.

» Classical optimization method can be used once we know how to
compute the gradient - requires approximating 6* and v*.

» Maybe linear dynamic is the solution (1-loop vs 2-loops)

Slides will be on my web page:

€ tommoral.github.io O @tomamoral

49/50

tommoral.github.io
https://twitter.com/tomamoral

Thanks to all my bi-level collaborators!

50/50

Algorithm Unrolling

Differentiable inner problem solvers
References

» Shaban, A., Cheng, C.-A., Hatch, N., and Boots, B. (2019). Truncated
Back-propagation for Bilevel Optimization. In Artificial Intelligence and
Statistics (AISTAT), pages 1723-1732, Okinawa, Japan

» Ablin, P., Peyré, G., and Moreau, T. (2020). Super-efficiency of automatic
differentiation for functions defined as a minimum. In International
Conference on Machine Learning (ICML)

» Malézieux, B., Moreau, T., and Kowalski, M. (2022). Understanding
approximate and Unrolled Dictionary Learning for Pattern Recovery. In
International Conference on Learning Representations (ICLR), online

1/8

Differentiable unrolling of 6*

Idea: Compute %—T()\) ~ %()\) using automatic differentiation
through an iterative algorithm.

2/8

Differentiable unrolling of '

Idea: Compute %(A) ~ %(A) using automatic differentiation

through an iterative algorithm.

For the gradient descent algorithm:
9t+1 — et _ pi()\,et)

The Jacobian reads,

89t+1 0 o0t

—() = (1d—p

2
T 09) 2 () -

0°G

Po0ox

(A 6°)

Differentiable unrolling of '

Idea: Compute %—B)\t()\) ~ %()\) using automatic differentiation
through an iterative algorithm.

For the gradient descent algorithm:
9t+1 — et _ pi()\,et)

The Jacobian reads,

o0t 0°G

aet—&—l 2
S 0 09)) 5 () = p5r (3, 0°)

8

—() = (1d—p

= Under smoothness conditions, if #* converges to 6*,
this converges toward 2%-()\)

2/8

Analysis for min-min problems [Ablin et al. 2020]

Context: min-min problems where F = G

= Here, 2£(X,6%) =0

3/8

Analysis for min-min problems [Ablin et al. 2020]

Context: min-min problems where F = G

= Here, 2£(X,6%) =0

We consider the 3 gradient estimates:
> g = 8/\ ()\ Gt)

Analysis

> &= a,\ S(A0°) + %_g()‘ 9t)aet Automatic
2 . -

> g3 = 28(),0%) — B8 (, 05) 25 T (), 6t) 226 (A, 6) Implicit

3/8

Analysis for min-min problems [Ablin et al. 2020]

Context: min-min problems where F = G

= Here, 2£(X,6%) =0

We consider the 3 gradient estimates:
> g1 = %()‘a Gt)

Analysis

> g = %()\7 0t) + %_g()\’ef)%—(’; Automatic
—1 ..

> = 95009 — B0 (A IV EK (A0 Implici

Convergence rates: For G strongly
convex in 0,

800 -8 (I =0 (e o), "
|gt2(X) g (x)=o (wt()‘) - 9*()\)|) 2 P % 100 150
82(x) — g*(x)| = O (|6°(\) — 6" (W) . | '

3/8

Analysis for non-smooth min-min problems [Malezieux et al. 2022]

Context: dictionary learning, F = G with an ¢1-regularization for 6.

Issue: The implicit gradient quality mostly depends on the support
identifiaction,

<80*

oD,

)S = —(D]s: D, s)N (Dy0* " + (D] 0" — y))ldy)s-

= |s the autodiff approach better than the analytic one?

Analysis for non-smooth min-min problems [Malezieux et al

. 2022]

On the support, the function is smooth and we recover the same
convergence.

- ”‘]lN_Jl* H - ||SN—S* HO

L 20107 1 i

- 10-8 _ L
L o |

L | ! I ! I L | ! I ! I
109 102 104 100 10% 10%

5/8

Analysis for non-smooth min-min problems [Malezieux et al. 2022]

Outside of the support, errors can accumulate and the gradient can blow up.

Max BP depth
— full — 200 — 50 — 20

10 4 20 -

1~ = Tl

0 -I T 1 0 -I e
100 102 104 100 102 104

6/8

Hypergradient computation

References

» Lorraine, J., Vicol, P., and Duvenaud, D. (2020). Optimizing millions of
hyperparameters by implicit differentiation. In International Conference on
Artificial Intelligence and Statistics (AISTATS), pages 1540-1552. PMLR

7/8

Linear system approximation v*

Solving the linear system for v*(\!),

e Core idea is to not inverse the hessian %GE(M %),

We are only interested in one direction.

e Only rely on Hessian-vector product (Hvp).
Can be computed efficiently

Proposed Methods:

» L-BFGS » Conjugate Gradient
» Jacobian-Free method » Neumann iterations
592G GeG _ GeG
N T A D S -)
k

[Pedregosa 2016, Lorraine et al. 2020, Luketina et al. 2016]

8/8

	Approximate bi-level optimization
	SHINE - Sharing the INverse Estimate
	Stochastic Bi-level Optimization
	Appendix
	Algorithm Unrolling
	Hypergradient computation

