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Context: functional Neuroimaging

Goal: Study the brain mechanisms while it is functioning.

Outputs:

▶ Functional Atlases: Link areas of the brain to specific cognitive
functions.

▶ Functional Connectivity: Highlight the information flow in the
brain.

▶ Healthcare: Develop bio-markers for neurological disorders.
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Context: functional Neuroimaging

How to record living brains electrical activity: Electrophysiology

Direct measurement: intracranial EEG.

High Localization Low Resolution Invasive
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Context: functional Neuroimaging

How to record living brains electrical activity: Electrophysiology

Remote measurement: M/EEG.

No Localization Global Non Invasive
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M/EEG signals

Multivariate time-series X

Noisy Many artifacts Complex
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How to get back to electrical activity?

Maxwell’s
Equations

XXX

Observed signal

εεε

Electrical activity

GGG

Inverse Problem

Forward model: XXX = GGGεεε

Inverse problem: εεε = f (XXX ) (ill-posed)

▶ Dipole fit ▶ Regularized optimization ▶ Deep-learning
[Sarvas, 1987] [Gramfort et al., 2012] [Hecker et al., 2021]
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Neural signals
exhibit diverse and

complex
morphologies

[Cole & Voytek 2017]

Waveform shape can be related to diseases
e.g. Parkinson [Jackson et al. 2019]

[Dupré la Tour et al. 2017]
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Repeated Stimuli – Evoked Response [Gramfort et al. 2013]

▶ Subject is presented some stimuli – Audio, Visual, Motor, ...

▶ Record onset of the stimuli

▶ Average signal on window aligned around the stimulus

Evoked response to an
auditory stimuli
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[MNE-Python]
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Repeated Stimuli – Induced Response [Gramfort et al. 2013]

▶ Subject is presented some stimuli – Audio, Visual, Motor, ...

▶ Average PSD on window aligned around the stimulus
[MNE-Python]

Evoked response to an somatosensory stimuli
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“Textbook” brain rythms
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Linear filtering

After Linear filters, everything looks like a sinusöıd.

⇒ Lose the asymmetry and the shape information

11/41



Fourier Fallacy

”Even though it may be possible to analyze the complex forms of
brain waves into a number of different sine-wave frequencies, this
may lead only to what might be termed a “Fourier fallacy”, if one
assumes ad hoc that all of the necessary frequencies actually occur

as periodic phenomena in cell groups within the brain.”

[Jasper, 1948]
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Learning the waveform:
Convolutional Dictionary Learning

References

▶ Grosse, R., Raina, R., Kwong, H., and Ng, A. Y. (2007). Shift-Invariant
Sparse Coding for Audio Classification.

Cortex, 8:9
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Local structure in signals

Key idea: decouple the localization of the patterns and their shape

xn
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Convolutional Dictionary Learning [Grosse et al., 2007]

For a set of N univariate signals xn, solve

Hypothesis: patterns dk are not present everywhere in the signal. They
are localized in time.

⇒ Sparse activation signals z

Technical hypothesis: the patterns are in the ℓ2-ball: ∥dk∥22 ≤ 1.
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Optimization strategy

Bi-convex: The problem is not jointly convex in znk , and dk but it is
convex in each block of coordinate.

Alternate minimization (a.k.a. Bloc Coordinate Descent):

▶ Z-step: given a fixed estimate of the atom, compute the activation
signal znk associated to each signal xn.

▶ D-step: given a fixed estimate of the activation, update the atoms in
the dictionary dk .

Unrolled optimization:

▶ Z-step: use an fixed differentiable procedure f (xn,D).

▶ D-step: learn D through back-propagation.

[Malezieux et al. 2022]
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How to extend CSC to multivariate signals?

We can just use multivariate convolution,

X [t]︸︷︷︸
∈RP

=
K∑

k=1

(
zk ∗ Dk

)
[t] =

K∑
k=1

L∑
τ=1

zk [t − τ ]Dk [τ ]︸ ︷︷ ︸
∈RP

with:

▶ X a multivariate signal of length T in RP

▶ Dk a multivariate signal of length L in RP

▶ zk a univariate activation signal of length T̃ = T − L+ 1

However, this model does not account for the physics of the problem.
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Rank-1 constrained dictionary learning

References

▶ Dupré la Tour, T., Moreau, T., Jas, M., and Gramfort, A. (2018).

Multivariate Convolutional Sparse Coding for Electromagnetic Brain Signals.

In Advances in Neural Information Processing Systems (NeurIPS), pages
3296–3306, Montreal, Canada
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EM wave diffusion

▶ Recording here with 8 sensors

▶ EM activity in the brain
▶ The electric field is spread linearly and instantaneously over all

sensors (Maxwell equations)

19/41



EM wave diffusion

▶ Recording here with 8 sensors
▶ EM activity in the brain

▶ The electric field is spread linearly and instantaneously over all
sensors (Maxwell equations)

19/41



EM wave diffusion

▶ Recording here with 8 sensors
▶ EM activity in the brain
▶ The electric field is spread linearly and instantaneously over all

sensors (Maxwell equations)

19/41



EM wave diffusion

▶ Recording here with 8 sensors
▶ EM activity in the brain
▶ The electric field is spread linearly and instantaneously over all

sensors (Maxwell equations)

19/41



Multivariate CSC with rank-1 constraint

Idea: Impose a rank-1 constraint on each dictionary atom Dk

To make the problem tractable, use uk and vk s.t. Dk = ukv
⊤
k .

min
uk ,vk ,z

n
k

N∑
n=1

1

2

∥∥∥∥∥∥X n −
K∑

k=1

znk ∗ (ukv⊤k )

∥∥∥∥∥∥
2

2

+ λ

K∑
k=1

∥∥∥znk ∥∥∥
1
,

s.t. ∥uk∥22 ≤ 1 , ∥vk∥22 ≤ 1 and znk ≥ 0 .

(1)

Here,

▶ uk ∈ RP is a spatial pattern

▶ vk ∈ RL is a temporal pattern

⇒ This is a tri-convex problem
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Z-step: Locally greedy coordinate descent (LGCD)

Coordinate Descent: only 1 coordinate is updated at each iteration:

1. The coordinate zk0 [t0] is updated to its optimal value z ′k0 [t0]
when all other coordinate are fixed.

2. The updated coordinate is chosen

▶ Cyclic: O(1) [Friedman et al., 2007]

▶ Randomized: O(1) [Nesterov, 2010]

▶ Greedy: O(KT̃ ) [Osher and Li, 2009]
by maximizing |zk [t]− z ′k [t]|

▶ Locally Greedy: O(KL̃) [Moreau et al., 2018]
by maximizing |zk [t]− z ′k [t]| on a window
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Locally Greedy Coordinate Descent [Moreau et al., 2018]

We introduced the LGCD method which is an extension of GCD.

coordinates of Z

T̃

K

C1 C2 C3

coordinates of Z

GCD has O(KT̃ ) computational complexity.

With a partition Cm of the signal domain [1,K ]× [0, T̃ [,

Cm = [1,K ]× [
(m − 1)T̃

M
,
mT̃

M
[

The coordinate to update is chosen greedily on a sub-domain Cm
T̃
M = 2L− 1 ⇒ O(Coordinate selection) = O(Coordinate Update)

The overall iteration complexity is O(KL) instead of O(KT̃ ).

⇒ Efficient for sparse Z

⇒ Can be efficiently parallelized.
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D-step: solving for the atoms

We use the projected gradient descent with an Armijo backtracking
line-search Wright and Nocedal [1999] for both u-step and v-step for

min
∥uk∥2≤1
∥vk∥2≤1

E (uk , vk)
∆
=

N∑
n=1

1

2
∥X n −

K∑
k=1

znk ∗ (ukv⊤k )∥22 . (2)

One important computation trick is for fast computation of the gradient.

∇ukE (uk , vk) = ∇Dk
E (uk , vk)vk ∈ RP ,

∇vkE (uk , vk) = u⊤k ∇Dk
E (uk , vk) ∈ RL ,

Computing ∇Dk
E (uk , vk) can be done efficiently

∇Dk
E (uk , vk) =

N∑
n=1

(znk )
↰ ∗

X n −
K∑
l=1

znl ∗ Dl

 = Φk −
K∑
l=1

Ψk,l ∗ Dl ,
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Pattern recovery

Patterns recovered with P = 1 and P = 5. The signals were generated
with the two simulated temporal patterns and with σ = 10−3.
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Pattern recovery

Evolution of the recovery loss with σ for different values of P. Using more
channels improves the recovery of the original patterns.
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MNE sample data

A selection of temporal waveforms of the atoms learned on the MNE
sample dataset.
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Learned atoms – Evoked response
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Learned atoms – Induced responses
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Python code online:
https://alphacsc.github.io

pip install alphacsc

Examples reproduce figures
from this talk!
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Modeling stimuli induced patterns
with Point Processes

References

▶ Allain, C., Gramfort, A., and Moreau, T. (2022). DriPP: Driven Point
Process to Model Stimuli Induced Patterns in M/EEF Signals.

In International Conference on Learning Representations (ICLR)
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Stimuli Induced Patterns

▶ Manual pattern identification

▶ No quantification of how stimuli influence patterns activation.

Activations and stimuli can be seen as Point Processes.
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Point Processes [Daley and Vere-Jones, 2003]

▶ Stochastic model for stream of events

▶ Time of arrival {tk} associated with counting process N(t)

▶ Characterized by the intensity:

λ(t|Ft) = lim
dt→0

P(N(t + dt)− N(t) = 1|Ft)

dt

Poisson process with constant
probability of arrival

λ(t) = µ0

0 5 10 15 20
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Counting process N
Events 
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ª
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DriPP – Driven Point Process

Idea: Model the intensity of the activation {tk} depending on the PP
from the stimuli {sp}.

λ(t|Ft) = λ(t|{sp; sp < t}) = µ0 +
∑
sp<t

κ(t − sp)
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Modeling latency

Chosing a model for stimuli based modeling:

λ(t|Ft) = µ0 +
∑
sp<t

ακ(t − sp)

▶ µ0 ≥ 0: spontaneous activity.

▶ α ≥ 0: allow for stimuli to have
no effect.

▶ κ(τ): pdf of a truncated
Gaussian N (m, σ2) to model
latency.
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Parameters estimation

The negative log-likelihood of the model can be computed using the
intensity λ:

L({tk}; Θ) =

∫ T

0
λ(t)dt −

∑
tk

λ(tk)

= µ0T + α|{tk}| −
∑
tk

log(µ0

∑
sp<tk

ακ(tk − sp))

with Θ = (µ0, α,m, σ2)

⇒ Parameter estimation is done using an EM algorithm.
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Parameters recovery

Events simulated with the Truncated Gaussian model:
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Results for artifacts and evoked atoms - samples
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Results for artifacts and evoked atoms - somato
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Results for artifacts and evoked atoms - somato
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Conclusion

▶ CDL can learn recurring patterns in multivariate signals.

▶ Converts the signal into a stream of events.

▶ PP framework can model the activation distribution.

Limitations and on-going work:

▶ Not easy to apply to population level.

▶ DriPP does not model inhibition.

▶ CDL and PP are separated.
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Thanks for your attention!

Code available online:

alphacsc : alphacsc.github.io

DriPP : github.com/CedricAllain/dripp

Slides are on my web page:

tommoral.github.io @tomamoral
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Fast optimization

Comparison of the coordinate selection strategy for CD on simulated
signals
We set K = 10, L = 150, λ = 0.1λmax
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Fast optimization

Comparison with univariate methods on somato dataset with
T = 134, 700, K = 8 and L = 128

λ= 0.3 λ= 1.0 λ= 3.0 λ= 10.0

101

102

103

Ti
m

e 
(s

)

Garcia-Cardona et al (2017)
Jas et al (2017) FISTA

Jas et al (2017) LBFGS
Proposed (univariate)
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Fast optimization

Comparison with multivariate methods on somato dataset with
T = 134, 700, K = 8, P = 5 and L = 128

λ= 0.3 λ= 1.0 λ= 3.0 λ= 10.0
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Wohlberg (2016) Proposed (multivariate) Proposed (rank-1)
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Good scaling in the number of channels P

Scaling relative to P on somato dataset with T = 134, 700, K = 2, and
L = 128
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