
SHINE: Sharing the Inverse Estimate
for bi-level optimization.

Thomas Moreau INRIA Saclay

Joint work with Z. Ramzi, S. Bai, F. Mannel, J.-L. Starck & P. Ciuciu

1/24

Learning a linear ML model

Setup:

▶ Binary classification task (Xi , yi)
N
i=1 ∈ Rp × {−1, 1}

▶ Linear model: predict y from X with sign(⟨θ,X ⟩).

−4 −3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

2/24

ℓ2-regularized logistic regression

Regularized Logistic loss:

G (λ, θ) =
1
N

N∑
i=1

log(1 + e−yi ⟨θ,Xi ⟩) + λ∥θ∥2
2

Training the model:

θ∗(λ) = argmin
θ

G (λ, θ)

⇒ Choose λ using validation data.

3/24

ℓ2-regularized logistic regression

Regularized Logistic loss:

G (λ, θ) =
1
N

N∑
i=1

log(1 + e−yi ⟨θ,Xi ⟩) + λ∥θ∥2
2

Training the model:

θ∗(λ) = argmin
θ

G (λ, θ)

⇒ Choose λ using validation data.

3/24

Evaluating the generalization

We want to find λ that ensure the best generalization of θ∗(λ).

Validation loss: use held out data (X val
i , y val

i)Mi=1

F (θ) =
1
M

M∑
i=1

log(1 + e−yval
i ⟨θ,X val

i ⟩)

Independent estimate of the risk of the model.

⇒ Find λ that gives a model θ∗(λ) with a good validation loss.

Mathematical rewritting:

{
minλ F (θ∗(λ))

s.t. θ∗(λ) = argminθ G (λ, θ)

4/24

Evaluating the generalization

We want to find λ that ensure the best generalization of θ∗(λ).

Validation loss: use held out data (X val
i , y val

i)Mi=1

F (θ) =
1
M

M∑
i=1

log(1 + e−yval
i ⟨θ,X val

i ⟩)

Independent estimate of the risk of the model.

⇒ Find λ that gives a model θ∗(λ) with a good validation loss.

Mathematical rewritting:

{
minλ F (θ∗(λ))

s.t. θ∗(λ) = argminθ G (λ, θ)

4/24

Bi-level optimization

Bi-level problem: Optimization problem with two levels

min
λ

h(λ) = F (λ, θ∗(λ))

s.t. θ∗(λ) = argmin
θ

G (λ, θ)

Value function

Outer function

Inner function/Problem

Goal: Optimize the value function h whose value depends on the result of
another optimization problem.

5/24

Bi-level optimization problems: Model selection

Selecting the best model:

▶ G is the training loss and θ are the parameters of the model.

▶ Select the hyper-parameter λ to get the best validation loss F .

Hyperparameter optimization: λ is a regularization parameter:

−4 −3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

6/24

Bi-level optimization problems: Model selection

Selecting the best model:

▶ G is the training loss and θ are the parameters of the model.

▶ Select the hyper-parameter λ to get the best validation loss F .

Data augmentation: λ parametrizes the transformations distribution.

6/24

Bi-level optimization problems: Model selection

Selecting the best model:

▶ G is the training loss and θ are the parameters of the model.

▶ Select the hyper-parameter λ to get the best validation loss F .

Neural Architecture Search: λ parametrizes the architecture.

6/24

Solving bi-level optimization

Black box methods: Take {λk}k and compute mink h(λk)

▶ Grid-Search ▶ Random-Search ▶ Bayesian-Optimization

⇒ Do not scale well with the dimension

7/24

Solving bi-level optimization

First order methods: Gradient descent on h

Iterate in the steepest direction:

λt+1 = λt − ρt∇h(λ)

▶ Gradient ∇h(λ) = d F (λ,θ∗(λ))
d λ

▶ Step size ρt .

7/24

Computing the gradient of h

Value function definition:

h(λ) = F (λ, θ∗(λ))

Chain rule:

∇λh(λ) = ∇1F (λ, θ∗(λ)) + (dθ∗(λ))T∇2F (λ, θ∗(λ))

8/24

Jacobian of θ∗ - implicit differentiation

Optimality condition for θ∗

∇2G (λ, θ∗(λ)) = 0

Derivating this equation relative to λ gives:

∇2
22G (λ, θ∗(λ))dθ∗(λ) +∇2

21G (λ, θ∗(λ)) = 0,

Implicit function theorem

dθ∗(λ) = −
[
∇2

22G (λ, θ∗(λ))
]−1∇2

21G (λ, θ∗(λ)),

9/24

Jacobian of θ∗ - implicit differentiation

Optimality condition for θ∗

∇2G (λ, θ∗(λ)) = 0

Derivating this equation relative to λ gives:

∇2
22G (λ, θ∗(λ))dθ∗(λ) +∇2

21G (λ, θ∗(λ)) = 0,

Implicit function theorem

dθ∗(λ) = −
[
∇2

22G (λ, θ∗(λ))
]−1∇2

21G (λ, θ∗(λ)),

9/24

Jacobian of θ∗ - implicit differentiation

Optimality condition for θ∗

∇2G (λ, θ∗(λ)) = 0

Derivating this equation relative to λ gives:

∇2
22G (λ, θ∗(λ))dθ∗(λ) +∇2

21G (λ, θ∗(λ)) = 0,

Implicit function theorem

dθ∗(λ) = −
[
∇2

22G (λ, θ∗(λ))
]−1∇2

21G (λ, θ∗(λ)),

9/24

Computing the gradient of h

Value function gradient:

∇h(λ) = ∇1F (λ, θ∗)−∇2
21G (λ, θ∗)

[
∇2

22G (λ, θ∗)
]−1∇2F (λ, θ∗)

▶ Need to compute the solution of the inner

▶ Need to solve a p × p linear system

v∗(λ) =
[
∇2

22G (λ, θ∗)
]−1∇2F (λ, θ∗)

10/24

Computing the gradient of h

Value function gradient:

∇h(λ) = ∇1F (λ, θ∗)−∇2
21G (λ, θ∗)

[
∇2

22G (λ, θ∗)
]−1∇2F (λ, θ∗)

▶ Need to compute the solution of the inner

▶ Need to solve a p × p linear system

v∗(λ) =
[
∇2

22G (λ, θ∗)
]−1∇2F (λ, θ∗)

10/24

Computing the gradient of h

Value function gradient:

∇h(λ) = ∇1F (λ, θ∗)−∇2
21G (λ, θ∗)

[
∇2

22G (λ, θ∗)
]−1∇2F (λ, θ∗)

▶ Need to compute the solution of the inner

▶ Need to solve a p × p linear system

v∗(λ) =
[
∇2

22G (λ, θ∗)
]−1∇2F (λ, θ∗)

10/24

Approximate bi-level optimization

References

▶ Pedregosa, F. (2016). Hyperparameter optimization with approximate
gradient. In International Conference on Machine Learning (ICML), pages
737–746, New-York, NY, USA

10/24

Hyperparameter optimization with Approximate Gradient HOAG
[Pedregosa 2016]

Do we need to compute θ∗ and v∗ precisely?

Idea: Approximate θ∗(λt) and v∗(λt) =
[
∇2

22G (λt , θ∗)
]−1∇2F (λt , θ∗)

▶ Compute θt such that ∥θt − θ∗(λt)∥2 ≤ ϵt ,
iterative solver e.g. L-BFGS

▶ Compute v t such that ∥∂2G
∂θ2 (λ

t , θt)v t + ∂F
∂θ (λ

t , θt)∥2 ≤ ϵt ,
L-BFGS or CG

▶ Compute the approximate gradient gt =
∂F
∂λ (λ

t , θt) + ∂2G
∂θ∂λ(λ

t , θt)v t

▶ Update the outer variable λt+1 = λt − ρtg t

11/24

Hyperparameter optimization with Approximate Gradient HOAG
[Pedregosa 2016]

Do we need to compute θ∗ and v∗ precisely?

Idea: Approximate θ∗(λt) and v∗(λt) =
[
∇2

22G (λt , θ∗)
]−1∇2F (λt , θ∗)

▶ Compute θt such that ∥θt − θ∗(λt)∥2 ≤ ϵt ,
iterative solver e.g. L-BFGS

▶ Compute v t such that ∥∂2G
∂θ2 (λ

t , θt)v t + ∂F
∂θ (λ

t , θt)∥2 ≤ ϵt ,
L-BFGS or CG

▶ Compute the approximate gradient gt =
∂F
∂λ (λ

t , θt) + ∂2G
∂θ∂λ(λ

t , θt)v t

▶ Update the outer variable λt+1 = λt − ρtg t

11/24

HOAG [Pedregosa 2016]

Theorem: If
∑

t ϵt < ∞ and the step-sizes are chosen appropriatly, then
the algorithm converges to a stationary point i.e.

∥∇h(λt)∥2 → 0 .

12/24

Further linear system approximation v ∗

Linear system solution v∗(λt) is a by product.

⇒ Avoid computing it as much as possible.

Proposed Methods:

▶ L-BFGS

▶ Jacobian-Free method

∇2
22G (λt , θt) ≈ Id

▶ Algorithm unrolling

▶ Conjugate Gradient

▶ Neumann iterations

∇2
22G (λt , θt)−1 ≈

∑
k

(Id −∇2
22G (λt , θt))k

▶ Use Quasi-newton hessian approximation

[Pedregosa 2016, Lorraine et al. 2020, Luketina et al. 2016, Ramzi et al. 2022]

13/24

SHINE - Sharing the INverse Estimate

References

▶ Ramzi, Z., Mannel, F., Bai, S., Starck, J.-L., Ciuciu, P., and Moreau, T.
(2022). SHINE: SHaring the INverse Estimate from the forward pass for
bi-level optimization and implicit models. In International Conference on
Learning Representations (ICLR), online

13/24

SHINE: SHaring the INverse Estimate [Ramzi et al. 2022]

Quasi Newton 101:

Solving θ∗ = argminθ G (θ)

Newton Method

θt+1 = θt −
[
∇2G (θt)

]−1∇G (θt)

Quasi-Newton Method

θt+1 = θt − B−1
t ∇G (θt)

Bt : low-rank approx. of ∇2G (θt).
Inverse with Sherman-Morrison

⇒ The Hessian for v ∗ is the same as the one from the inner problem.

14/24

SHINE: SHaring the INverse Estimate [Ramzi et al. 2022]

Quasi Newton 101:

Solving θ∗ = argminθ G (θ)

Newton Method

θt+1 = θt −
[
∇2G (θt)

]−1∇G (θt)

Quasi-Newton Method

θt+1 = θt − B−1
t ∇G (θt)

Bt : low-rank approx. of ∇2G (θt).
Inverse with Sherman-Morrison

⇒ The Hessian for v ∗ is the same as the one from the inner problem.

14/24

SHINE - Hyper-parameter optimization [Ramzi et al. 2022]

Idea: reuse the approximation of the Hessian Bt computed
by L-BFGS for the inner problem.{

ṽt = B−1
t ∇2F (λ, θt)

∇̃h(λ) = ∇1F (λ, θt) +∇2
12G (λ, θt)ṽt

Properties of B:

▶ It is computed when solving θ∗ = argminθ G (θ) using a quasi-Newton
method.

▶ It is easily invertible using the Sherman-Morrison formula, because
low-rank.

15/24

SHINE - Hyper-parameter optimization [Ramzi et al. 2022]

Idea: reuse the approximation of the Hessian Bt computed
by L-BFGS for the inner problem.{

ṽt = B−1
t ∇2F (λ, θt)

∇̃h(λ) = ∇1F (λ, θt) +∇2
12G (λ, θt)ṽt

Properties of B:

▶ It is computed when solving θ∗ = argminθ G (θ) using a quasi-Newton
method.

▶ It is easily invertible using the Sherman-Morrison formula, because
low-rank.

15/24

SHINE - Hyper-parameter optimization [Ramzi et al. 2022]

Idea: reuse the approximation of the Hessian Bt computed
by L-BFGS for the inner problem.{

ṽt = B−1
t ∇2F (λ, θt)

∇̃h(λ) = ∇1F (λ, θt) +∇2
12G (λ, θt)ṽt

Properties of B:

▶ It is computed when solving θ∗ = argminθ G (θ) using a quasi-Newton
method.

▶ It is easily invertible using the Sherman-Morrison formula, because
low-rank.

15/24

SHINE direction convergence

Theorem (Convergence of SHINE to the Hypergradient using ULI)
Under the Uniform Linear Independence (ULI) assumption and some
additional smoothness and convexity assumptions, for a given parameter λ,
(θt) converges q-superlinearly to θ⋆ and

lim
t→∞

∇1F (λ, θt) +∇2
12G (λ, θt)ṽt = ∇h(λ).

16/24

SHINE - Hyper-parameter optimization [Ramzi et al. 2022]

Logistic Regression with ℓ2-regularisation on 2 datasets:

0 10 20 30 40 50 60

Time (s)

10−1

100

101

102

103

T
es

t
L

os
s

S
u

b
op

ti
m

al
it

y

20news

0 5 10 15 20 25 30

Time (s)

10−1

100

101

102

103

real-sim

SHINE (ours)

HOAG

SHINE refine (ours)

Jacobian-Free Grid search

17/24

Application to Deep Equilibrium Networks (DEQs)

17/24

Infinite depth neural networks

A recurrent expression of classical, explicit networks:

θn = fλn(θn−1), ∀n < N

What if N → ∞?
If we suppose λn = λ,∀n:

θ⋆ = fλ(θ⋆)

18/24

Infinite depth neural networks

A recurrent expression of classical, explicit networks:

θn = fλn(θn−1), ∀n < N

What if N → ∞?
If we suppose λn = λ,∀n:

θ⋆ = fλ(θ⋆)

18/24

Deep Equilibrium networks

Deep Equilibrium networks (DEQs) [Bai et al., 2019] are a type of
implicit model. The output is the solution to a fixed-point equation.

hλ(x) = θ⋆, where θ⋆ = fλ(θ⋆, x)

This approximates an infinite depth network:

θn = fλ(θn−1), ∀n → ∞

In practice, we work with root finding algorithms using gλ = id − fλ.

19/24

Deep Equilibrium networks

Deep Equilibrium networks (DEQs) [Bai et al., 2019] are a type of
implicit model. The output is the solution to a fixed-point equation.

hλ(x) = θ⋆, where θ⋆ = fλ(θ⋆, x)

This approximates an infinite depth network:

θn = fλ(θn−1), ∀n → ∞

In practice, we work with root finding algorithms using gλ = id − fλ.

19/24

Bi-level optimization problems: Implicit Deep Learning

Deep Equilibrium Network:{
minλ h(λ) = 1

N
∑N

i=1 L(yi , θ
∗(Xi , λ))

s.t. θ∗(Xi , λ) = gλ(θ∗(Xi , λ))

Output of the network is the root of G (θ, λ) = θ − gλ(θ) = 0.

In pratice, use quasi-Newton algorithm such as the Broyden method for both
finding θ∗ and its derivative v∗.

20/24

Deep Equilibrium Network

▶ Efficient memory ▶ Slow runtime

21/24

SHINE - DEQ [Ramzi et al. 2022]

Multiscale DEQ on CIFAR10:

25 50 75 100 125 150 175 200
92.5

93.0

93.5

Vanilla Refined

CIFAR10

0 100 200 300 400 500 600 700 800

Backward pass wall-clock time [ms]

72

74

Vanilla Refined

ImageNet

Methods

Original Method

Jacobian-Free

SHINE (ours)

Backward iter.

0 - Vanilla

1

5

Full backward

2

10

T
o
p
-1

a
cc

u
ra

cy
(%

)

22/24

OPA - Outer Problem Awarness

B−1 is not a uniformly good approximation.

OPA: add additional secant conditions for B update.

⇒ Better gradient approximation (theoretical and empirical)

However, this does not improve results for test error.

23/24

Conclusion

▶ Bi-level optimization is intrinsic in many ML problems.

▶ We propose to re-use by-product from θ∗ computation to make it easy
to get v∗.

▶ Good results for HO but still open questions for DEQs.

Z. Ramzi S. Bai F. Mannel J.L. Starck P. Ciuciu

Slides will be on my web page:

tommoral.github.io @tomamoral

24/24

tommoral.github.io
https://twitter.com/tomamoral

	Approximate bi-level optimization
	SHINE - Sharing the INverse Estimate
	Application to Deep Equilibrium Networks (DEQs)

