SHINE: Sharing the Inverse Estimate
for bi-level optimization.

Thomas Moreau INRIA Saclay

Joint work with Z. Ramazi, S. Bai, F. Mannel, J.-L. Starck & P. Ciuciu

@» MIND &’1/,

1/24

Learning a linear ML model

Setup:

> Binary classification task (X, y)M, € RP x {-1,1}
» Linear model: predict y from X with sign((6, X)).

2

/>-regularized logistic regression

Regularized Logistic loss:

N
1
G(A,0) = 5 > _log(1+ e X)) + A[10]13
=1

Training the model:

0*(\) = argmin G(\, 0)
0

3/24

/>-regularized logistic regression

Regularized Logistic loss:

N
1
G(A,0) = 5 > _log(1+ e X)) + A[10]13
=1

Training the model:
0*(\) = argmin G(\, 0)
0

= Choose)\ using validation data.

3/24

Evaluating the generalization

We want to find A that ensure the best generalization of 6*(\).

Validation loss: use held out data (X2, y»?)M

F(0) = ng 1+ %0y

Independent estimate of the risk of the model.

4/24

Evaluating the generalization

We want to find A that ensure the best generalization of 0*(\).

Validation loss: use held out data (X2, y»?)M

I 1=

M
1 va va
F(0) = i E log(1 4 e™i 8., I>)
i=1

Independent estimate of the risk of the model.

= Find \ that gives a model 6*(\) with a good validation loss.

miny F(6*()\))

Mathematical rewritting: _
s.t. 0*(\) = argming G(A,0)

4/24

Bi-level optimization

Bi-level problem: Optimization problem with two levels

min h(A) = F(A, 07(N)) T T = O e

s.t. 6%(\) =argmin G(\.0)
Value function ’

Inner function/Problem

Goal: Optimize the value function h whose value depends on the result of
another optimization problem.

5/24

Bi-level optimization problems: Model selection

Selecting the best model:

» G is the training loss and 6 are the parameters of the model.

» Select the hyper-parameter A to get the best validation loss F.

Hyperparameter optimization: \ is a regularization parameter:

2

1

' . ﬁ,’if!’.v:'- ¥ o

o e % Voo % S0°
‘.;:.\%0. ° o... c U

. . 'l? G

Bi-level optimization problems: Model selection

Selecting the best model:

» G is the training loss and 6 are the parameters of the model.

» Select the hyper-parameter A to get the best validation loss F.

Data augmentation:)\ parametrizes the transformations distribution.

—_ Randqm
operation —l
o il B

Trzlentlng Batch of inputs Augmented batch Classifier

“Lion” > “Lion”

6/24

Bi-level optimization problems: Model selection

Selecting the best model:

» G is the training loss and 6 are the parameters of the model.

» Select the hyper-parameter A to get the best validation loss F.

Neural Architecture Search:)\ parametrizes the architecture.

(a) (b)

6/24

Solving bi-level optimization

Black box methods: Take {\;}x and compute minj h(\x)

» Grid-Search » Random-Search » Bayesian-Optimization

= Do not scale well with the dimension

7/24

Solving bi-level optimization

First order methods: Gradient descent on h

Iterate in the steepest direction:

)\t-i-]. —)\t o pch()\) -

: d F(L0* () -5

» Gradient Vh(\) = %)
» Step size pt. B

—— lterates of GD

7/24

Computing the gradient of h

Value function definition:

h(X) = F(\, 6%(N))
Chain rule:

Vah(A) = ViF(\, 0% (\)) + (d6° () TV2F (A, 0%(\))

8/24

Jacobian of 0* - implicit differentiation

Optimality condition for 6*

VaG(A, 0%(N) =0

9/24

Jacobian of 0* - implicit differentiation

Optimality condition for 6*

VaG(M\ 0% (A) =0
Derivating this equation relative to A gives:

V3G (A, 0%(V)d8*(A) + V3, 6(A, 0°(A)) = 0,

9/24

Jacobian of 0* - implicit differentiation

Optimality condition for 6*

VaG(M\ 0% (A) =0
Derivating this equation relative to A gives:

V3,G(\, 6%(\)do*(\) + V3,G(\, 0%(\)) =0,

Implicit function theorem

do*(N) = —[V3G(\, 05 (V)] 'V3,G(X, 0%(V)),

9/24

Computing the gradient of h

Value function gradient:

Vh(A) = V1F (A, 0%) — V3, G(X, 09)[V3,G (A, 0%)] " VaF (X, 6%)

10/24

Computing the gradient of h

Value function gradient:

Vh(A) = V1F(A,0°) = V3, G(X, 09)[V3G (A, 09)] ' VaF (X, 6%)

» Need to compute the solution of the inner

10/24

Computing the gradient of h

Value function gradient:

Vh(A) = V1F(A,0%) — V3, G(X, 0%)[V3.G (N, 0%)] ' VaF (), 6%)

» Need to compute the solution of the inner
» Need to solve a p x p linear system

vi(A) = [V5G6(N,6%)] 'V2F (), 6%)

10/24

Approximate bi-level optimization

References

» Pedregosa, F. (2016). Hyperparameter optimization with approximate
gradient. In International Conference on Machine Learning (ICML), pages
737-746, New-York, NY, USA

10/24

Hyperparameter optimization with Approximate Gradient HOAG
[Pedregosa 2016]

Do we need to compute 0* and v* precisely?

Idea: Approximate 6*(*) and v*(\!) = [V%zG()\t,G*)]_1V2F()\t,9*)

11/24

Hyperparameter optimization with Approximate Gradient HOAG
[Pedregosa 2016]

Do we need to compute 0* and v* precisely?
Idea: Approximate §*(Af) and v*(A") = [V3,G(\, 9*)]_1V2F()\t,9*)

» Compute 6' such that ||#* — 6*(\')]2 < e,
iterative solver e.g. L-BFGS

» Compute v such that |2 892 TN + GE(XL, 09|12 < e,
L-BFGS or CG

» Compute the approximate gradient g; = 95 (\f, 0%) + g;g(x ot)vt

» Update the outer variable A\ft1 = \t — plgt

11/24

HOAG [Pedregosa 2016]

Theorem: If), €; < oo and the step-sizes are chosen appropriatly, then
the algorithm converges to a stationary point i.e.

IVA(A)]2 =0

12/24

Further linear system approximation v*

Linear system solution v*(\") is a by product.

= Avoid computing it as much as possible.

Proposed Methods:

» L-BFGS » Conjugate Gradient

» Jacobian-Free method » Neumann iterations
VRGN0 ~1d V5,G(\L07) T R Y (Id — V3,G(A,01))k
k

» Algorithm unrolling » Use Quasi-newton hessian approximation

[Pedregosa 2016, Lorraine et al. 2020, Luketina et al. 2016, Ramzi et al. 2022]

13/24

SHINE - Sharing the INverse Estimate

References

» Ramazi, Z., Mannel, F., Bai, S., Starck, J.-L., Ciuciu, P., and Moreau, T.
(2022). SHINE: SHaring the INverse Estimate from the forward pass for
bi-level optimization and implicit models. In International Conference on
Learning Representations (ICLR), online

13/24

SHINE: SHaring the INverse Estimate [Ramzi et al. 2022]

Quasi Newton 101:

Solving 6* = argming G(6)
Newton Method Quasi-Newton Method

0t+1 — 9t — [sz((gt)] —1vG(0t) pttl — gt _ Bt—lvG(et)
B;: low-rank approx. of V2G(6?).
Inverse with Sherman-Morrison

14/24

SHINE: SHaring the INverse Estimate [Ramzi et al. 2022]

Quasi Newton 101:

Solving 6* = argming G(6)
Newton Method Quasi-Newton Method

0t+1 — 9t — [V2G(9t):| _IVG(et) pttl — gt _ Bt—lvG(et)
B;: low-rank approx. of V2G(6?).
Inverse with Sherman-Morrison

= The Hessian for v* is the same as the one from the inner problem.

14/24

SHINE - Hyper-parameter optimization [Ramzi et al

. 2022]

Idea: reuse the approximation of the Hessian B; computed
by L-BFGS for the inner problem.

v = By 1VyF (), 0Y)
Vh()\) = V1iF(\, 6) + V3,G(\, 0%)7;

Properties of B:

15/24

SHINE - Hyper-parameter optimization [Ramzi et al. 2022]

Idea: reuse the approximation of the Hessian B; computed
by L-BFGS for the inner problem.

v = By 1VyF (), 0Y)
Vh()\) = V1iF(\, 6) + V3,G(\, 0%)7;

Properties of B:

» It is computed when solving 6* = argmin, G() using a quasi-Newton
method.

15/24

SHINE - Hyper-parameter optimization [Ramzi et al. 2022]

Idea: reuse the approximation of the Hessian B; computed
by L-BFGS for the inner problem.

U = By 'VaF (), 6%)
Vh()\) = V1F(\, 0%) + V2,G()\, %),

Properties of B:

» It is computed when solving 6* = argmin, G() using a quasi-Newton
method.

» It is easily invertible using the Sherman-Morrison formula, because
low-rank.

15/24

SHINE direction convergence

Theorem (Convergence of SHINE to the Hypergradient using ULI)
Under the Uniform Linear Independence (ULI) assumption and some
additional smoothness and convexity assumptions, for a given parameter \,
(0*) converges g-superlinearly to 6* and

lim ViF(),0%) 4+ V3,G(\, 050 = Vh(N).

t—o0

16/24

SHINE - Hyper-parameter optimization [Ramzi et al. 2022]

Logistic Regression with ¢>-regularisation on 2 datasets:

== SHINE (ours) == SHINE refine (ours)
=== HOAG _,. = = ===== Jacobian-Free = == Grid search
20news real-sim
103 T T T T T T T T T T
108 4
102
102 4

N -

10t

100

Test Loss Suboptimality

10~k ! ! ! ! ! 1071 ! ! 3

17/24

Application to Deep Equilibrium Networks (DEQs) J

17/24

Infinite depth neural networks

A recurrent expression of classical, explicit networks:

0, = fA"(G,,_l), Vn< N

18/24

Infinite depth neural networks

A recurrent expression of classical, explicit networks:

0, = f)\"(en_l), Vn< N

What if N — oo?
If we suppose A\, = A, Vn:
0 = £(0%)

18/24

Deep Equilibrium networks

Deep Equilibrium networks (DEQs) [Bai et al., 2019] are a type of
implicit model. The output is the solution to a fixed-point equation.

hx(x) = 6%, where 0* = £,(0*, x)

19/24

Deep Equilibrium networks

Deep Equilibrium networks (DEQs) [Bai et al., 2019] are a type of
implicit model. The output is the solution to a fixed-point equation.

hx(x) = 6%, where 6* = £,(0”, x)
This approximates an infinite depth network:

(9,-, = f,\(Hn_l), Vn — 0o

In practice, we work with root finding algorithms using g\ = id — f,.

19/24

Bi-level optimization problems: Implicit Deep Learning

Deep Equilibrium Network:

{mm h(N) = & SN Ly, 0°(Xi, M)
st 0%(Xi, A) = g (0%(Xi, \))

Output of the network is the root of G(0,\) =60 — g\(0) = 0.

In pratice, use quasi-Newton algorithm such as the Broyden method for both
finding 6* and its derivative v*.

20/24

Deep Equilibrium Network

CIFAR-10
40 6 g
35 €
5@
30 g
— 45
2 2 Z
~ Q
o)
e 20 ”3 25 2.7 3 E
= .
w15 2 =
10 1.4 @]
1.0 =
6.3 50 6.2 07 1 >
5 [e]
158 mff B :
0 0
=

ResNet-101 DenseNet-121 MDEQ
(Benchmarked on Input Batch Size 32)

M Error (%) = Memory (GB) Runtime

» Efficient memory » Slow runtime

21/24

SHINE - DEQ [Ramzi et al. 2022]

Multiscale DEQ on CIFAR10:

CIFAR10
T T T T T T T T
Vanilla : Refined|
93.5 F : — ———* e Methods
/:/% I Original Method
93.0 | + !] M Jacobian-Free
X ! SHINE (ours)
§ 92.5 |: 1 1 1 1 1 1 1
£ 25 50 75 100 125 150 175 200 # Backward iter.
g ImageNet @ 0 - Vanilla
T T T T T T T T *
iy Vanilla:Reﬁncd' Al NE2
|
& 7l i 1 @5 @10
: % Full backward
[}] *
72 F | b
|
|
|
L L1 Il Il Il Il 1 1 1
0 100 200 300 400 500 600 700 800

Backward pass wall-clock time [ms]

22/24

OPA - QOuter Problem Awarness

B~ is not a uniformly good approximation.

OPA: add additional secant conditions for B update.

T T T T T

09| w]

‘e WS

—~ 0.8 F - Method
':n » Jacobian-Free
Kl o7k SHINE w. Broyden
I SHINE w. Adj. Broyden
@ e « SHINE w. Adj. Broyden / OPA

0.6 e,]

e
s, .
0.5 & . . . L B i
1.2 1.4 1.6 1.8 2.0
llall/ ol

= Better gradient approximation (theoretical and empirical)

However, this does not improve results for test error.

23/24

Conclusion

» Bi-level optimization is intrinsic in many ML problems.

» We propose to re-use by-product from #* computation to make it easy
to get v*.

» Good results for HO but still open questions for DEQs.

k/ﬁ“

\%#\ EAN ﬁ‘/

Z. Ramzi S. Bai F. Mannel J.L. Starck P. Ciuciu

Slides will be on my web page:

€ tommoral.github.io O @tomamoral

24/24

tommoral.github.io
https://twitter.com/tomamoral

	Approximate bi-level optimization
	SHINE - Sharing the INverse Estimate
	Application to Deep Equilibrium Networks (DEQs)

