SHINE: Sharing the Inverse Estimate for bi-level optimization.

Thomas Moreau INRIA Saclay

Joint work with Z. Ramzi, S. Bai, F. Mannel, J.-L. Starck \& P. Ciuciu

Learning a linear ML model

Setup:

- Binary classification task $\left(X_{i}, y_{i}\right)_{i=1}^{N} \in \mathbb{R}^{p} \times\{-1,1\}$
- Linear model: predict y from X with $\operatorname{sign}(\langle\theta, X\rangle)$.

ℓ_{2}-regularized logistic regression

Regularized Logistic loss:

$$
G(\lambda, \theta)=\frac{1}{N} \sum_{i=1}^{N} \log \left(1+e^{-y_{i}\left\langle\theta, x_{i}\right\rangle}\right)+\lambda\|\theta\|_{2}^{2}
$$

Training the model:

$$
\theta^{*}(\lambda)=\underset{\theta}{\operatorname{argmin}} G(\lambda, \theta)
$$

ℓ_{2}-regularized logistic regression

Regularized Logistic loss:

$$
G(\lambda, \theta)=\frac{1}{N} \sum_{i=1}^{N} \log \left(1+e^{-y_{i}\left\langle\theta, X_{i}\right\rangle}\right)+\lambda\|\theta\|_{2}^{2}
$$

Training the model:

$$
\theta^{*}(\lambda)=\underset{\theta}{\operatorname{argmin}} G(\lambda, \theta)
$$

\Rightarrow Choose λ using validation data.

Evaluating the generalization

We want to find λ that ensure the best generalization of $\theta^{*}(\lambda)$.

Validation loss: use held out data $\left(X_{i}^{\text {val }}, y_{i}^{\text {val }}\right)_{i=1}^{M}$

$$
F(\theta)=\frac{1}{M} \sum_{i=1}^{M} \log \left(1+e^{-y_{i}^{\text {val }}\left\langle\theta, X_{i}^{\text {val }}\right\rangle}\right)
$$

Independent estimate of the risk of the model.

Evaluating the generalization

We want to find λ that ensure the best generalization of $\theta^{*}(\lambda)$.

Validation loss: use held out data $\left(X_{i}^{\text {val }}, y_{i}^{\text {val }}\right)_{i=1}^{M}$

$$
F(\theta)=\frac{1}{M} \sum_{i=1}^{M} \log \left(1+e^{-y_{i}^{\text {val }}\left\langle\theta, X_{i}^{\text {val }}\right\rangle}\right)
$$

Independent estimate of the risk of the model.
\Rightarrow Find λ that gives a model $\theta^{*}(\lambda)$ with a good validation loss.

Mathematical rewritting: $\left\{\begin{array}{c}\min _{\lambda} F\left(\theta^{*}(\lambda)\right) \\ \text { s.t. } \quad \theta^{*}(\lambda)=\operatorname{argmin}_{\theta} G(\lambda, \theta)\end{array}\right.$

Bi-level optimization

Bi-level problem: Optimization problem with two levels

Goal: Optimize the value function h whose value depends on the result of another optimization problem.

Bi-level optimization problems: Model selection

Selecting the best model:

- G is the training loss and θ are the parameters of the model.
- Select the hyper-parameter λ to get the best validation loss F.

Hyperparameter optimization: λ is a regularization parameter:

Bi-level optimization problems: Model selection

Selecting the best model:

- G is the training loss and θ are the parameters of the model.
- Select the hyper-parameter λ to get the best validation loss F.

Data augmentation: λ parametrizes the transformations distribution.

Bi-level optimization problems: Model selection

Selecting the best model:

- G is the training loss and θ are the parameters of the model.
- Select the hyper-parameter λ to get the best validation loss F.

Neural Architecture Search: λ parametrizes the architecture.

(a)

(b)

(c)

(d)

Solving bi-level optimization

Black box methods: Take $\left\{\lambda_{k}\right\}_{k}$ and compute $\min _{k} h\left(\lambda_{k}\right)$

- Grid-Search \downarrow Random-Search Bayesian-Optimization
\Rightarrow Do not scale well with the dimension

Solving bi-level optimization

First order methods: Gradient descent on h

Iterate in the steepest direction:

$$
\lambda^{t+1}=\lambda^{t}-\rho^{t} \nabla h(\lambda)
$$

- Gradient $\nabla h(\lambda)=\frac{d F\left(\lambda, \theta^{*}(\lambda)\right)}{d \lambda}$
- Step size ρ^{t}.

Computing the gradient of h

Value function definition:

$$
h(\lambda)=F\left(\lambda, \theta^{*}(\lambda)\right)
$$

Chain rule:

$$
\nabla_{\lambda} h(\lambda)=\nabla_{1} F\left(\lambda, \theta^{*}(\lambda)\right)+\left(d \theta^{*}(\lambda)\right)^{T} \nabla_{2} F\left(\lambda, \theta^{*}(\lambda)\right)
$$

Jacobian of θ^{*} - implicit differentiation

$\underline{\text { Optimality condition for } \theta^{*}}$

$$
\nabla_{2} G\left(\lambda, \theta^{*}(\lambda)\right)=0
$$

Jacobian of θ^{*} - implicit differentiation

$\underline{\text { Optimality condition for } \theta^{*}}$

$$
\nabla_{2} G\left(\lambda, \theta^{*}(\lambda)\right)=0
$$

Derivating this equation relative to λ gives:

$$
\nabla_{22}^{2} G\left(\lambda, \theta^{*}(\lambda)\right) d \theta^{*}(\lambda)+\nabla_{21}^{2} G\left(\lambda, \theta^{*}(\lambda)\right)=0
$$

Jacobian of θ^{*} - implicit differentiation

$\underline{\text { Optimality condition for } \theta^{*}}$

$$
\nabla_{2} G\left(\lambda, \theta^{*}(\lambda)\right)=0
$$

Derivating this equation relative to λ gives:

$$
\nabla_{22}^{2} G\left(\lambda, \theta^{*}(\lambda)\right) d \theta^{*}(\lambda)+\nabla_{21}^{2} G\left(\lambda, \theta^{*}(\lambda)\right)=0
$$

Implicit function theorem

$$
d \theta^{*}(\lambda)=-\left[\nabla_{22}^{2} G\left(\lambda, \theta^{*}(\lambda)\right)\right]^{-1} \nabla_{21}^{2} G\left(\lambda, \theta^{*}(\lambda)\right)
$$

Computing the gradient of h

Value function gradient:

$$
\nabla h(\lambda)=\nabla_{1} F\left(\lambda, \theta^{*}\right)-\nabla_{21}^{2} G\left(\lambda, \theta^{*}\right)\left[\nabla_{22}^{2} G\left(\lambda, \theta^{*}\right)\right]^{-1} \nabla_{2} F\left(\lambda, \theta^{*}\right)
$$

Computing the gradient of h

Value function gradient:

$$
\nabla h(\lambda)=\nabla_{1} F\left(\lambda, \theta^{*}\right)-\nabla_{21}^{2} G\left(\lambda, \theta^{*}\right)\left[\nabla_{22}^{2} G\left(\lambda, \theta^{*}\right)\right]^{-1} \nabla_{2} F\left(\lambda, \theta^{*}\right)
$$

- Need to compute the solution of the inner

Computing the gradient of h

Value function gradient:

$$
\nabla h(\lambda)=\nabla_{1} F\left(\lambda, \theta^{*}\right)-\nabla_{21}^{2} G\left(\lambda, \theta^{*}\right)\left[\nabla_{22}^{2} G\left(\lambda, \theta^{*}\right)\right]^{-1} \nabla_{2} F\left(\lambda, \theta^{*}\right)
$$

- Need to compute the solution of the inner
- Need to solve a $p \times p$ linear system

$$
v^{*}(\lambda)=\left[\nabla_{22}^{2} G\left(\lambda, \theta^{*}\right)\right]^{-1} \nabla_{2} F\left(\lambda, \theta^{*}\right)
$$

Approximate bi-level optimization

References

- Pedregosa, F. (2016). Hyperparameter optimization with approximate gradient. In International Conference on Machine Learning (ICML), pages 737-746, New-York, NY, USA

Hyperparameter optimization with Approximate Gradient HOAG
[Pedregosa 2016]

$$
\text { Do we need to compute } \theta^{*} \text { and } v^{*} \text { precisely? }
$$

Idea: Approximate $\theta^{*}\left(\lambda^{t}\right)$ and $v^{*}\left(\lambda^{t}\right)=\left[\nabla_{22}^{2} G\left(\lambda^{t}, \theta^{*}\right)\right]^{-1} \nabla_{2} F\left(\lambda^{t}, \theta^{*}\right)$

Hyperparameter optimization with Approximate Gradient HOAG [Pedregosa 2016]

$$
\text { Do we need to compute } \theta^{*} \text { and } v^{*} \text { precisely? }
$$

Idea: Approximate $\theta^{*}\left(\lambda^{t}\right)$ and $v^{*}\left(\lambda^{t}\right)=\left[\nabla_{22}^{2} G\left(\lambda^{t}, \theta^{*}\right)\right]^{-1} \nabla_{2} F\left(\lambda^{t}, \theta^{*}\right)$

- Compute θ^{t} such that $\left\|\theta^{t}-\theta^{*}\left(\lambda^{t}\right)\right\|_{2} \leq \epsilon_{t}$,
iterative solver e.g. L-BFGS
- Compute v^{t} such that $\left\|\frac{\partial^{2} G}{\partial \theta^{2}}\left(\lambda^{t}, \theta^{t}\right) v^{t}+\frac{\partial F}{\partial \theta}\left(\lambda^{t}, \theta^{t}\right)\right\|_{2} \leq \epsilon_{t}$,
- Compute the approximate gradient $g_{t}=\frac{\partial F}{\partial \lambda}\left(\lambda^{t}, \theta^{t}\right)+\frac{\partial^{2} G}{\partial \theta \partial \lambda}\left(\lambda^{t}, \theta^{t}\right) v^{t}$
- Update the outer variable $\lambda^{t+1}=\lambda^{t}-\rho^{t} g^{t}$

Theorem: If $\sum_{t} \epsilon_{t}<\infty$ and the step-sizes are chosen appropriatly, then the algorithm converges to a stationary point i.e.

$$
\left\|\nabla h\left(\lambda^{t}\right)\right\|_{2} \rightarrow 0
$$

Further linear system approximation v^{*}

Linear system solution $v^{*}\left(\lambda^{t}\right)$ is a by product.
\Rightarrow Avoid computing it as much as possible.

Proposed Methods:

- L-BFGS
- Jacobian-Free method

$$
\nabla_{22}^{2} G\left(\lambda^{t}, \theta^{t}\right) \approx I d
$$

- Algorithm unrolling
- Conjugate Gradient
- Neumann iterations

$$
\nabla_{22}^{2} G\left(\lambda^{t}, \theta^{t}\right)^{-1} \approx \sum_{k}\left(I d-\nabla_{22}^{2} G\left(\lambda^{t}, \theta^{t}\right)\right)^{k}
$$

- Use Quasi-newton hessian approximation
[Pedregosa 2016, Lorraine et al. 2020, Luketina et al. 2016, Ramzi et al. 2022]

SHINE - Sharing the INverse Estimate

References

- Ramzi, Z., Mannel, F., Bai, S., Starck, J.-L., Ciuciu, P., and Moreau, T. (2022). SHINE: SHaring the INverse Estimate from the forward pass for bi-level optimization and implicit models. In International Conference on Learning Representations (ICLR), online

SHINE: SHaring the INverse Estimate

Quasi Newton 101:

Solving $\theta^{*}=\operatorname{argmin}_{\theta} G(\theta)$

Newton Method

$$
\theta^{t+1}=\theta^{t}-\left[\nabla^{2} G\left(\theta^{t}\right)\right]^{-1} \nabla G\left(\theta^{t}\right)
$$

Quasi-Newton Method

$$
\theta^{t+1}=\theta^{t}-B_{t}^{-1} \nabla G\left(\theta^{t}\right)
$$

B_{t} : low-rank approx. of $\nabla^{2} G\left(\theta^{t}\right)$.
Inverse with Sherman-Morrison

SHINE: SHaring the INverse Estimate

Quasi Newton 101:

Solving $\theta^{*}=\operatorname{argmin}_{\theta} G(\theta)$

Newton Method
$\theta^{t+1}=\theta^{t}-\left[\nabla^{2} G\left(\theta^{t}\right)\right]^{-1} \nabla G\left(\theta^{t}\right)$

Quasi-Newton Method

$$
\theta^{t+1}=\theta^{t}-B_{t}^{-1} \nabla G\left(\theta^{t}\right)
$$

B_{t} : low-rank approx. of $\nabla^{2} G\left(\theta^{t}\right)$.
Inverse with Sherman-Morrison
\Rightarrow The Hessian for v^{*} is the same as the one from the inner problem.

SHINE - Hyper-parameter optimization

Idea: reuse the approximation of the Hessian B_{t} computed by L-BFGS for the inner problem.

$$
\left\{\begin{array}{l}
\tilde{v}_{t}=B_{t}^{-1} \nabla_{2} F\left(\lambda, \theta^{t}\right) \\
\tilde{\nabla} h(\lambda)=\nabla_{1} F\left(\lambda, \theta^{t}\right)+\nabla_{12}^{2} G\left(\lambda, \theta^{t}\right) \tilde{v}_{t}
\end{array}\right.
$$

Properties of $B:$

SHINE - Hyper-parameter optimization

Idea: reuse the approximation of the Hessian B_{t} computed by L-BFGS for the inner problem.

$$
\left\{\begin{array}{l}
\tilde{v}_{t}=B_{t}^{-1} \nabla_{2} F\left(\lambda, \theta^{t}\right) \\
\tilde{\nabla} h(\lambda)=\nabla_{1} F\left(\lambda, \theta^{t}\right)+\nabla_{12}^{2} G\left(\lambda, \theta^{t}\right) \tilde{v}_{t}
\end{array}\right.
$$

Properties of B :

- It is computed when solving $\theta^{*}=\operatorname{argmin}_{\theta} G(\theta)$ using a quasi-Newton method.

SHINE - Hyper-parameter optimization

Idea: reuse the approximation of the Hessian B_{t} computed by L-BFGS for the inner problem.

$$
\left\{\begin{array}{l}
\tilde{v}_{t}=B_{t}^{-1} \nabla_{2} F\left(\lambda, \theta^{t}\right) \\
\tilde{\nabla} h(\lambda)=\nabla_{1} F\left(\lambda, \theta^{t}\right)+\nabla_{12}^{2} G\left(\lambda, \theta^{t}\right) \tilde{v}_{t}
\end{array}\right.
$$

Properties of $B:$

- It is computed when solving $\theta^{*}=\operatorname{argmin}_{\theta} G(\theta)$ using a quasi-Newton method.
- It is easily invertible using the Sherman-Morrison formula, because low-rank.

SHINE direction convergence

Theorem (Convergence of SHINE to the Hypergradient using ULI)
Under the Uniform Linear Independence (ULI) assumption and some additional smoothness and convexity assumptions, for a given parameter λ, $\left(\theta^{t}\right)$ converges q-superlinearly to θ^{\star} and

$$
\lim _{t \rightarrow \infty} \nabla_{1} F\left(\lambda, \theta^{t}\right)+\nabla_{12}^{2} G\left(\lambda, \theta^{t}\right) \tilde{v}_{t}=\nabla h(\lambda) .
$$

SHINE - Hyper-parameter optimization

Logistic Regression with ℓ_{2}-regularisation on 2 datasets:

Application to Deep Equilibrium Networks (DEQs)

Infinite depth neural networks

A recurrent expression of classical, explicit networks:

$$
\theta_{n}=f_{\lambda_{n}}\left(\theta_{n-1}\right), \quad \forall n<N
$$

Infinite depth neural networks

A recurrent expression of classical, explicit networks:

$$
\theta_{n}=f_{\lambda_{n}}\left(\theta_{n-1}\right), \quad \forall n<N
$$

What if $N \rightarrow \infty$?
If we suppose $\lambda_{n}=\lambda, \forall n$:

$$
\theta^{\star}=f_{\lambda}\left(\theta^{\star}\right)
$$

Deep Equilibrium networks

Deep Equilibrium networks (DEQs) [Bai et al., 2019] are a type of implicit model. The output is the solution to a fixed-point equation.

$$
h_{\lambda}(x)=\theta^{\star}, \text { where } \theta^{\star}=f_{\lambda}\left(\theta^{\star}, x\right)
$$

Deep Equilibrium networks

Deep Equilibrium networks (DEQs) [Bai et al., 2019] are a type of implicit model. The output is the solution to a fixed-point equation.

$$
h_{\lambda}(x)=\theta^{\star}, \text { where } \theta^{\star}=f_{\lambda}\left(\theta^{\star}, x\right)
$$

This approximates an infinite depth network:

$$
\theta_{n}=f_{\lambda}\left(\theta_{n-1}\right), \quad \forall n \rightarrow \infty
$$

In practice, we work with root finding algorithms using $g_{\lambda}=i d-f_{\lambda}$.

Bi-level optimization problems: Implicit Deep Learning

Deep Equilibrium Network:

$$
\left\{\begin{array}{l}
\min _{\lambda} h(\lambda)=\frac{1}{N} \sum_{i=1}^{N} \mathcal{L}\left(y_{i}, \theta^{*}\left(X_{i}, \lambda\right)\right) \\
\text { s.t. } \quad \theta^{*}\left(X_{i}, \lambda\right)=g_{\lambda}\left(\theta^{*}\left(X_{i}, \lambda\right)\right)
\end{array}\right.
$$

Output of the network is the root of $G(\theta, \lambda)=\theta-g_{\lambda}(\theta)=0$.

In pratice, use quasi-Newton algorithm such as the Broyden method for both finding θ^{*} and its derivative v^{*}.

Deep Equilibrium Network

- Efficient memory

Slow runtime

SHINE - DEQ

Multiscale DEQ on CIFAR10:

OPA - Outer Problem Awarness

B^{-1} is not a uniformly good approximation.
OPA: add additional secant conditions for B update.

\Rightarrow Better gradient approximation (theoretical and empirical)
However, this does not improve results for test error.

Conclusion

- Bi-level optimization is intrinsic in many ML problems.
- We propose to re-use by-product from θ^{*} computation to make it easy to get v^{*}.
- Good results for HO but still open questions for DEQs.

Z. Ramzi

S. Bai

F. Mannel

J.L. Starck

P. Ciuciu

Slides will be on my web page:
會 tommoral.github.io O @tomamoral

