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Inverse Problem: Source Localization for M/EEG

Maxwell’s
Equations

xxx

Observed signal

zzz

Electrical activity

GGG

Inverse Problem

Forward model: xxx = GGGzzz + ε Inverse problem: zzz = f (xxx)

▶ Ill-posed problem: many solutions zzz such that GGGzzz = xxx

▶ Noisy problem: need to account for ε
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Inverse Problems

Neuroimaging – M/EEG

Maxwell’s
Equations

Inverse Problem

Astrophysics

Seismology – Prospection

Neuroimaging – MRI

Imaging

Super-Resolution, Inpainting,
Deblurring, ...

For many inverse problems, we don’t have
access to large training sets with pairs (xxx ,zzz).
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Inverse Problem Resolution

Regularized regression problem

f (xxx) = zzz∗(xxx) = argmin
zzz

1

2
∥xxx −GGGzzz∥22 +R(zzz)

where R encodes prior information to select a good/plausible solution.

Often solve this optimization problem many times for a given GGG ,

⇒ Can we learn to solve such problem with unrolling?

⇒ With convergence guarantees toward the original solution zzz∗(xxx)?

̸= setting than supervised learning: minΘ E(xxx ,zzz)
1
2∥zzz − ΦΘ(xxx)∥22
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Iterative Shrinkage-Thresholding Algorithm [Daubechies et al., 2004]

Proximal gradient descent algorithm with R(zzz) = λ∥zzz∥1,

z(t+1) = st

z(t) − α ∇fx(z
(t))︸ ︷︷ ︸

G⊤(Gz(t)−x)

, αλ


where α is a step size taken in [0, 2

∥G∥22
].

st is the soft-thresholding operator.

▶ Proximal operator for ℓ1-norm.

▶ Push for sparse vector.

−4 −2 0 2 4
−4

−2

0

2

4
st(¢; 1)
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Iterative Shrinkage-Thresholding Algorithm [Daubechies et al., 2004]

Proximal gradient descent algorithm with R(zzz) = λ∥zzz∥1,

z(t+1) = st
(
(Id − αG⊤G )z(t) + αG⊤x , αλ

)
where α is a step size taken in [0, 2

∥G∥22
].

Computational graph interpretation:

▶ Wz = Id − αG⊤G

▶ WX = αG⊤ ▶ β = αλ

WXx

Wzz(t) z(t+1)
st

β
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Learned ISTA [Gregor and Le Cun, 2010]

Unrolled ISTA:

x

WX

Wz

WX

st
β

Wz

WX

st
β

st
β

z(2)

Equivalent to ISTA with Wz = Id − αG⊤G , WX = αG⊤ and β = αλ.

3 iterations of ISTA ⇔ 3 layers in the neural network
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Learned ISTA [Gregor and Le Cun, 2010]

Learned ISTA:

x

W
(0)
X

W
(1)
z

W
(1)
X

st

β0 W
(2)
z

W
(2)
X

st

β1

st

β2 z(2)

Learn Θ = (W
(t)
X ,W

(t)
z , β(t))Tt=0 s.t.

Fx(ΦΘ(x)) ≤ Fx(ISTAT (x))

Goal:

⇒ Find the same solution as ISTA!

⇒ Faster?
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Learning to optimize with unrolled ISTA

References

▶ Moreau, T. and Bruna, J. (2017). Understanding Neural Sparse Coding
with Matrix Factorization.

In International Conference on Learning Representation (ICLR), Toulon,
France

▶ Ablin, P., Moreau, T., Massias, M., and Gramfort, A. (2019). Learning step
sizes for unfolded sparse coding.

In Advances in Neural Information Processing Systems (NeurIPS), pages
13100–13110, Vancouver, BC, Canada
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How fast can LISTA go? [Moreau and Bruna, 2017]

Results are based on a quasi-diagonalization G⊤G ≃ V⊤ΛV that does not
distort “too much” the ℓ1-norm.

▶ For a class of parameters, LISTA has the same cvg rate as ISTA.

▶ LISTA can benefit from improved constants.

▶ As the optimization approaches a solution, it is harder and harder to
get improved constants.

⇒ Shows that it is possible to improve the first iterations of the algorithm.

8/29



ISTA: Majoration-Minimization

Taylor expansion of fx in z(t)

Fx(z) = fx(z
(t)) +∇fx(z

(t))⊤(z − z(t)) +
1

2
∥G (z − z(t))∥22 + λ∥z∥1

≤ fx(z
(t)) +∇fx(z

(t))⊤(z − z(t)) +
L

2
∥z − z(t)∥22 + λ∥z∥1

⇒ Replace the Hessian G⊤G by an upper bound L Id.

Separable function that can be minimized in close form

argmin
z

L

2

∥∥∥∥∥z(t) − 1

L
∇fx(z

(t))− z

∥∥∥∥∥
2

2

+ λ∥z∥1 = proxλ
L

(
z(t) − 1

L
∇fx(z

(t))

)

= ST

(
z(t) − 1

L
∇fx(z

(t)),
λ

L

)

9/29



ISTA: Majoration-Minimization

Taylor expansion of fx in z(t)

Fx(z) = fx(z
(t)) +∇fx(z

(t))⊤(z − z(t)) +
1

2
∥G (z − z(t))∥22 + λ∥z∥1

≤ fx(z
(t)) +∇fx(z

(t))⊤(z − z(t)) +
L

2
∥z − z(t)∥22 + λ∥z∥1

⇒ Replace the Hessian G⊤G by an upper bound L Id.

By design,
F (z t+1) ≤ Qt(z t+1) ≤ Qt(z t+1) = F (z t)

and the algorithm converges.

The key is to find a majorant easy to minimize.
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ISTA: Majoration for the data-fit

▶ Level sets for z⊤G⊤Gz
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ISTA: Majoration for the data-fit

▶ Level sets for z⊤G⊤Gz ≤ L∥z∥2
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ISTA: Majoration for the data-fit

▶ Level sets for z⊤G⊤Gz ≤ z⊤V⊤ΛVz [Moreau and Bruna, 2017]
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What does LISTA learn? [Ablin et al., 2019]

Consider that the number of layers goes to +∞.

Theorem – Asymptotic convergence of the weights

Assume that the weights of the network converge to a limit:

W
(t)
z ,W

(t)
X , β(t) → W ∗

z ,W
∗
X , β

∗ as t → +∞

and that the output of the network converges to a solution of the
unsupervised problem.

Then
W ∗

z = Id − αD⊤D, W ∗
X = αD⊤, β∗ = αλ,

⇒ Correspond to ISTA with a learned step size α
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Numerical verification

1 10 20 30 40

Layers

0

5

10
‖α

(t
) W

(t
)
−
β

(t
) D
‖ F

LISTA

40-layers LISTA network trained on a 10× 20 problem with λ = 0.1
The weights W (t) align with D and α, β get coupled.
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Step LISTA [Ablin et al., 2019]

Inspired by this result: learn adapted step sizes for ISTA.

Restricted parametrization : Only learn a step-size α(t)

z(t+1) = ST
(
z(t) − α(t)D⊤(Dz(t) − x), λα(t)

)
Fewer parameters:

▶ Easier to learn ▶ Fewer degrees of freedom

⇒ Reduced performances?
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Performances

Simulated data: m = 256 and n = 64

Dk ∼ U(Sn−1) and x = x̃
∥D⊤x̃∥∞ with x̃i ∼ N (0, 1)

0 10 20 30

Number of Layers

10−2

10−1

100

F
x
−
F
∗ x

Simulated data λ = 0.1

0 10 20 30

Number of Layers

10−6

10−4

10−2

Simulated data λ = 0.8

ISTA LISTA SLISTA (proposed)
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Learning better step sizes

Linked to SLISTA when step sizes are in
[

1
LS
, 2
LS

[
when Supp(z(t)) = S

LS is the largest eigenvalue of G⊤G restricted on the support S

max
Supp(z)=S
∥z∥2≤1

zG⊤Gz

1 10 20

Layer

1/L

2/L

3/L

4/L

S
te

p

1/L

Learned steps 1/LS 2/LS
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Unrolling for learned optimization

No hope to learn an algorithm that converges
faster than ISTA uniformly.

▶ But one can learn parameters (step-size) of the algorithm that better
adapt to the input distribution.

[Ablin et al., 2019]

▶ Also possible to improve the first iterations of ISTA (improve
constants).

[Moreau and Bruna, 2017]

Also considered unrolled algorithms for TV in Cherkaoui, Sulam, M., NeurIPS 2020.
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A bilevel view on prior learning with unrolling

References

▶ Ablin, P., Peyré, G., and Moreau, T. (2020). Super-efficiency of automatic
differentiation for functions defined as a minimum.

In International Conference on Machine Learning (ICML), volume 119, pages
32–41, Vienna, Austria (online). PMLR

▶ Malézieux, B., Moreau, T., and Kowalski, M. (2022). Understanding
approximate and Unrolled Dictionary Learning for Pattern Recovery.

In International Conference on Learning Representations (ICLR), online
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Prior learning for inverse problem

Inverse Problem Prior: choosing R.

Typical prior: Signal z is sparse in a specific dictionary D.

Synthesis formulation:
u sparse to synthesize zzz = Du.

min
D,u

∥Dk∥2≤1

1

2
∥xxx −GGGDu∥2 + λ∥u∥1 .

Data driven dictionary: Learn D from the data xxx .
[Olshausen and Field, 1997]
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Unrolling for dictionary learning

Bi-level formulation:

min
∥Dk∥≤1

h(D) ≜ F (D, u∗(D)) s.t. u∗(D) = argmin
u

F (D, u) .

Optimization problem in D solved with projected gradient descent.

⇒ How to estimate the gradient g∗(D) = ∇h(D) efficiently?
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g∗(D) = ∇1F (D, u∗(D))

This is due to the fact that “ ∇2F (D, u∗(D)) = 0”.

Issue: computing u∗(D) is computationally expansive.
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Unrolling for dictionary learning

Unrolled formulation:

min
∥Dk∥≤1

hT (D) ≜ F (D, uT (D)) .

The gradient estimate becomes:

g2
T (D) = ∇1F (D, uT (D)) + J⊤T∇2F (D, uT (D))

Estimate the jacobian JT = ∂uT
∂D with back-propagation.

19/29



Unrolling for dictionary learning

Unrolled formulation:

min
∥Dk∥≤1

hT (D) ≜ F (D, uT (D)) .

The gradient estimate becomes:

g2
T (D) = ∇1F (D, uT (D)) + J⊤T∇2F (D, uT (D))

Estimate the jacobian JT = ∂uT
∂D with back-propagation.

Question: More efficient to use unrolling than classic AM?

▶ Work for smooth problems. [Ablin et al., ICML 2020]

▶ Improved performances for supervised learning. [Monga et al., 2021]

19/29



Gradient Estimation

Alternate Minimization

No Jacobian estimation

g1
T (D) = ∇1F (D, uT (D))

Unrolled ISTA

Account for Jacobian of uT

g2
T (D) =∇1F (D, uT (D))

+ J⊤T∇2F (D, uT (D))
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Gradient Estimation
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Account for Jacobian of uT
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Converges as fast as uT
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Gradient Estimation

Alternate Minimization

No Jacobian estimation

g1
T (D) = ∇1F (D, uT (D))

Unrolled ISTA

Account for Jacobian of uT

g2
T (D) =∇1F (D, uT (D))

+ J⊤T∇2F (D, uT (D))

Converges as fast as uT

∥g1
T − g∗∥2 ≤ L1∥uT − u∗∥2

May converge faster than uT

∥g2
T − g∗∥ ≤L∥JT − J∗∥2∥uT − u∗∥2

+ L2∥uT − u∗∥22

⇒ Need to study ∥JT − J∗∥2.
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Differentiable unrolling of θt

Idea: Compute JT = ∂uT
∂D (D) ≈ ∂u∗

∂D (D) using automatic differentiation
through an iterative algorithm.

For the gradient descent algorithm:

uT+1 = uT − ρ
∂G

∂z
(D, uT )

The Jacobian reads,

∂uT+1

∂D
(D) =

(
Id − ρ

∂2G

∂z2
(D, uT )

)
∂uT
∂D

(D)− ρ
∂2G

∂z∂D
(D, uT )

⇒ Under smoothness conditions, if uT converges to u∗,
this converges toward ∂u∗

∂D (D)
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Analysis for min-min problems [Ablin et al. 2020]

Context: min-min problems where F = G

⇒ Here, ∇zF (D, u∗) = 0

We consider the 3 gradient estimates:
▶ g1 = ∇DF (D, uT ) Analysis

▶ g2 = ∇DF (D, uT ) +
∂uT
∂D

⊤∇zF (D, uT ) Automatic

▶ g3 = ∇DF (D, uT )− ∂2G
∂z∂D (D, uT )

∂2G
∂z2

−1
(D, uT )∇zF (D, uT ) Implicit

Convergence rates: For G strongly
convex in z ,

|g1
t (x)− g∗(x)| = O

(
|uT (D)− u∗(D)|

)
,

|g2
t (x)− g∗(x)| = o

(
|uT (D)− u∗(D)|

)
,

|g3
t (x)− g∗(x)| = O

(
|uT (D)− u∗(D)|2

)
.

0 50 100 150
t

10−11

10−7

10−3

|g1
t − g∗|
|g2
t − g∗|
|g3
t − g∗|
|zt − z∗|
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Jacobian Estimation [Malézieux et al., 2022]

Convergence of the Jacobian

∥JT − J∗∥2 ≤ AT + BT .

AT converges linearly towards 0, BT is an error term which may
increase for large T and vanishes on the support of u∗.

▶ On the support, the jacobian converges linearly.

▶ Before reaching the support, BT is an error term that can accumulate.

▶ BT can be attenuated with truncated back-propagation.
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Empirical evaluation

100 102 104

Iterations T

0

20

0

20

100 102 104

Iterations T

0

20

kJ
T
¡
J
¤
k

100 102 104

Iterations T

0

20

0

10

20

100 102 104

Iterations T

0

20

Max BP depth
full 200 50 20

kJT ¡ J ¤ k kST ¡S ¤ k0

▶ Linear convergence once the support S∗ is reached.

▶ Possible explosion before reaching S∗.

24/29



Empirical evaluation
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▶ Truncated backpropagation (BP) reduces the explosion.

▶ Less precise when the support is reached.
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Numerical experiments on gradient

▶ First iterations: Stable behavior.

▶ Too many iterations: Numerical instabilities due to the accumulation
of errors. Truncated back-propagation reduces the errors.

▶ On the support: Convergence towards g∗.
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Impact on Dictionary Learning

Comparison of 3 schemes to learn
dictionaries on generated data:

▶ AM: use gradient estimate g1
T

▶ DDL: use gradient estimate g2
T

▶ DDL+step: DDL + learn the step
size in the unrolled algorithm uT .

⇒ Small number of iterations + learning step size improves uppon AM.

27/29



Unrolling for dictionary learning

Not the expected performance boost.

▶ Jacobian estimate stable only for a low number of iteration.

▶ Possible to design better dictionary learning algorithms but need extra
ingredients.

▶ Maybe useful for task-driven dictionary learning.

We are currently investigating the interplay between G and the learning of D.
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Thanks for your attention!

Slides are on my web page:

tommoral.github.io @tomamoral
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