A Journey through Algorithm Unrolling
for Inverse Problems

Thomas Moreau
INRIA Saclay - MIND Team

r d
MIND fzzica —
inventors for the digital world

1/29

Inverse Problems

Neuroimaging — M/EEG Neuroimaging — MRI
Inverse Problem

Maxwell’s { i \\\r
—_—)
i 'Y il
Equations \\:§//

Astrophysics
gaies ol ys apout... Structures
@@ ® o Imaging
© 0
@ «—— redshift z rHE

Seismology — Prospection

Jmmm L

| 7\?’;/) i eitmeoraphic Jéwl;mq; |
ot

Super-Resolution, Inpainting,
Deblurring, ...

2/29

Inverse Problem: Source Localization for M/EEG

Inverse Problem

T

Maxwell's
Equations

Electrical activity Observed signal

Forward model: x = Gz 4 ¢ Inverse problem: z = f(x)

» lll-posed problem: many solutions z such that Gz = x

» Noisy problem: need to account for ¢

3/29

Inverse Problems

Neuroimaging — M/EEG Neuroimaging — MRI

Inverse Problem

Maxwell's
Equations
Astrophysics
galaxies tell us ab
hm@ For many inverse problems, we don’t have
@gﬁ access to large training sets with pairs (x, z).

Seismology — Prospection

- 5@ .i s
B

Super-Resolution, Inpainting,
Deblurring, ...

4/29

Inverse Problem Resolution

Regularized regression problem

f(x) = z*(x) = argmin %Hx = GzH% + R(z2)

where R encodes prior information to select a good/plausible solution.

5/29

Inverse Problem Resolution

Regularized regression problem

1
f(x) = z*(x) = argmin EHX — Gz|3 + R(2)
z
where R encodes prior information to select a good/plausible solution.

Often solve this optimization problem many times for a given G,

5/29

Inverse Problem Resolution

Regularized regression problem

1
f(x) = z*(x) = argmin EHX — Gz|3 + R(2)
z
where R encodes prior information to select a good/plausible solution.

Often solve this optimization problem many times for a given G,

=- Can we learn to solve such problem with unrolling?

= With convergence guarantees toward the original solution z*(x)?

setting than supervised learning: ming E(sz)%Hz — do(x)|13

5/29

Iterative Shrinkage-Thresholding Algorithm [Daubechies et al., 2004]

Proximal gradient descent algorithm with R(z) = A||z||;,

2D — st | 20 — o V(D) , ar
——

GT(Gz(—x)

where « is a step size taken in [0, ﬁ]
2

st is the soft-thresholding operator. —st(-,1)

» Proximal operator for ¢1-norm.

» Push for sparse vector.

6/29

Iterative Shrinkage-Thresholding Algorithm [Daubechies et al., 2004]

Proximal gradient descent algorithm with R(z) = A||z||;,
20 = g ((/d —aGT6)z® 4 aGTx, a,/\>

where « is a step size taken in [0, ﬁ]
2

Computational graph interpretation:

» W,=Ild—aG'G
» Wx=aG" » B=a)

— z(t+1)

6/29

Learned ISTA

[Gregor and Le Cun, 2010]

Unrolled ISTA:

X

T

©

st
8

‘mae

st
8

—> 2(2)

Equivalent to ISTA with W, = Id —aG ' G, Wx =aG' and 8 = a\.

3 iterations of ISTA < 3 layers in the neural network

7/29

Learned ISTA

[Gregor and Le Cun, 2010]

Learned ISTA:

X

w

w

st

SO

Learn © = (W)(<t), Wz(t),ﬁ(t))tT:0 s.t.

F(®o(x)) < F(ISTAT(x))

Goal:

st

(PO

st
52

—> 2(2)

= Find the same solution as ISTA!

= Faster?

m—— |STA == LISTA
Digits data A = 0.1

10

20 30

Number of Layers

7/29

Learning to optimize with unrolled ISTA

References

» Moreau, T. and Bruna, J. (2017). Understanding Neural Sparse Coding
with Matrix Factorization.

In International Conference on Learning Representation (ICLR), Toulon,
France

» Ablin, P., Moreau, T., Massias, M., and Gramfort, A. (2019). Learning step
sizes for unfolded sparse coding.

In Advances in Neural Information Processing Systems (NeurlPS), pages
13100-13110, Vancouver, BC, Canada

7/29

How fast can LISTA go? [Moreau and Bruna, 2017]

Results are based on a quasi-diagonalization GT G ~ VTAV that does not
distort “too much” the ¢1-norm.

» For a class of parameters, LISTA has the same cvg rate as ISTA.

» LISTA can benefit from improved constants.

» As the optimization approaches a solution, it is harder and harder to
get improved constants.

= Shows that it is possible to improve the first iterations of the algorithm.

8/29

ISTA: Majoration-Minimization

Taylor expansion of f in z(t)
Fu(2) = K(29) + VA(0)T(z = 29) + 216 (e — 2O)[3 + el
L
< £(29) + V()T (z - 21) + Sllz = 2013+ Alz]ls

= Replace the Hessian G G by an upper bound L Id.

Separable function that can be minimized in close form

2
2(t) — %fo(z(t)) —z

L 1
argmin 5 + Al|z|l1 = proxa (z(t) — LVfX(z(t))>
z L

2

1 A
ST <z LVfX(z), L)

9/29

ISTA: Majoration-Minimization

Taylor expansion of f in z(t)
1
Fu(2) = £(29)) + V(D) (2 = 209) + 2 [|G(z = 2| + A [Jx
L
< 6(29) + VAED) (2 = 29 + Sllz = 2913 + Azl

= Replace the Hessian G G by an upper bound L Id.
By design,
F(ZtJrl) < Qt(ZtJrl) < Qt(ZtJrl) _ F(Zt)

and the algorithm converges.

The key is to find a majorant easy to minimize.

9/29

ISTA: Majoration for the data-fit

» Level sets for z' G' Gz

10/29

ISTA: Majoration for the data-fit

> Level sets for z' GT Gz < L||z|»

Zdh
NP~

10/29

ISTA: Majoration for the data-fit

> Level setsfor z' GGz < z'VIAVz [Moreau and Bruna, 2017]

10/29

What does LISTA learn? [Ablin et al., 2019]

Consider that the number of layers goes to +o0.

Theorem — Asymptotic convergence of the weights
Assume that the weights of the network converge to a limit:

Wi, W)(f),ﬁ(t) — W}, Wy, 8* as t — 400

and that the output of the network converges to a solution of the
unsupervised problem.

Then
W} =Ild—aD'D, Wi=aD", p*=a,

= Correspond to ISTA with a learned step size o

11/29

Numerical verification

i:Eég_ I T T T 1

1 10 20 30 40
Layers

40-layers LISTA network trained on a 10 x 20 problem with A = 0.1
The weights W) align with D and «, 3 get coupled.

12/29

Step LISTA [Ablin et al., 2019]

Inspired by this result: learn adapted step sizes for ISTA.
Restricted parametrization : Only learn a step-size alt)

A+ — ST (z(t) —a®DT (D) — x),)\a(t)>

Fewer parameters:

» Easier to learn » Fewer degrees of freedom

= Reduced performances?

13/29

Performances

Simulated data: m = 256 and n = 64

Dk ~U(S" 1) and x = with X; ~ A(0,1)

X
1D " Xloo

m——= |STA === LISTA === SLISTA (proposed)
Simulated data A = 0.1 Simulated data A = 0.8

10° 1072
*LL‘E'%
| 10_1 10—4 -
RS
—6 |
1072 10
0 10 20 30 0 10 20 30

Number of Layers Number of Layers

14/29

Learning better step sizes

Linked to SLISTA when step sizes are in {%, L% { when Supp(z(t)) =S

Ls is the largest eigenvalue of G' G restricted on the support S

max zG' Gz
Supp(z)=S
llz]2<1

==|_earned steps ==1/Lg ==2/Lg

4/L A
Q'3/L'/

2/L A

Ste

Unrolling for learned optimization

No hope to learn an algorithm that converges
faster than ISTA uniformly.

» But one can learn parameters (step-size) of the algorithm that better

adapt to the input distribution.
[Ablin et al., 2019]

» Also possible to improve the first iterations of ISTA (improve

constants).
[Moreau and Bruna, 2017]

Also considered unrolled algorithms for TV in Cherkaoui, Sulam, M., NeurlPS 2020.

16/29

A bilevel view on prior learning with unrolling

References

» Ablin, P., Peyré, G., and Moreau, T. (2020). Super-efficiency of automatic
differentiation for functions defined as a minimum.

In International Conference on Machine Learning (ICML), volume 119, pages
32-41, Vienna, Austria (online). PMLR

» Malézieux, B., Moreau, T., and Kowalski, M. (2022). Understanding
approximate and Unrolled Dictionary Learning for Pattern Recovery.

In International Conference on Learning Representations (ICLR), online

16/29

Prior learning for inverse problem

Inverse Problem Prior: choosing R.

Typical prior: Signal z is sparse in a specific dictionary D.

Synthesis formulation:
u sparse to synthesize z = Du.

1
gi{l‘ §||X — GDull2 + Alluflx -

I Dkll2<1

Data driven dictionary: Learn D from the data x.
[Olshausen and Field, 1997]

17/29

Unrolling for dictionary learning

Bi-level formulation:
min h(D) £ F(D,u*(D)) s.t. u*(D) = argminF(D,u) .
[|DlI<1 u
Optimization problem in D solved with projected gradient descent.

= How to estimate the gradient g*(D) = Vh(D) efficiently?

18/29

Unrolling for dictionary learning

Bi-level formulation:
HB:\i\ngl h(D) £ F(D,u*(D)) s.t. u*(D)= arglrlnin F(D,u) .
Optimization problem in D solved with projected gradient descent.
= How to estimate the gradient g*(D) = Vh(D) efficiently?
Danskin Theorem: [Danskin, 1967]
g"(D) = V1F(D, u*(D))

This is due to the fact that “V,F(D,u*(D)) =0".

18/29

Unrolling for dictionary learning

Bi-level formulation:
\\B:\i\ngl h(D) £ F(D,u*(D)) s.t. u*(D)= arglrlnin F(D,u) .
Optimization problem in D solved with projected gradient descent.
= How to estimate the gradient g*(D) = Vh(D) efficiently?
Danskin Theorem: [Danskin, 1967]
g"(D) = V1F(D, u*(D))

This is due to the fact that “V,F(D,u*(D)) =0".

Issue: computing u*(D) is computationally expansive.

18/29

Unrolling for dictionary learning

Unrolled formulation:

min. h7(D) 2 F(D,ur(D)) -

The gradient estimate becomes:

g#(D) = V1F(D, ur(D)) + J7V2F(D, ur(D))

Estimate the jacobian Jr = % with back-propagation.

19/29

Unrolling for dictionary learning

Unrolled formulation:

in_ hr(D) 2 F(D,ur(D)) -

The gradient estimate becomes:
g2(D) = ViF(D, ur(D)) + JTV2F (D, ur(D))

Estimate the jacobian J; = % with back-propagation.

Question: More efficient to use unrolling than classic AM? J

» Work for smooth problems. [Ablin et al., ICML 2020]

» Improved performances for supervised learning. [Monga et al., 2021]

19/29

Gradient Estimation

Alternate Minimization Unrolled ISTA
No Jacobian estimation Account for Jacobian of ut
gx(D) = V1F(D, ur(D)) g2(D) =V1F(D, ur(D))

+ J+V2F (D, ur(D))

20,29

Gradient Estimation

Alternate Minimization Unrolled ISTA
No Jacobian estimation Account for Jacobian of ut
gx(D) = V1F(D, ur(D)) g2(D) =V1F(D, ur(D))

+ J+V2F (D, ur(D))

Converges as fast as ut

gt — &*ll2 < Lillur — u*|2

20,29

Gradient Estimation

Alternate Minimization Unrolled ISTA
No Jacobian estimation Account for Jacobian of ut
g7(D) = V1F(D, ur(D)) g7(D) =V1F(D, ur(D))

+ J+V2F (D, ur(D))

Converges as fast as ut May converge faster than ur

gt — &*ll2 < Lillur — u*|2 g7 — &*|l <Ll — S*|l2llur — u*||2
+ La||lur — u*|3

= Need to study ||J7 — J*2.

20,29

Differentiable unrolling of 6*

Idea: Compute J7 = %(D) A %(D) using automatic differentiation

through an iterative algorithm.

21/29

Differentiable unrolling of 6*

Idea: Compute Jr = %(D) Lg (D) using automatic differentiation
through an iterative algorithm.

For the gradient descent algorithm:

urs1 = ur = po—(D, ur)

The Jacobian reads,

8UT+1 . 82G 8uT 82G
8T(D) = (/d— T(D’ UT))(D)—P . (D, ut)

21/29

Differentiable unrolling of 6*

Idea: Compute J1 = %(D) A %(D) using automatic differentiation

through an iterative algorithm.
For the gradient descent algorithm:

urs1 = ur = po—(D, ur)

The Jacobian reads,

8UT+1 (D) (826 > 8uT D 82G

= Under smoothness conditions, if ur converges to u*,
this converges toward %(D)

21/29

Analysis for min-min problems [Ablin et al. 2020]

Context: min-min problems where F = G

= Here, V,F(D,u*) =0

22/29

Analysis for min-min problems [Ablin et al. 2020]

Context: min-min problems where F = G
= Here, V,F(D,u*) =0
We consider the 3 gradient estimates:
» g1 =VpF(D,ut) Analysis
» g =VpF(D,ur)+ %TVZF(D, ur) Automatic
-1
> g3 = VpF(D,ur) — & (D, ur)2S (D, ur)V,F(D,ur) Implicit

022

22/29

Analysis for min-min problems

[Ablin et al. 2020]

Context: min-min problems where F = G

= Here, V,F(D,u*) =0

We consider the 3 gradient estimates:
> g1 =VpF(D,ur) .
> o :VDF(D, UT)+% VZF(D, UT)

=1
> g3=VpF(D,ur) — 25 (D,ur)2S (D, ur)V.F(D,ur)

Convergence rates: For G strongly
convex in z,

g (x) —g"(x)| = O (Jur(D) = w*(D)]) , v

82(x) — g"(x)| = o (|ur(D) ~ u*(D)]).

<
0 (lur(D) - u*(D)2).

101

g2(x) — &*(x)]

Analysis
Automatic

Implicit

=
S==
=

— gl — ¢

— g/ =g

- |a—2

=
==
=
=
==
==
=

lg7 = ¢l

22/29

Jacobian Estimation [Malézieux et al., 2022]

Convergence of the Jacobian

[Jr =2 < AT+ Bt .

AT converges linearly towards 0, Bt is an error term which may
increase for large T and vanishes on the support of u*.

» On the support, the jacobian converges linearly.
» Before reaching the support, Bt is an error term that can accumulate.

» Bt can be attenuated with truncated back-propagation.

23/29

Empirical evaluation

— Jr=J"l —15r=5"o

L 20 - 20
20 20
- 10
04— =>=F0 04— k0
10 10% 10* 109 102 10*
Iterations T Iterations T

» Linear convergence once the support S* is reached.

» Possible explosion before reaching S*.

24/29

Empirical evaluation

Max BP depth
— full — 200 50 — 20

20 20
\
0 L T u T u T 0 L T u T 'ﬂtl
100 102 104 100 102 104
Iterations T Iterations T

[Jr—J* ||

» Truncated backpropagation (BP) reduces the explosion.

» Less precise when the support is reached.

25/29

Numerical experiments on gradient

Gaussian dictionary Noisy image

100 -
—~ 10-2 \

7 BP depth
— 20
105 A 50
— full

— AM

T T
10! 103 101 103
Iterations N Iterations N

» First iterations: Stable behavior.

» Too many iterations: Numerical instabilities due to the accumulation
of errors. Truncated back-propagation reduces the errors.

» On the support: Convergence towards g*.

26,29

Impact on Dictionary Learning

— AM DDL —— DDL + steps
Comparison of 3 schemes to learn
dictionaries on generated data: Loss
. 102 -
> AM: use gradient estimate g+ LT
0 . 1 SAPLud
» DDL: use gradient estimate g2 & LU
» DDL+step: DDL + learn the step Ty
10! 102 103

size in the unrolled algorithm u. .
Iterations N

= Small number of iterations + learning step size improves uppon AM.

27/29

Unrolling for dictionary learning

Not the expected performance boost.

» Jacobian estimate stable only for a low number of iteration.

» Possible to design better dictionary learning algorithms but need extra
ingredients.

» Maybe useful for task-driven dictionary learning.

We are currently investigating the interplay between G and the learning of D.

28/29

Thanks for your attention!

Slides are on my web page:

€ tommoral.github.io O ©@tomamoral

20/29

	Learning to optimize with unrolled ISTA
	A bilevel view on prior learning with unrolling

