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Context: functional Neuroimaging

Goal: Study the brain mechanisms while it is functioning.

Outputs:

▶ Functional Atlases: Link areas of the brain to specific cognitive
functions.

▶ Functional Connectivity: Highlight the information flow in the
brain.

▶ Healthcare: Develop bio-markers for neurological disorders.
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Context: functional Neuroimaging

How to record living brains electrical activity: Electrophysiology

Direct measurement: intracranial EEG.

High Localization Low Resolution Invasive

3/37



Context: functional Neuroimaging

How to record living brains electrical activity: Electrophysiology

Remote measurement: M/EEG.

No Localization Global Non Invasive
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M/EEG signals

Multivariate time-series X

Noisy Many artifacts Complex
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How to get back to electrical activity?

Maxwell’s
Equations

XXX

Observed signal

εεε

Electrical activity

GGG

Inverse Problem

Forward model: XXX = GGGεεε

Inverse problem: εεε = f (XXX ) (ill-posed)

▶ Dipole fit ▶ Regularized optimization ▶ Deep-learning
[Sarvas, 1987] [Gramfort et al., 2012] [Hecker et al., 2021]
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Neural signals
exhibit diverse and

complex
morphologies

[Cole & Voytek 2017]

Waveform shape can be related to diseases
e.g. Parkinson [Jackson et al. 2019]

[Dupré la Tour et al. 2017]
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[Dupré la Tour et al. 2017]

7/37



Repeated Stimuli – Evoked Response [Gramfort et al. 2013]

▶ Subject is presented some stimuli – Audio, Visual, Motor, ...

▶ Record onset of the stimuli

▶ Average signal on window aligned around the stimulus

Evoked response to an
auditory stimuli
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[MNE-Python]
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Repeated Stimuli – Induced Response [Gramfort et al. 2013]

▶ Subject is presented some stimuli – Audio, Visual, Motor, ...

▶ Average PSD on window aligned around the stimulus
[MNE-Python]

Evoked response to an somatosensory stimuli
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Learning the waveform:
Convolutional Dictionary Learning

References

▶ Grosse, R., Raina, R., Kwong, H., and Ng, A. Y. (2007). Shift-Invariant
Sparse Coding for Audio Classification.

Cortex, 8:9
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Local structure in signals

Key idea: decouple the localization of the patterns and their shape

xn
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Convolutional Dictionary Learning [Grosse et al., 2007]

For a set of N univariate signals xn, solve

Hypothesis: patterns dk are not present everywhere in the signal. They
are localized in time.

⇒ Sparse activation signals z

Technical hypothesis: the patterns are in the ℓ2-ball: ∥dk∥22 ≤ 1.
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Optimization strategy

Bi-convex: The problem is not jointly convex in znk , and dk but it is
convex in each block of coordinate.

Alternate minimization (a.k.a. Bloc Coordinate Descent):

▶ Z-step: given a fixed estimate of the atom, compute the activation
signal znk associated to each signal xn.

▶ D-step: given a fixed estimate of the activation, update the atoms in
the dictionary dk .

Unrolled optimization:

▶ Z-step: use an fixed differentiable procedure f (xn,D).

▶ D-step: learn D through back-propagation.

[Malezieux et al. 2022]
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How to extend CSC to multivariate signals?

We can just use multivariate convolution,

X [t]︸︷︷︸
∈RP

=
K∑

k=1

(
zk ∗ Dk

)
[t] =

K∑
k=1

L∑
τ=1

zk [t − τ ]Dk [τ ]︸ ︷︷ ︸
∈RP

with:

▶ X a multivariate signal of length T in RP

▶ Dk a multivariate signal of length L in RP

▶ zk a univariate activation signal of length T̃ = T − L+ 1

However, this model does not account for the physics of the problem.

13/37



Rank-1 constrained dictionary learning

References

▶ Dupré la Tour, T., Moreau, T., Jas, M., and Gramfort, A. (2018).

Multivariate Convolutional Sparse Coding for Electromagnetic Brain Signals.

In Advances in Neural Information Processing Systems (NeurIPS), pages
3296–3306, Montreal, Canada
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EM wave diffusion

▶ Recording here with 8 sensors

▶ EM activity in the brain
▶ The electric field is spread linearly and instantaneously over all

sensors (Maxwell equations)
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Multivariate CSC with rank-1 constraint

Idea: Impose a rank-1 constraint on each dictionary atom Dk

To make the problem tractable, use uk and vk s.t. Dk = ukv
⊤
k .

min
uk ,vk ,z

n
k

N∑
n=1

1

2

∥∥∥∥∥∥X n −
K∑

k=1

znk ∗ (ukv⊤k )

∥∥∥∥∥∥
2

2

+ λ

K∑
k=1

∥∥∥znk ∥∥∥
1
,

s.t. ∥uk∥22 ≤ 1 , ∥vk∥22 ≤ 1 and znk ≥ 0 .

(1)

Here,

▶ uk ∈ RP is a spatial pattern

▶ vk ∈ RL is a temporal pattern

⇒ This is a tri-convex problem
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Optimization strategy

Tri-convex: The problem is not jointly convex in znk , uk and vk but it is
convex in each block of coordinate.

We can use a block coordinate descent, aka alternate minimization, to
converge to a local minima of this problem. The 3 following steps are
applied alternatively:

▶ Z-step: given a fixed estimate of the atom, compute the activation
signal znk associated to each signal X n. (LGCD)

▶ u-step: given a fixed estimate of the activation and temporal pattern,
update the spatial pattern uk . (PGD)

▶ v-step: given a fixed estimate of the activation and spatial pattern,
update the temporal pattern vk . (PGD)
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Good scaling in the number of channels P

Scaling relative to P on somato dataset with T = 134, 700, K = 2, and
L = 128
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Pattern recovery

Test the pattern recovery capabilities of our method on simulated data,

X n =
2∑

k=1

zk ∗ (ukv⊤k ) + E

where (uk , vk) are chosen patterns of rank-1 and the activated coefficient
znk [t] are drawn uniformly and their value are uniform in [0, 1].

The noise E is generated as a gaussian white noise with variance σ.

We set N = 100, L = 64 and T̃ = 640
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Pattern recovery

Patterns recovered with P = 1 and P = 5. The signals were generated
with the two simulated temporal patterns and with σ = 10−3.
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MNE sample data

A selection of temporal waveforms of the atoms learned on the MNE
sample dataset.
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Learned atoms – Evoked response
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Learned atoms – Induced responses
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Python code online:
https://alphacsc.github.io

pip install alphacsc

Examples reproduce figures
from this talk!
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Modeling stimuli induced patterns
with Point Processes

References

▶ Allain, C., Gramfort, A., and Moreau, T. (2022). DriPP: Driven Point
Process to Model Stimuli Induced Patterns in M/EEF Signals.

In International Conference on Learning Representations (ICLR)

▶ Staerman, G., Allain, C., Gramfort, A., and Moreau, T. (2023). FaDIn: Fast
Discretized Inference for Hawkes Processes with General Parametric Kernels.

In International Conference on Machine Learning (ICML), Honolulu, HI,
USA. PMLR
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Stimuli Induced Patterns

▶ Manual pattern identification

▶ No quantification of how stimuli influence patterns activation.

Activations and stimuli can be seen as Point Processes.
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Point Processes [Daley and Vere-Jones, 2003]

▶ Stochastic model for stream of events

▶ Time of arrival {tk} associated with counting process N(t)

▶ Characterized by the intensity:

λ(t|Ft) = lim
dt→0

P(N(t + dt)− N(t) = 1|Ft)

dt

Poisson process with constant
probability of arrival

λ(t) = µ0
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DriPP – Driven Point Process

Idea: Model the probability of activation {tk} depending on the PP from
the stimuli {sp}.

λ(t|Ft) = λ(t|{sp; sp < t}) = µ0 +
∑
sp<t

κ(t − sp)
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Modeling latency

Chosing a model for stimuli based modeling:

λ(t|Ft) = µ0 +
∑
sp<t

ακ(t − sp)

▶ µ0 ≥ 0: spontaneous activity.

▶ α ≥ 0: allow for stimuli to have
no effect.

▶ κ(τ): pdf of a truncated
Gaussian N (m, σ2) to model
latency.
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Parameters estimation

The negative log-likelihood of the model can be computed using the
intensity λ:

L({tk}; Θ) =

∫ T

0
λ(t)dt −

∑
tk

log λ(tk)

= µ0T + α|{tk}| −
∑
tk

log(µ0

∑
sp<tk

ακ(tk − sp))

with Θ = (µ0, α,m, σ2)

⇒ Parameter estimation with an EM algorithm.

▶ Slow EM algorithm ▶ Not general for parametric kernels.
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FaDIn

FaDIn Inference method for general parametric kernels

Discretization
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FaDIn

FaDIn Inference method for general parametric kernels

▶ Discretization

▶ Finite support

▶ ℓ2 loss

L({tk}; θ) =
T∑
t=0

1

2
∥z [t]− (z ∗ k)[t]∥22

with z [t] = 1 if t ∈ {tk}, 0 otherwise.
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Results for evoked atoms - samples
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Results for heart rate variability
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Conclusion

▶ CDL can learn recurring patterns in multivariate signals.

▶ Converts the signal into a stream of events.

▶ PP framework can model the activation distribution.

Limitations and on-going work:

▶ Not easy to apply to population level.

▶ DriPP does not model inhibition.

▶ CDL and PP are separated.
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Benchopt

References

▶ Moreau, T., Massias, M., Gramfort, A., Ablin, P., Bannier, P.-A., Charlier,
B., Dagréou, M., la Tour, T. D., Durif, G., Dantas, C. F., Klopfenstein, Q.,
Larsson, J., Lai, E., Lefort, T., Malézieux, B., Moufad, B., Nguyen, B. T.,

Rakotomamonjy, A., Ramzi, Z., Salmon, J., and Vaiter, S. (2022). Benchopt:
Reproducible, efficient and collaborative optimization benchmarks.

In Advances in Neural Information Processing Systems (NeurIPS),
volume 36, New-Orlean, LA, USA. Curran Associates, Inc.
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benchopt

Doing a benchmark for the ℓ2 regularized logistic regression with multiple
solvers and datasets is now easy as calling:

git clone https :// github.com/benchopt/benchmark_logreg_l2

benchopt run ./ benchmark_logreg_l2
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Benchmark: principle

A benchmark is a directory with:

▶ An objective.py file with an Objective

▶ A directory solvers with one file per Solver

▶ A directory datasets with Dataset generators/fetchers

The benchopt client runs a cross product and generates a csv file +
convergence plots like above.
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Benchopt: principle

.PDF

.HTML

.CSV

⇒ Each object can be parametrized so multiple scenario can be tested.
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benchopt: Making tedious tasks easy

Automatizing tasks:

▶ Automatic installation of competitors solvers.

▶ Parametrized datasets, objectives and solvers and run on cross
products.

▶ Make sure to quantify the variance.

▶ Automatic caching.

▶ Interactive visualization of the results

▶ Automatic parallelization, run on SLURM,

▶ ...?
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Thanks for your attention!

Code available online:

alphacsc : alphacsc.github.io

DriPP : github.com/CedricAllain/dripp

benchopt : benchopt.github.io

Slides are on my web page:

tommoral.github.io @tomamoral
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Z-step: Locally greedy coordinate descent (LGCD)

N independent problem such that

min
znk≥0

1

2

∥∥∥∥∥∥X n −
K∑

k=1

znk ∗ Dk

∥∥∥∥∥∥
2

2

+ λ

K∑
k=1

∥∥∥znk ∥∥∥
1
.

This problem is convex in zk and can be solved with different techniques:

▶ FISTA [Chalasani et al., 2013]

▶ ADMM [Bristow et al., 2013]

▶ L-BFGS [Jas et al., 2017]

▶ Greedy CD [Kavukcuoglu et al., 2010]

⇒ These methods can be slow for long signals as the complexity of each
iteration is at least linear in the length of the signal.
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Z-step: Locally greedy coordinate descent (LGCD)

Coordinate Descent: only 1 coordinate is updated at each iteration:

1. The coordinate zk0 [t0] is updated to its optimal value z ′k0 [t0]
when all other coordinate are fixed.

2. The updated coordinate is chosen

▶ Cyclic: O(1) [Friedman et al., 2007]

▶ Randomized: O(1) [Nesterov, 2010]

▶ Greedy: O(KT̃ ) [Osher and Li, 2009]
by maximizing |zk [t]− z ′k [t]|

▶ Locally Greedy: O(KL̃) [Moreau et al., 2018]
by maximizing |zk [t]− z ′k [t]| on a window
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Locally Greedy Coordinate Descent [Moreau et al., 2018]

We introduced the LGCD method which is an extension of GCD.

coordinates of Z

T̃

K

C1 C2 C3

coordinates of Z

GCD has O(KT̃ ) computational complexity.

With a partition Cm of the signal domain [1,K ]× [0, T̃ [,

Cm = [1,K ]× [
(m − 1)T̃

M
,
mT̃

M
[

The coordinate to update is chosen greedily on a sub-domain Cm
T̃
M = 2L− 1 ⇒ O(Coordinate selection) = O(Coordinate Update)

The overall iteration complexity is O(KL) instead of O(KT̃ ).

⇒ Efficient for sparse Z

⇒ Can be efficiently parallelized.
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Fast optimization

Comparison of the coordinate selection strategy for CD on simulated
signals
We set K = 10, L = 150, λ = 0.1λmax
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Fast optimization

Comparison with univariate methods on somato dataset with
T = 134, 700, K = 8 and L = 128

λ= 0.3 λ= 1.0 λ= 3.0 λ= 10.0

101

102

103

Ti
m

e 
(s

)

Garcia-Cardona et al (2017)
Jas et al (2017) FISTA

Jas et al (2017) LBFGS
Proposed (univariate)
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Fast optimization

Comparison with multivariate methods on somato dataset with
T = 134, 700, K = 8, P = 5 and L = 128

λ= 0.3 λ= 1.0 λ= 3.0 λ= 10.0

103

Ti
m

e 
(s

)

Wohlberg (2016) Proposed (multivariate) Proposed (rank-1)
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