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Context: functional Neuroimaging

Goal: Study the brain mechanisms while it is functioning.

Outputs:

» Functional Atlases: Link areas of the brain to specific cognitive
functions.

» Functional Connectivity: Highlight the information flow in the
brain.

» Healthcare: Develop bio-markers for neurological disorders.
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Context: functional Neuroimaging

How to record living brains electrical activity: Electrophysiology

Direct measurement: intracranial EEG.

High Localization J Low Resolution J Invasive )
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Context: functional Neuroimaging

How to record living brains electrical activity: Electrophysiology

Remote measurement: M/EEG.

Current EEG

No Localization J

Dipdle
de courant

Isolant  liquide
Capteur

Non Invasive J

Global |
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M/EEG signals

Multivariate time-series X
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M/EEG signals

Multivariate time-series X
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M/EEG signals

Multivariate time-series X
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How to get back to electrical activity?

Maxwell's

Equations

Electrical activity

Forward model: X = Ge

Observed signal
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How to get back to electrical activity?

Inverse Problem

T

Maxwell's
Equations

Electrical activity Observed signal

Forward model: X = G& Inverse problem: ¢ = 7(X) (ill-posed)
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How to get back to electrical activity?

Inverse Problem

T

Maxwell's
Equations

Electrical activity Observed signal
Forward model: X = G& Inverse problem: ¢ = 7(X) (ill-posed)
» Dipole fit » Regularized optimization » Deep-learning

[Sarvas, 1987] [Gramfort et al., 2012] [Hecker et al., 2021]
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K-Complex ;
P Neural signals

exhibit diverse and
complex
morphologies

Sleep Spindle
—_—

2 [N el A

1s [Cole & Voytek 2017]

CROWINL

[Dupré la Tour et al. 2017]
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K-Complex ;
P Neural signals

exhibit diverse and
complex
morphologies

Sleep Spindle
—_—

A

| \! Waveform shape can be related to diseases m

25 uv

e.g. Parkinson [Jackson et al. 2019]

1s [Cole & Voytek 2017]

[Dupré la Tour et al. 2017]
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Repeated Stimuli — Evoked Response [Gramfort et al. 2013]

» Subject is presented some stimuli — Audio, Visual, Motor, ...
» Record onset of the stimuli

» Average signal on window aligned around the stimulus

Magnetometers (mean)

Evoked response to an 757 i 55
auditory stimuli £ 50 i :
o) ! = 0 3
& |
i -25
[MNE-Python]
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Repeated Stimuli — Induced Response [Gramfort et al. 2013]

» Subject is presented some stimuli — Audio, Visual, Motor, ...

» Average PSD on window aligned around the stimulus
[MNE-Python]
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Learning the waveform:
Convolutional Dictionary Learning

References

» Grosse, R., Raina, R., Kwong, H., and Ng, A. Y. (2007). Shift-Invariant
Sparse Coding for Audio Classification.

Cortex, 8:9
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Local structure in signals
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Local structure in signals

dy
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Local structure in signals
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Local structure in signals
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Local structure in signals

Key idea: decouple the localization of the patterns and their shape
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Local structure in signals

Key idea: decouple the localization of the patterns and their shape
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Local structure in signals

Key idea: decouple the localization of the patterns and their shape
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Convolutional Dictionary Learning [Grosse et al., 2007]

For a set of N univariate signals x”, solve

mln . Za*dk +)\Z”aH1’
s.t. HdkHzﬁl

Hypothesis: patterns di are not present everywhere in the signal. They
are localized in time.

=- Sparse activation signals z

Technical hypothesis: the patterns are in the £>-ball: ||d||3 < 1.
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Optimization strategy

Bi-convex: The problem is not jointly convex in z//, and d but it is
convex in each block of coordinate.

Alternate minimization (a.k.a. Bloc Coordinate Descent):
> Z-step: given a fixed estimate of the atom, compute the activation
signal z; associated to each signal x".

» D-step: given a fixed estimate of the activation, update the atoms in
the dictionary dj.
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Optimization strategy

Bi-convex: The problem is not jointly convex in z//, and d but it is
convex in each block of coordinate.

Alternate minimization (a.k.a. Bloc Coordinate Descent):

> Z-step: given a fixed estimate of the atom, compute the activation
signal z; associated to each signal x".

» D-step: given a fixed estimate of the activation, update the atoms in
the dictionary dj.

Unrolled optimization:
» Z-step: use an fixed differentiable procedure f(x", D).

» D-step: learn D through back-propagation.
[Malezieux et al. 2022]
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How to extend CSC to multivariate signals?

We can just use multivariate convolution,

K
Z zi* Dy) [t] = ZZZk[t—T] Dk[T]
k=1

eP k=171=1 eRP

with:
» X a multivariate signal of length T in R”

» Dy a multivariate signal of length L in RP
» Zz, a univariate activation signal of length T=T-L+1

However, this model does not account for the physics of the problem.
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Rank-1 constrained dictionary learning

References

» Dupré la Tour, T., Moreau, T., Jas, M., and Gramfort, A. (2018).

Multivariate Convolutional Sparse Coding for Electromagnetic Brain Signals.

In Advances in Neural Information Processing Systems (NeurlPS), pages
3296-3306, Montreal, Canada
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EM wave diffusion

» Recording here with 8 sensors
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EM wave diffusion

» Recording here with 8 sensors
» EM activity in the brain
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EM wave diffusion

» Recording here with 8 sensors

» EM activity in the brain
» The electric field is spread linearly and instantaneously over all

sensors (Maxwell equations)

YA
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EM wave diffusion

» Recording here with 8 sensors

» EM activity in the brain

» The electric field is spread linearly and instantaneously over all
sensors (Maxwell equations)

S
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Multivariate CSC with rank-1 constraint

Idea: Impose a rank-1 constraint on each dictionary atom Dy

To make the problem tractable, use ux and vi s.t. Dy = ukv,;r.

2
K
min Z —Zz,?*(ukv,j)
k=1

Uk,Vk,Zk

st Jull3 <1, w3 <1andzf >0.

Here,
» u, € RP is a spatial pattern
> v, € RLis a temporal pattern

= This is a tri-convex problem
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Optimization strategy

Tri-convex: The problem is not jointly convex in z/, u) and vi but it is
convex in each block of coordinate.

We can use a block coordinate descent, aka alternate minimization, to
converge to a local minima of this problem. The 3 following steps are
applied alternatively:

» Z-step: given a fixed estimate of the atom, compute the activation
signal z; associated to each signal X". (LGCD)

» u-step: given a fixed estimate of the activation and temporal pattern,
update the spatial pattern wuy. (PGD)

» v-step: given a fixed estimate of the activation and spatial pattern,
update the temporal pattern vy. (PGD)
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Good scaling in the number of channels P

Scaling relative to P on somato dataset with T = 134,700, K = 2, and
L =128
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Pattern recovery

Test the pattern recovery capabilities of our method on simulated data,
2
X" = sz s (uvy )+ €
k=1

where (u, vk) are chosen patterns of rank-1 and the activated coefficient
z][t] are drawn uniformly and their value are uniform in [0, 1].

The noise £ is generated as a gaussian white noise with variance o.

We set N = 100, L = 64 and T = 640
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Pattern recovery

Patterns recovered with P =1 and P = 5. The signals were generated
with the two simulated temporal patterns and with o = 1073.

Atoms

—— P=1— P=5 ---- Simulated

0 10 20 30 40 50 60
Times
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MNE sample data

A selection of temporal waveforms of the atoms learned on the MNE

sample dataset.

Spatial pattern 0
Explained variance

562 %

Spatial pattern 1
Explained variance

238%

Tempoeral pattern 0

Temporal pattern 1
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Learned atoms — Evoked response

Spatial pattern 3 Spatial pattern 15

Temporal pattern 3 Temporal pattern 15
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Learned atoms — Induced responses

A. Temporal waveform B. Spatial pattern
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alphacsc

Q_ Search the docs ..

Model descriptions  Examples Gallery - API Documentation

alphaCSC: Convolution sparse coding for I= On tis poge
time-series nstalaion

Quickstart

Rlccdlebaciand
This is  fbrary o perform shiftinvariant sparse dicionary lec | yt hon code online:

(CSC), on time-series data. It includes a number of different r . .
https://alphacsc.github.io

1. univariate CSC
2. multivariate CSC
3. muttivariate CSC with a rank-1 constraint (1}

4. univariate CSC with an alpha-stable distribution (2] p 1p inSt al 1 alph acsc

A mathematical descriptions of these models is available in the

Installation

Toinstall this package, the easiest way is using pip. It will instal this package and its dependencies. The
setup.py depends on nunpy and cython for the installation so it is advised to install them beforehand. To install

Examples reproduce figures
from this talk!

this package, please run one of the two commands:
(Latest stable version)

pip install alphacsc

(Development version)

pip install git+https://github.com/alphacsc/alphacsc. git#egg=alphacsc

(Dicodile backend)

pip install numpy cython
pip install alphacsc[dicodile]
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Modeling stimuli induced patterns
with Point Processes

References

» Allain, C., Gramfort, A., and Moreau, T. (2022). DriPP: Driven Point
Process to Model Stimuli Induced Patterns in M/EEF Signals.

In International Conference on Learning Representations (ICLR)

» Staerman, G., Allain, C., Gramfort, A., and Moreau, T. (2023). FaDIn: Fast
Discretized Inference for Hawkes Processes with General Parametric Kernels.

In International Conference on Machine Learning (ICML), Honolulu, HI,
USA. PMLR
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Stimuli Induced Patterns

» Manual pattern identification

» No quantification of how stimuli influence patterns

activation.

20

Signal Atom k
’ ’ , ’ , ’ ’ = = Activation t
P i : i : i == Stimulus s
[ ] i : 1 1 [ i
I [ 1 1 [ 1
| [ 1 1 [ 1
T T T T T T T T
t sty So t3 53 Iy %4

Activations and stimuli can be seen as Point Processes.
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Point Processes [Daley and Vere-Jones, 2003]

» Stochastic model for stream of events

» Time of arrival {t,} associated with counting process N(t)
» Characterized by the intensity:

P(N(t + dt) — N(t) = 1|F)

(t172) dt—0 dt
Counting process N e
_®_ Events {1} ’,’/
201 L
Poisson process with constant 15
probability of arrival
101 ,r'
)\(t) = Lo ///

afin EnARRkik
L

[ é 1‘0 13 20
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DriPP — Driven Point Process

Idea: Model the probability of activation {tx} depending on the PP from
the stimuli {sp}.

A(tFe) = Mel{soisp < 1) = o + 3 (t — 55)

sp<t
Signal Atom k
o e o e * == Activation ¢
[ 1 1 [ 1 .
o 1 1 [ 1 == Stimulus s
s W W - -
e H - - i 1) H Intensity A,
T T T T T T T T
t S1 b =2 t3 S3 ty %1

26,37



Modeling latency

Chosing a model for stimuli based modeling:

A(tIF) = po + Y ot — sp)

sp<t

» 1o > 0: spontaneous activity.

» « > 0: allow for stimuli to have
no effect.

» r(7): pdf of a truncated

Gaussian A'(m, o?) to model
latency.
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Parameters estimation

The negative log-likelihood of the model can be computed using the
intensity \:

)
({1} 0) = /0 A(t)dt — S log A(t)
— 0T +al{t}| — 3 loglo 3 an(ti — 5,))

ty Sp<tk
with © = (po, o, m, 0?)

= Parameter estimation with an EM algorithm.

» Slow EM algorithm » Not general for parametric kernels.

28/37



FaDIn

FaDIn Inference method for general parametric kernels

71 72 71
T i 3]

Discretization
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FaDIn

FaDIn Inference method for general parametric kernels

» Discretization

Length W

Time

R N I 152 | R
N N N

- 72 71
t: I 15

Finite support
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FaDIn

FaDIn Inference method for general parametric kernels

» Discretization

» Finite support

» /> loss
T q

L{te}:0)=> Slzlt] = (z+ K[tlll5
t=0

with z[t] = 1 if t € {tx}, O otherwise.
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Results for evoked atoms - samples

Atom 2

Atom 6

—— auditory visual
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Results for heart rate variability

400
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CDL + FaDIn
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[ hist NNI
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Conclusion

» CDL can learn recurring patterns in multivariate signals.
» Converts the signal into a stream of events.

» PP framework can model the activation distribution.

Limitations and on-going work:

» Not easy to apply to population level.
» DriPP does not model inhibition.

» CDL and PP are separated.
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Benchopt

References

» Moreau, T., Massias, M., Gramfort, A., Ablin, P., Bannier, P.-A., Charlier,
B., Dagréou, M., la Tour, T. D., Durif, G., Dantas, C. F., Klopfenstein, Q.,
Larsson, J., Lai, E., Lefort, T., Malézieux, B., Moufad, B., Nguyen, B. T.,

Rakotomamonjy, A., Ramzi, Z., Salmon, J., and Vaiter, S. (2022). Benchopt:
Reproducible, efficient and collaborative optimization benchmarks.

In Advances in Neural Information Processing Systems (NeurlPS),
volume 36, New-Orlean, LA, USA. Curran Associates, Inc.
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benchopt

Doing a benchmark for the ¢> regularized logistic regression with multiple
solvers and datasets is now easy as calling:

git clone https://github.com/benchopt/benchmark_logreg_12

benchopt run ./benchmark_logreg_12

L2 Logistic Regression[Imbd=1.0]
Data: Simulated[n_features=500,n_samples=200]

&

= Lightning
sklearn[liblinear]
sklearn[newton-cg]

10! 4

10-1

- F(X*,

10734

1075 4

value: F(x)

T
102 101
Time [sec]
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Benchmark: principle

A benchmark is a directory with:
» An objective.py file with an objective
» A directory solvers with one file per soiver

» A directory datasets with Dataset generators/fetchers

my benchmark/

— README.rst

— datasets

| — simulated.py # some dataset
| L— real.py # some dataset

— objective.py # contains the definition of the objective
L— solvers

— solverl.py # some solver
L— solver2.py # some solver

The benchopt client runs a cross product and generates a csv file +
convergence plots like above.
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Benchopt: principle

N (
Benchmark Objectives x Datasets x Solvers
Objectives: . “ e § N %
84 VB
Dﬂtasctszga- L) . N\ -
MR TANT;
Solvers: @ 'S . # \ . g
e (W8B&| N8B

~

Static output for
camera ready paper

Dynamic output for
interactive exploration

Results saved
in log file

benchopt publish

= Reproducible
®  results online

= Each object can be parametrized so multiple scenario can be tested.
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benchopt: Making tedious tasks easy

Automatizing tasks:

» Automatic installation of competitors solvers.

v

Parametrized datasets, objectives and solvers and run on cross
products.

Make sure to quantify the variance.
Automatic caching.
Interactive visualization of the results

Automatic parallelization, run on SLURM,

vV vV v v VY

L7
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Thanks for your attention!

Code available online:
O alphacsc : alphacsc.github.io
© DriPP : github.com/CedricAllain/dripp

©) benchopt : benchopt.github.io

Slides are on my web page:

€ tommoral.github.io © ©tomamoral
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Z-step: Locally greedy coordinate descent (LGCD)

N independent problem such that

This problem is convex in z, and can be solved with different techniques:

>

>
| 2
>

FISTA [Chalasani et al.,
ADMM [Bristow et al.,
L-BFGS [Jas et al.,
Greedy CD [Kavukcuoglu et al.,

2013]
2013]
2017]
2010]

= These methods can be slow for long signals as the complexity of each

iteration is at least linear in the length of the signal.
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Z-step: Locally greedy coordinate descent (LGCD)

Coordinate Descent: only 1 coordinate is updated at each iteration:

1. The coordinate z,[to] is updated to its optimal value z; [to]
when all other coordinate are fixed.

2. The updated coordinate is chosen

» Cyclic: O(1) [Friedman et al., 2007]
» Randomized: O(1) [Nesterov, 2010]
> Greedy: O(KT) [Osher and Li, 2009]

by maximizing |z[t] — z,[t]|

> Locally Greedy: O(KL) [Moreau et al., 2018]
by maximizing |z[t] — z,[t]| on a window
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Locally Greedy Coordinate Descent [Moreau et al., 2018]

We introduced the LGCD method which is an extension of GCD.

~
|

'K

v

€ o coordipatesof Z_____________________________ N
P2

GCD has (’)(K?’) computational complexity.
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Locally Greedy Coordinate Descent [Moreau et al., 2018]

We introduced the LGCD method which is an extension of GCD.

coordinates of Z

GCD has (’)(K?’) computational complexity.

But the update itself has complexity O(KL)
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Locally Greedy Coordinate Descent [Moreau et al., 2018]

We introduced the LGCD method which is an extension of GCD
@ @ @

T
M

coordinates of Z

With a partition Cp, of the signal domain [1, K] x [0, 7’[
m—1)T mT
Cm= [1>K] X [(/\/I)’ W




Locally Greedy Coordinate Descent [Moreau et al., 2018]

We introduced the LGCD method which is an extension of GCD.
@ @ @

coordinates of Z
With a partition Cp, of the signal domain [1, K] x [0, 7’[
(m—=1)T mT
=[1,K —_—
Cm =1, K] x [, T
The coordinate to update is chosen greedily on a sub-domain Cp,

% =2L—-1 = O(Coordinate selection) = O(Coordinate Update)

The overall iteration complexity is O(KL) instead of O(KT).

= Efficient for sparse Z




Locally Greedy Coordinate Descent [Moreau et al., 2018]

We introduced the LGCD method which is an extension of GCD.
@ @ @

coordinates of Z
With a partition Cp, of the signal domain [1, K] x [0, 7’[
(m—=1)T mT
=[1,K —_—
Cm =1, K] x [, T
The coordinate to update is chosen greedily on a sub-domain Cp,

% =2L—-1 = O(Coordinate selection) = O(Coordinate Update)

The overall iteration complexity is O(KL) instead of O(KT).

= Efficient for sparse Z = Can be efficiently parallelized.
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Fast optimization

Comparison of the coordinate selection strategy for CD on simulated
signals

We set K =10, L = 150, A = 0.1\ ax

B Greedy I Random A LGCD

104 .

Runtime [sec]
= =
o o
N w

=

o
e
1

100 d

T=150L T=750L
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Fast optimization

Comparison with univariate methods on somato dataset with
T =134,700, K =8 and L = 128

HEl Garcia-Cardona et al (2017) W Jas et al (2017) LBFGS
Bl Jas et al (2017) FISTA 77/, Proposed (univariate)

576



Fast optimization

Comparison with multivariate methods on somato dataset with
T =134,700, K=8, P=5and L =128

HN Wohlberg (2016) E#& Proposed (multivariate) #2727 Proposed (rank-1)

103 |

Time (s)

A=3.0 A=10.0
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