A framework for bilevel optimization that enables stochastic and global variance reduction algorithms

Thomas Moreau INRIA Saclay

Joint work with M. Dagréou, P. Ablin, S. Vaiter and Z. Ramzi

Bi-level problem: Optimization problem with two levels

Goal: Optimize the value function h whose value depends on the result of another optimization problem.

Selecting the best model:

- G is the training loss and θ are the parameters of the model.
- Select the hyper-parameter λ to get the best validation loss F.

Hyperparameter optimization: λ is a regularization parameter:

Selecting the best model:

- G is the training loss and θ are the parameters of the model.
- Select the hyper-parameter λ to get the best validation loss F.

Data augmentation: λ parametrizes the transformations distribution.

Selecting the best model:

- G is the training loss and θ are the parameters of the model.
- Select the hyper-parameter λ to get the best validation loss F.

Neural Architecture Search: λ parametrizes the architecture.

Bi-level optimization problems: Implicit Deep Learning

Deep Equilibrium Network:

$$\begin{cases} \min_{\lambda} h(\lambda) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(y_i, \theta^*(X_i, \lambda)) \\ s.t. \quad \theta^*(X_i, \lambda) = g_{\lambda}(\theta^*(X_i, \lambda)) \end{cases}$$

Output of the network is the root of $G(\theta, \lambda) = \theta - g_{\lambda}(\theta) = 0$.

Mimic infinite depth:

$$heta^{(t+1)} = g_\lambda(heta^{(t)}) \quad t o \infty \;\;.$$

- Efficient memory
- Slow runtime

Solving bi-level optimization

<u>Black box methods</u>: Take $\{\lambda_k\}_k$ and compute min_k $h(\lambda_k)$

► Grid-Search ► Random-Search ► Bayesian-Optimization

 \Rightarrow Do not scale well with the dimension

First order methods: Gradient descent on h

Iterate in the steepest direction:

$$\lambda^{t+1} = \lambda^t - \rho^t \nabla h(\lambda)$$

- Gradient $\nabla h(\lambda) = \frac{d F(\lambda, \theta^*(\lambda))}{d \lambda}$
- Step size ρ^t .

Value function definition:

 $h(\lambda) = F(\lambda, \theta^*(\lambda))$

Value function gradient:

$$\nabla h(\lambda) = \nabla_1 F(\lambda, \theta^*) - \nabla_{21}^2 G(\lambda, \theta^*) \Big[\nabla_{22}^2 G(\lambda, \theta^*) \Big]^{-1} \nabla_2 F(\lambda, \theta^*)$$

Value function definition:

$$h(\lambda) = F(\lambda, \theta^*(\lambda))$$

Value function gradient:

$$\nabla h(\lambda) = \nabla_1 F(\lambda, \theta^*) - \nabla_{21}^2 G(\lambda, \theta^*) \Big[\nabla_{22}^2 G(\lambda, \theta^*) \Big]^{-1} \nabla_2 F(\lambda, \theta^*)$$

Need to compute the solution of the inner

Computing the gradient of h

Value function definition:

$$h(\lambda) = F(\lambda, \theta^*(\lambda))$$

Value function gradient:

$$\nabla h(\lambda) = \nabla_1 F(\lambda, \theta^*) - \nabla_{21}^2 G(\lambda, \theta^*) \Big[\nabla_{22}^2 G(\lambda, \theta^*) \Big]^{-1} \nabla_2 F(\lambda, \theta^*)$$

- Need to compute the solution of the inner
- Need to solve a $p \times p$ linear system

$$\mathsf{v}^*(\lambda) = \left[
abla_{22}^2 \mathsf{G}(\lambda, heta^*)
ight]^{-1}
abla_2 \mathsf{F}(\lambda, heta^*)$$

Approximate bilevel optimization

Approximating the Hypergradient

Two-loops approaches

Idea: Approximate $\theta^*(\lambda^t)$ and $v^*(\lambda^t)$ at each iteration.

Two-loops approaches

Idea: Approximate $\theta^*(\lambda^t)$ and $v^*(\lambda^t)$ at each iteration.

• Compute
$$\theta^t$$
 such that $\|\theta^t - \theta^*(\lambda^t)\|_2 \le \epsilon_t$,
iterative solver *e.g.* L-BFGS

• Compute hypergradient $g^t = \nabla_1 F(\lambda^t, \theta^t) + \nabla_{12}^2 G(\lambda^t, \theta^t) v^t$ with $v^t \approx \left[\nabla_{22}^2 G(\lambda^t, \theta^t)\right]^{-1} \nabla_2 F(\lambda^t, \theta^t)$ with error ϵ_t , linear system solver *e.g.* CG

• Update λ^t with $\lambda^{t+1} = \lambda^t - \rho^t g^t$.

Two-loops approaches

Idea: Approximate $\theta^*(\lambda^t)$ and $v^*(\lambda^t)$ at each iteration.

• Compute
$$\theta^t$$
 such that $\|\theta^t - \theta^*(\lambda^t)\|_2 \le \epsilon_t$,
iterative solver $e \in [1-BE0]$

• Compute hypergradient $g^t = \nabla_1 F(\lambda^t, \theta^t) + \nabla_{12}^2 G(\lambda^t, \theta^t) v^t$ with $v^t \approx \left[\nabla_{22}^2 G(\lambda^t, \theta^t)\right]^{-1} \nabla_2 F(\lambda^t, \theta^t)$ with error ϵ_t , linear system solver *e.g.* CG

• Update
$$\lambda^t$$
 with $\lambda^{t+1} = \lambda^t - \rho^t g^t$.

Theorem (Two-loops Convergence ; Pedregosa 2016)

If $\sum_t \epsilon_t < \infty$ and the step-sizes are chosen appropriatly, then the algorithm converges to a stationary point of h i.e.

$$\|
abla h(\lambda^t)\|_2 o 0$$
 .

Further linear system approximation v^*

Linear system solution $v^*(\lambda^t)$ is a by-product.

 \Rightarrow Avoid computing it as much as possible.

Proposed Methods:

- Conjugate Gradient
- Jacobian-Free method
 - $\nabla_{22}^2 G(\lambda^t, \theta^t) \approx Id$

Algorithm unrolling (backprop.)

Neumann iterations

$$abla_{22}^2 \mathcal{G}(\lambda^t, heta^t)^{-1} pprox \sum_k (\mathit{Id} -
abla_{22}^2 \mathcal{G}(\lambda^t, heta^t))^k$$

SHINE

[Pedregosa 2016, Lorraine et al. 2020, Luketina et al. 2016, ...]

Quasi Newton 101:

Solving
$$\theta^*(\lambda) = \operatorname{argmin}_{\theta} G(\lambda, \theta)$$

Newton Method

Quasi-Newton Method

$$\begin{split} \theta^{t+1} &= \theta^t - \left[\nabla^2 \mathcal{G}(\theta^t)\right]^{-1} \nabla \mathcal{G}(\theta^t) & \theta^{t+1} = \theta^t - B_t^{-1} \nabla \mathcal{G}(\theta^t) \\ B_t^{-1} \text{: low-rank approx. of } \nabla^2 \mathcal{G}(\theta^t)^{-1}. \end{split}$$

Quasi Newton 101:

Solving
$$\theta^*(\lambda) = \operatorname{argmin}_{\theta} G(\lambda, \theta)$$

Newton Method

Quasi-Newton Method

$$\theta^{t+1} = \theta^t - \left[\nabla^2 G(\theta^t) \right]^{-1} \nabla G(\theta^t) \qquad \qquad \theta^{t+1} = \theta^t - B_t^{-1} \nabla G(\theta^t) \\ B_t^{-1}: \text{ low-rank approx. of } \nabla^2 G(\theta^t)^{-1}.$$

 \Rightarrow **SHINE** propose to use B_t^{-1} to approximate $v^*(\lambda^t)$

$$g^{t} = \nabla_{1} F(\lambda^{t}, \theta^{t}) + \nabla_{12}^{2} G(\lambda^{t}, \theta^{t}) B_{t}^{-1} \nabla_{2} F(\lambda^{t}, \theta^{t})$$

Logistic Regression with ℓ_2 -regularisation on 2 datasets:

Stochastic Bilevel Optimization

Stochastic bilevel optimization

$$F(\lambda,\theta) = \frac{1}{m} \sum_{j=1}^{m} F_j(\lambda,\theta), \quad G(\lambda,\theta) = \frac{1}{n} \sum_{i=1}^{n} G_i(\lambda,\theta)$$

Stochastic bilevel optimization

$$F(\lambda,\theta) = \frac{1}{m} \sum_{j=1}^{m} F_j(\lambda,\theta), \quad G(\lambda,\theta) = \frac{1}{n} \sum_{i=1}^{n} G_i(\lambda,\theta)$$

Stochastic updates:

- Compute θ^t with SGD,
- Compute stochastic $g^t = \nabla_1 F_j(\lambda^t, \theta^t) + \nabla_{12}^2 G_i(\lambda^t, \theta^t) v^t$ with $v^t \approx \left[\nabla_{22}^2 G_i(\lambda^t, \theta^t)\right]^{-1} \nabla_2 F_j(\lambda^t, \theta^t)$,
- Update λ^t with g^t .

Stochastic bilevel optimization

$$F(\lambda,\theta) = \frac{1}{m} \sum_{j=1}^{m} F_j(\lambda,\theta), \quad G(\lambda,\theta) = \frac{1}{n} \sum_{i=1}^{n} G_i(\lambda,\theta)$$

Stochastic updates:

- Compute θ^t with SGD,
- Compute stochastic $g^t = \nabla_1 F_j(\lambda^t, \theta^t) + \nabla_{12}^2 G_i(\lambda^t, \theta^t) v^t$ with $v^t \approx \left[\nabla_{22}^2 G_i(\lambda^t, \theta^t)\right]^{-1} \nabla_2 F_j(\lambda^t, \theta^t),$
- Update λ^t with g^t .

Problem:

$$\left[\sum_{i=1}^{n} \nabla_{22}^{2} G_{i}(\lambda, \theta^{*}(\lambda))\right]^{-1} \neq \sum_{i=1}^{n} \left[\nabla_{22}^{2} G_{i}(\lambda, \theta^{*}(\lambda))\right]^{-1}$$

Stochastic approximation of
$$v^t = \left[
abla_{22}^2 G(\lambda^t, heta^t) \right]^{-1}
abla_2 F_j(\lambda^t, heta^t).$$

▶ Neumann approximations [Ghadimi et al. 2018, Ji et al. 2021]:

$$v^{t} \approx \eta \sum_{q=0}^{Q} \prod_{k=0}^{q} \left(I - \eta \nabla_{22}^{2} G_{i_{k}}(\lambda^{t}, \theta^{t}) \right) \nabla_{2} F_{j}(\lambda^{t}, \theta^{t})$$

Stochastic approximation of
$$v^t = \left[\nabla_{22}^2 G(\lambda^t, \theta^t)\right]^{-1} \nabla_2 F_j(\lambda^t, \theta^t).$$

Neumann approximations [Ghadimi et al. 2018, Ji et al. 2021]:

$$v^{t} \approx \eta \sum_{q=0}^{Q} \prod_{k=0}^{q} \left(I - \eta \nabla_{22}^{2} G_{i_{k}}(\lambda^{t}, \theta^{t}) \right) \nabla_{2} F_{j}(\lambda^{t}, \theta^{t})$$

Stochastic Gradient Descent [Grazzi et al. 2021, Arbel et al. 2021]

$$v^{t} \in \operatorname*{argmin}_{v \in \mathbb{R}^{p}} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2} \langle \nabla_{22}^{2} G_{i}(\lambda^{t}, \theta^{t}) v, v \rangle + \frac{1}{n} \sum_{j=1}^{m} \langle \nabla_{2} F_{j}(\lambda^{t}, \theta^{t}), v \rangle$$

Stochastic approximation of
$$v^t = \left[\nabla_{22}^2 G(\lambda^t, \theta^t)\right]^{-1} \nabla_2 F_j(\lambda^t, \theta^t).$$

Neumann approximations [Ghadimi et al. 2018, Ji et al. 2021]:

$$v^{t} \approx \eta \sum_{q=0}^{Q} \prod_{k=0}^{q} \left(I - \eta \nabla_{22}^{2} G_{i_{k}}(\lambda^{t}, \theta^{t}) \right) \nabla_{2} F_{j}(\lambda^{t}, \theta^{t})$$

Stochastic Gradient Descent [Grazzi et al. 2021, Arbel et al. 2021]

$$v^{t} \in \operatorname*{argmin}_{v \in \mathbb{R}^{p}} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2} \langle \nabla_{22}^{2} G_{i}(\lambda^{t}, \theta^{t}) v, v \rangle + \frac{1}{n} \sum_{j=1}^{m} \langle \nabla_{2} F_{j}(\lambda^{t}, \theta^{t}), v \rangle$$

Stochastic approximation of
$$v^t = \left[\nabla_{22}^2 G(\lambda^t, \theta^t)\right]^{-1} \nabla_2 F_j(\lambda^t, \theta^t).$$

Neumann approximations [Ghadimi et al. 2018, Ji et al. 2021]:

$$v^{t} \approx \eta \sum_{q=0}^{Q} \prod_{k=0}^{q} \left(I - \eta \nabla_{22}^{2} G_{i_{k}}(\lambda^{t}, \theta^{t}) \right) \nabla_{2} F_{j}(\lambda^{t}, \theta^{t})$$

Stochastic Gradient Descent [Grazzi et al. 2021, Arbel et al. 2021]

$$v^{t} \in \operatorname*{argmin}_{v \in \mathbb{R}^{p}} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2} \langle \nabla_{22}^{2} G_{i}(\lambda^{t}, \theta^{t}) v, v \rangle + \frac{1}{n} \sum_{j=1}^{m} \langle \nabla_{2} F_{j}(\lambda^{t}, \theta^{t}), v \rangle$$

 \Rightarrow Still need to solve 2 optimization problems for every updates on the outer variable.

One-loop Approaches

Toward linear updates

References

- Dagréou, M., Ablin, P., Vaiter, S., and TM (2022). A framework for bilevel optimization that enables stochastic and global variance reduction algorithms, In *NeurIPS*
- Dagréou, M., TM, Vaiter, S., and Ablin, P. (2023). A Lower Bound and a Near-Optimal Algorithm for Bilevel Empirical Risk Minimization

Three variables to maintain:

- $\theta^t \rightarrow$ solution to the inner problem
- $\blacktriangleright \ v^t \rightarrow \text{solution of the linear system}$
- $\blacktriangleright \ \lambda^t \rightarrow \text{solution of the outer problem}$

Idea: evolve in θ^t , v^t and λ^t at the same time following well chosen directions.

 $D_{\theta}(\theta, \mathbf{v}, \lambda) = \nabla_2 G(\lambda, \theta)$ gradient step toward $\theta^*(\lambda)$

$$\begin{split} D_{\theta}(\theta, \mathbf{v}, \lambda) &= \nabla_2 G(\lambda, \theta) \quad \text{gradient step toward } \theta^*(\lambda) \\ D_{\mathbf{v}}(\theta, \mathbf{v}, \lambda) &= \nabla_{22}^2 G(\lambda, \theta) \mathbf{v} + \nabla_2 F(\lambda, \theta) \\ &\quad \text{gradient step toward } - \left[\nabla_{11}^2 G(\lambda, \theta)\right]^{-1} \nabla_2 F(\lambda, \theta) \end{split}$$

$$\begin{split} D_{\theta}(\theta, \mathbf{v}, \lambda) &= \nabla_2 G(\lambda, \theta) \quad \text{gradient step toward } \theta^*(\lambda) \\ D_{\mathbf{v}}(\theta, \mathbf{v}, \lambda) &= \nabla_{22}^2 G(\lambda, \theta) \mathbf{v} + \nabla_2 F(\lambda, \theta) \\ & \text{gradient step toward } - \left[\nabla_{11}^2 G(\lambda, \theta)\right]^{-1} \nabla_2 F(\lambda, \theta) \\ D_{\lambda}(\theta, \mathbf{v}, \lambda) &= \nabla_{12}^2 G(\lambda, \theta) \mathbf{v} + \nabla_1 F(\lambda, \theta) \\ & \text{gradient step toward } \lambda^* \end{split}$$

$$\begin{split} D_{\theta}(\theta, \mathbf{v}, \lambda) &= \nabla_2 G(\lambda, \theta) \quad \text{gradient step toward } \theta^*(\lambda) \\ D_{\mathbf{v}}(\theta, \mathbf{v}, \lambda) &= \nabla_{22}^2 G(\lambda, \theta) \mathbf{v} + \nabla_2 F(\lambda, \theta) \\ & \text{gradient step toward } - \left[\nabla_{11}^2 G(\lambda, \theta)\right]^{-1} \nabla_2 F(\lambda, \theta) \\ D_{\lambda}(\theta, \mathbf{v}, \lambda) &= \nabla_{12}^2 G(\lambda, \theta) \mathbf{v} + \nabla_1 F(\lambda, \theta) \\ & \text{gradient step toward } \lambda^* \end{split}$$

$\label{eq:algorithm} \begin{array}{l} \hline \textbf{Algorithm} \\ \hline \textbf{For} \ t = 1...T: \\ \textbf{1. Update} \ \theta^{t+1} = \theta^t - \rho^t D^t_\theta \\ \textbf{2. Update} \ v^{t+1} = v^t - \rho^t D^t_v \\ \textbf{3. Update} \ \lambda^{t+1} = \lambda^t - \gamma^t D^t_\lambda \end{array}$

Stochastic Update Directions:

$$D_{\theta}(\theta, \mathbf{v}, \lambda) = \frac{1}{n} \sum_{i=1}^{n} \nabla_2 G_i(\lambda, \theta)$$
$$D_{\mathbf{v}}(\theta, \mathbf{v}, \lambda) = \frac{1}{n} \sum_{i=1}^{n} \nabla_{22}^2 G_i(\lambda, \theta) \mathbf{v} + \frac{1}{m} \sum_{j=1}^{m} \nabla_2 F_j(\lambda, \theta)$$
$$D_{\lambda}(\theta, \mathbf{v}, \lambda) = \frac{1}{n} \sum_{i=1}^{n} \nabla_{12}^2 G_i(\lambda, \theta) \mathbf{v} + \frac{1}{m} \sum_{j=1}^{m} \nabla_1 F_j(\lambda, \theta)$$

 \Rightarrow Additive expressions with natural stochastic estimators.

Pick $i \in \{1, \ldots, n\}$ and $j \in \{1, \ldots, m\}$ and take

$$D_{\theta}^{t} = \nabla_{2}G_{i}(\lambda^{t}, \theta^{t})$$
$$D_{v}^{t} = \nabla_{22}^{2}G_{i}(\lambda^{t}, \theta^{t})v^{t} + \nabla_{2}F_{j}(\lambda^{t}, \theta^{t})$$
$$D_{\lambda}^{t} = \nabla_{12}^{2}G_{i}(\lambda^{t}, \theta^{t})v^{t} + \nabla_{1}F_{j}(\lambda^{t}, \theta^{t})$$

Theorem (Convergence of SOBA)

Under some regularity assumptions on F and G, if h is bounded, then for decreasing step sizes that verify $\rho^t = \alpha t^{-\frac{2}{5}}$ and $\gamma^t = \beta t^{-\frac{3}{5}}$ for some $\alpha, \beta > 0$, the iterates $(\lambda^t)_{1 \le t \le T}$ of SOBA verify

$$\inf_{t\leq T} \mathbb{E}[\|\nabla h(\lambda^t)\|^2] = \mathcal{O}(T^{-\frac{1}{2}}) \; .$$

Natural adaptation of single level stochastic algorithms:

SABA: Adaption of SAGA [Defazio et al. 2014]:

The varianced reduced stochastic gradient estimate is:

$$\nabla_2 G(\lambda^t, \theta^t) = \nabla_2 G_i(\lambda^t, \theta^t) - \nabla_2 G_i(\lambda^{t_i}, \theta^{t_i}) + \frac{1}{n} \sum_{k=1}^n \nabla_2 G_k(\lambda^{t_k}, \theta^{t_k}))$$

Natural adaptation of single level stochastic algorithms:

SABA: Adaption of SAGA [Defazio et al. 2014]:

The varianced reduced stochastic gradient estimate is:

$$\nabla_2 G(\lambda^t, \theta^t) = \nabla_2 G_i(\lambda^t, \theta^t) - \nabla_2 G_i(\lambda^{t_i}, \theta^{t_i}) + \frac{1}{n} \sum_{k=1}^n \nabla_2 G_k(\lambda^{t_k}, \theta^{t_k}))$$

SRBA: Adaption of SARHA [Nguyen et al. 2017]

The varianced reduced stochastic gradient estimate is:

$$\nabla_2 G(\lambda^t, \theta^t) = \nabla_2 G_i(\lambda^t, \theta^t) - \nabla_2 G_i(\lambda^{t-1}, \theta^{t-1}) + \nabla_2 G(\lambda^{T_t}, \theta^{T_t})$$

Natural adaptation of single level stochastic algorithms:

SABA: Adaption of SAGA [Defazio et al. 2014]:

The varianced reduced stochastic gradient estimate is:

$$\nabla_2 G(\lambda^t, \theta^t) = \nabla_2 G_i(\lambda^t, \theta^t) - \nabla_2 G_i(\lambda^{t_i}, \theta^{t_i}) + \frac{1}{n} \sum_{k=1}^n \nabla_2 G_k(\lambda^{t_k}, \theta^{t_k}))$$

SRBA: Adaption of SARHA [Nguyen et al. 2017]

The varianced reduced stochastic gradient estimate is:

$$\nabla_2 G(\lambda^t, \theta^t) = \nabla_2 G_i(\lambda^t, \theta^t) - \nabla_2 G_i(\lambda^{t-1}, \theta^{t-1}) + \nabla_2 G(\lambda^{T_t}, \theta^{T_t})$$

Similar updates for the 5 quantities:

$$\begin{aligned} \nabla_2 G(\lambda^t, \theta^t), \quad \nabla_2 F(\lambda^t, \theta^t), \quad \nabla_1 F(\lambda^t, \theta^t) \\ \nabla_{12}^2 G(\lambda^t, \theta^t) v^t, \quad \nabla_{22}^2 G(\lambda^t, \theta^t) v^t \end{aligned}$$

We denote N = m + n

Theorem (Sample complexity of SABA)

Under some regularity assumptions on F and G, with constant and small enough step sizes, SABA achieves an ϵ -stationary point with a sample complexity of $\mathcal{O}(N^{\frac{2}{3}}\epsilon^{-1})$.

Theorem (Sample complexity of SRBA)

Under some regularity assumptions on F and G, with constant and small enough step sizes, SRBA achieves an ϵ -stationary point with a sample complexity of $\mathcal{O}(N^{\frac{1}{2}}\epsilon^{-1})$.

 \Rightarrow This matches the sample complexity of single level algorithms.

 \Rightarrow We show that SRBA is near-optimal for a class of bilevel problems.

Setting:

- ► Task: binary classification
- IJCNN1 dataset: 49 990 training samples, 91 701 validation samples, 22 features
- Training loss:

$$G(\theta,\lambda) = rac{1}{n}\sum_{i=1}^{n}\log(1+\exp(-y_i\langle x_i,\theta
angle)) + rac{1}{2}\sum_{k=1}^{p}e^{\lambda_k} heta_k^2$$

► Validation loss: logistic loss

$$F(\theta, \lambda) = rac{1}{m} \sum_{j=1}^{m} \log(1 + \exp(-y_i^{val} \langle x_i^{val}, \theta \rangle))$$

Hyperparameter selection on ℓ^2 regularized logistic regression

Benchopt

Reproducing this comparison and adding solvers and tasks is easy as:

git clone https://github.com/benchopt/benchmark_bilevel benchopt run ./benchmark_bilevel

Benchopt principle

A benchmark is a directory with:

- ► An objective.py file with an Objective that define the metrics.
- ► A directory datasets with Dataset that define inner and outer tasks.
- A directory solvers with one file per Solver

The $_{enchopt}$ client runs a cross product and generates a parquet file + HTML visualisation to explore the results.

Benchopt: principle

 \Rightarrow Each object can be parametrized so multiple scenario can be tested.

Making tedious tasks easy:

- The propose framework allows to adapt many single-level algorithms to the bilevel setting.
- We get similar convergence rate in the bilevel setting, provided that we solve the inner problem fast enough.
- Benchopt provides a benchmark to quickly test many ideas.
- One limitation is often the selection of learning rates.

 \Rightarrow Toward adaptive algorithms for bilevel optimization?

Slides will be on my web page:

tommoral.github.io

Algorithm Unrolling

Differentiable inner problem solvers

References

- Shaban, A., Cheng, C.-A., Hatch, N., and Boots, B. (2019). Truncated Back-propagation for Bilevel Optimization, In AISTAT
- Ablin, P., Peyré, G., and TM (2020). Super-efficiency of automatic differentiation for functions defined as a minimum, In ICML
- Malézieux, B., Michel, F., Kowalski, M., and TM (2022). Where prior learning can and can't work in unsupervised inverse problems

Differentiable unrolling of θ^t

Idea: Compute $\frac{\partial \theta^t}{\partial \lambda}(\lambda) \approx \frac{\partial \theta^*}{\partial \lambda}(\lambda)$ using automatic differentiation through an iterative algorithm.

Differentiable unrolling of θ^t

Idea: Compute $\frac{\partial \theta^t}{\partial \lambda}(\lambda) \approx \frac{\partial \theta^*}{\partial \lambda}(\lambda)$ using automatic differentiation through an iterative algorithm.

For the gradient descent algorithm:

$$heta^{t+1} = heta^t -
ho rac{\partial \mathsf{G}}{\partial heta}(\lambda, heta^t)$$

The Jacobian reads,

$$\frac{\partial \theta^{t+1}}{\partial \lambda}(\lambda) = \left(Id - \rho \frac{\partial^2 G}{\partial \theta^2}(\lambda, \theta^t) \right) \frac{\partial \theta^t}{\partial \lambda}(\lambda) - \rho \frac{\partial^2 G}{\partial \theta \partial \lambda}(\lambda, \theta^t)$$

Differentiable unrolling of θ^t

Idea: Compute $\frac{\partial \theta^t}{\partial \lambda}(\lambda) \approx \frac{\partial \theta^*}{\partial \lambda}(\lambda)$ using automatic differentiation through an iterative algorithm.

For the gradient descent algorithm:

$$\theta^{t+1} = \theta^t - \rho \frac{\partial G}{\partial \theta}(\lambda, \theta^t)$$

The Jacobian reads,

$$\frac{\partial \theta^{t+1}}{\partial \lambda}(\lambda) = \left(Id - \rho \frac{\partial^2 G}{\partial \theta^2}(\lambda, \theta^t) \right) \frac{\partial \theta^t}{\partial \lambda}(\lambda) - \rho \frac{\partial^2 G}{\partial \theta \partial \lambda}(\lambda, \theta^t)$$

 $\Rightarrow \text{ Under smoothness conditions, if } \theta^t \text{ converges to } \theta^*,$ this converges toward $\frac{\partial \theta^*}{\partial \lambda}(\lambda)$ **Context:** min-min problems where F = G

$$\Rightarrow$$
 Here, $rac{\partial F}{\partial heta}(\lambda, heta^*) = 0$

Analysis for min-min problems

[Ablin et al. 2020]

Context: min-min problems where F = G

$$\Rightarrow$$
 Here, $rac{\partial F}{\partial heta}(\lambda, heta^*) = 0$

We consider the 3 gradient estimates:

Analysis for min-min problems

[Ablin et al. 2020]

Context: min-min problems where F = G

$$\Rightarrow$$
 Here, $rac{\partial F}{\partial heta}(\lambda, heta^*) = 0$

We consider the 3 gradient estimates:

Convergence rates: For G strongly convex in θ ,

$$\begin{aligned} |g_t^1(x) - g^*(x)| &= O\left(|\theta^t(\lambda) - \theta^*(\lambda)|\right), \\ |g_t^2(x) - g^*(x)| &= o\left(|\theta^t(\lambda) - \theta^*(\lambda)|\right), \\ |g_t^3(x) - g^*(x)| &= O\left(|\theta^t(\lambda) - \theta^*(\lambda)|^2\right). \end{aligned}$$

Context: dictionary learning, F = G with an ℓ_1 -regularization for θ .

Issue: The implicit gradient quality mostly depends on the support identifiaction,

$$\left(\frac{\partial \theta^*}{\partial D_l}\right)_{S^*} = -(D_{:,S^*}^\top D_{:,S^*})^{-1}(D_l \theta^{*\top} + (D_l^\top \theta^* - y_l) Id_n)_{S^*} ,$$

 \Rightarrow Is the autodiff approach better than the analytic one?

On the support, the function is smooth and we recover the same convergence.

$$\|J_l^N - J_l^*\| - \|S_N - S^*\|_0$$

$$\int_{10^0}^{10^2} \int_{10^2}^{10^{-2}} \int_{10^{-8}}^{10^{-8}} \int_{10^0}^{10^2} \int_{10^2}^{10^4} \int_{10^4}^{10^{-8}} \int_{10^0}^{10^2} \int_{10^2}^{10^4} \int_{10^4}^{10^{-8}} \int_{10^{-10^2}}^{10^{-10^2}} \int_{10^4}^{10^{-10^2}} \int_{10^4}^{10^{-10^2}} \int_{10^4}^{10^{-10^2}} \int_{10^4}^{10^{-10^2}} \int_{10^4}^{10^{-10^2}} \int_{10^{-10^2}}^{10^{-10^2}} \int_{10^{-10^2}}^{10^{-10^2}}} \int_{10^{-10^2}}^{10^{-10^2}} \int_{10^{-10^2}}^{10^{-10^2}} \int_{10^{-10^2}}^{10^{-10^2}} \int_{10^{-10^2}}^{10^{-10^2}}} \int_{10^{-10^2}}^{10^{-10^2}} \int_{10^{-10^2}}^{10^{-10^2}}} \int_{10^{-10^2}}^{10^{-10^2}} \int_{10^{-10^2}}^{10^{-10^2}}} \int_{10^{-10^2}}^{10^{-10^2}}}$$

Outside of the support, errors can accumulate and the gradient can blow up.

Hypergradient computation

References

 Lorraine, J., Vicol, P., and Duvenaud, D. (2020). Optimizing millions of hyperparameters by implicit differentiation, In AISTATS

Linear system approximation v^*

Solving the linear system for $v^*(\lambda^t)$,

• Core idea is to not inverse the hessian $\frac{\partial^2 G}{\partial \theta^2}(\lambda^t, \theta^t)$,

We are only interested in one direction.

• Only rely on Hessian-vector product (Hvp).

Can be computed efficiently

Proposed Methods:

- L-BFGS
- Jacobian-Free method

$$\frac{\partial^2 G}{\partial \theta^2}(\lambda^t, \theta^t) \approx \textit{Id}$$

- Conjugate Gradient
- Neumann iterations

$$\frac{\partial^2 G}{\partial \theta^2} (\lambda^t, \theta^t)^{-1} \approx \sum_k (Id - \frac{\partial^2 G}{\partial \theta^2} (\lambda^t, \theta^t))^k$$

[Pedregosa 2016, Lorraine et al. 2020, Luketina et al. 2016]