Optimizing the Optimizer: Bilevel Learning and Hypergradient Computation

Thomas Moreau INRIA Saclay - MIND Team

What is Bilevel optimization?

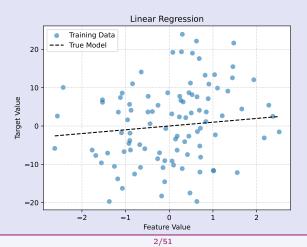
You can follow this intro with a complemetary notebook:

https://tinyurl.com/bilevel-hpo

Learning a linear ML model

Setup:

- ▶ Regression task $(X_i, y_i)_{i=1}^N \in \mathbb{R}^p \times \mathbb{R}$
- ▶ Linear model: predict y from X with $\langle \theta, X \rangle$.



Learning a linear ML model

Empirical risk minimization with ℓ_2 loss:

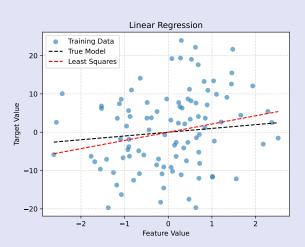
$$G(\theta) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \langle \theta, X_i \rangle)^2$$

Training the model:

$$\theta^* = \operatorname*{argmin}_{\theta} \mathcal{G}(\theta)$$

Avoiding overfitting

Here, we don't have many samples and there is noise. The model we learn is slightly off



Avoiding overfitting with a regularization

Regularized ERM with ℓ_2 loss:

$$G(\theta, \lambda) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \langle \theta, X_i \rangle)^2 + \lambda \|\theta\|_2^2$$

Training the model:

$$\theta^*(\lambda) = \underset{\theta}{\operatorname{argmin}} G(\theta, \lambda)$$

Avoiding overfitting with a regularization

Regularized ERM with ℓ_2 loss:

$$G(\theta, \lambda) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \langle \theta, X_i \rangle)^2 + \lambda \|\theta\|_2^2$$

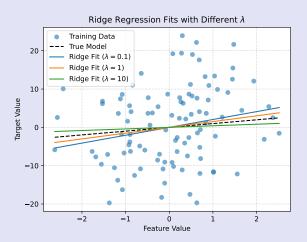
Training the model:

$$\theta^*(\lambda) = \operatorname*{argmin}_{\theta} G(\theta, \lambda)$$

$$\Rightarrow$$
 How to choose λ ?

Fitting with regularization

For each regularisation we get a different solution



Evaluating the generalization

We want to find λ that ensure the best generalization of $\theta^*(\lambda)$.

Validation loss: use held out data $(X_i^{val}, y_i^{val})_{i=1}^M$

$$F(\theta) = \frac{1}{M} \sum_{i=1}^{M} (y_i^{val} - \langle \theta, X_i^{val} \rangle)^2$$

Independent estimate of the risk of the model.

Evaluating the generalization

We want to find λ that ensure the best generalization of $\theta^*(\lambda)$.

Validation loss: use held out data $(X_i^{val}, y_i^{val})_{i=1}^M$

$$F(\theta) = \frac{1}{M} \sum_{i=1}^{M} (y_i^{val} - \langle \theta, X_i^{val} \rangle)^2$$

Independent estimate of the risk of the model.

 \Rightarrow Find λ that gives a model $\theta^*(\lambda)$ with a good validation loss.

Evaluating the generalization

Choose λ that gives the best validation error

The Grid Search

- ▶ Select a grid of parameters $\{\lambda_1, \ldots \lambda_K\}$.
- ▶ Train a model for each parameter λ_k : $\theta^*(\lambda_k)$.
- ▶ Evaluate the performance with the validation loss $F(\theta^*(\lambda_k))$.
- Keep the value λ_k with the best performance.

The Grid Search

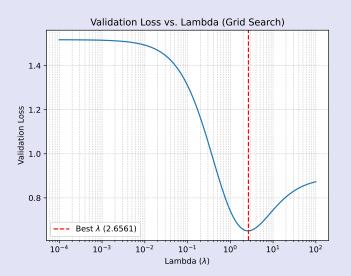
- ▶ Select a grid of parameters $\{\lambda_1, \ldots \lambda_K\}$.
- ▶ Train a model for each parameter λ_k : $\theta^*(\lambda_k)$.
- ▶ Evaluate the performance with the validation loss $F(\theta^*(\lambda_k))$.
- Keep the value λ_k with the best performance.

Mathematical rewritting:

$$\begin{cases} \min_{\lambda \in \{\lambda_1, \dots \lambda_K\}} F(\theta^*(\lambda)) \\ s.t. \quad \theta^*(\lambda) = \operatorname{argmin}_{\theta} G(\theta, \lambda) \end{cases}$$

The Grid Search illustration

Achieve a trade-off between between overfitting and over-simple model



The Grid Search issues

Regularized ERM with ℓ_2 loss:

$$G(\theta, \lambda) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \langle \theta, X_i \rangle)^2 + \lambda \|\theta\|_2^2$$

The Grid Search issues

Regularized ERM with ℓ_2 loss:

$$G(\theta, \lambda) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \langle \theta, X_i \rangle)^2 + \lambda \|\theta\|_2^2$$

► Grid search precision is uniform: many points are "wasted" in non-informative zones.

Regularized ERM with ℓ_2 loss:

$$G(\theta,\lambda) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \langle \theta, X_i \rangle)^2 + \sum_{k=1}^{p} \lambda_k \theta_k^2$$

- Grid search precision is uniform: many points are "wasted" in non-informative zones.
- ► Grid search is inefficient in high dimension as the grid size grows exponentially with the number of parameters.

Regularized ERM with ℓ_2 loss:

$$G(\theta,\lambda) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \langle \theta, X_i \rangle)^2 + \sum_{k=1}^{p} \lambda_k \theta_k^2$$

- Grid search precision is uniform: many points are "wasted" in non-informative zones.
- ► Grid search is inefficient in high dimension as the grid size grows exponentially with the number of parameters.

\Rightarrow Can we use first-order methods to minimize $h(\lambda) = F(\theta^*(\lambda))$?

Bi-level optimization

Bi-level problem: Optimization problem with two levels

$$\min_{\lambda} h(\lambda) = F(\lambda, \theta^*(\lambda)) \longleftarrow_{\lambda} \textit{Outer function}$$

$$s.t. \quad \theta^*(\lambda) = \underset{\theta}{\operatorname{argmin}} \ G(\lambda, \theta)$$

$$\bigvee_{\text{Inner function/Problem}}$$

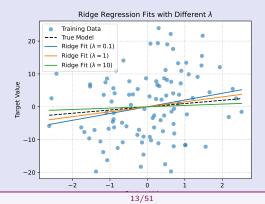
Goal: Optimize the value function h whose value depends on the result of another optimization problem.

Bi-level optimization problems: Model selection

Selecting the best model:

- ▶ G is the training loss and θ are the parameters of the model.
- ▶ Select the hyper-parameter λ to get the best validation loss F.

Hyperparameter optimization: λ is a regularization parameter:

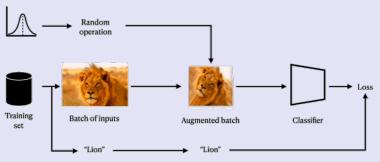


Bi-level optimization problems: Model selection

Selecting the best model:

- ▶ G is the training loss and θ are the parameters of the model.
- ▶ Select the hyper-parameter λ to get the best validation loss F.

Data augmentation: λ parametrizes the transformations distribution.

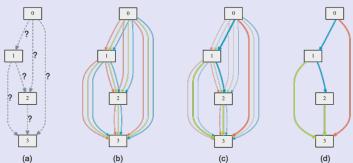


Bi-level optimization problems: Model selection

Selecting the best model:

- ▶ G is the training loss and θ are the parameters of the model.
- \blacktriangleright Select the hyper-parameter λ to get the best validation loss F.

Neural Architecture Search: λ parametrizes the architecture.



Bi-level optimization problems: Implicit Deep Learning

Deep Equilibrium Network:

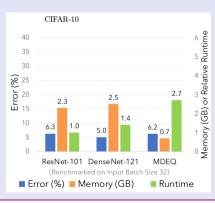
$$\begin{cases} \min_{\lambda} h(\lambda) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(y_i, \theta^*(X_i, \lambda)) \\ s.t. \quad \theta^*(X_i, \lambda) = g_{\lambda}(\theta^*(X_i, \lambda)) \end{cases}$$

Output of the network is the root of $G(\theta, \lambda) = \theta - g_{\lambda}(\theta) = 0$.

▶ Mimic infinite depth:

$$\theta^{(t+1)} = g_{\lambda}(\theta^{(t)}) \quad t \to \infty .$$

- ► Efficient memory
- ▶ Slow runtime



Solving bi-level optimization

Black box methods: Take $\{\lambda_k\}_k$ and compute $\min_k h(\lambda_k)$

- Grid-Search
- Random-Search
- Bayesian-Optimization

 \Rightarrow Do not scale well with the dimension

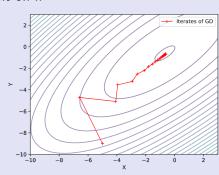
Solving bi-level optimization

First order methods: Gradient descent on h

Iterate in the steepest direction:

$$\lambda^{t+1} = \lambda^t - \rho^t \nabla h(\lambda)$$

- ▶ Gradient $\nabla h(\lambda) = \frac{d F(\lambda, \theta^*(\lambda))}{d \lambda}$
- ▶ Step size ρ^t .



 \Rightarrow How to compute the hyper-gradient $\nabla h(\lambda)$?

Implicit Gradient

Computing the gradient of the value function h

References

- Pedregosa, F. (2016). Hyperparameter optimization with approximate gradient. In ICML
- ► Lorraine, J., Vicol, P., and Duvenaud, D. (2020). Optimizing millions of hyperparameters by implicit differentiation. In *AISTATS*

Value function definition:

$$h(\lambda) = F(\lambda, \theta^*(\lambda))$$

Chain rule:

$$\nabla_{\lambda} h(\lambda) = \nabla_{\lambda} F(\lambda, \theta^*(\lambda)) + (d\theta^*(\lambda))^T \nabla_{\theta} F(\lambda, \theta^*(\lambda))$$

Jacobian of θ^{\ast} - implicit differentiation

Optimality condition for θ^*

$$\nabla_{\theta} G(\lambda, \theta^*(\lambda)) = 0$$

Jacobian of θ^{\ast} - implicit differentiation

Optimality condition for θ^*

$$\nabla_{\theta} G(\lambda, \theta^*(\lambda)) = 0$$

Derivating this equation relative to λ gives:

$$\nabla^2_{\theta\theta}G(\lambda,\theta^*(\lambda))d\theta^*(\lambda) + \nabla^2_{\theta\lambda}G(\lambda,\theta^*(\lambda)) = 0,$$

Jacobian of θ^{\ast} - implicit differentiation

Optimality condition for θ^*

$$\nabla_{\theta} G(\lambda, \theta^*(\lambda)) = 0$$

Derivating this equation relative to λ gives:

$$\nabla^2_{\theta\theta}G(\lambda,\theta^*(\lambda))d\theta^*(\lambda) + \nabla^2_{\theta\lambda}G(\lambda,\theta^*(\lambda)) = 0,$$

Implicit function theorem

$$d\theta^*(\lambda) = -\big[\nabla^2_{\theta\theta}G(\lambda,\theta^*(\lambda))\big]^{-1}\nabla^2_{\theta\lambda}G(\lambda,\theta^*(\lambda)),$$

Value function gradient:

$$\nabla h(\lambda) = \nabla_{\lambda} F(\lambda, \theta^*) - \nabla^2_{\theta \lambda} G(\lambda, \theta^*) \big[\nabla^2_{\theta \theta} G(\lambda, \theta^*) \big]^{-1} \nabla_{\theta} F(\lambda, \theta^*)$$

Value function gradient:

$$\nabla h(\lambda) = \nabla_{\lambda} F(\lambda, \boldsymbol{\theta^*}) - \nabla^2_{\theta \lambda} G(\lambda, \boldsymbol{\theta^*}) \big[\nabla^2_{\theta \theta} G(\lambda, \boldsymbol{\theta^*}) \big]^{-1} \nabla_{\theta} F(\lambda, \boldsymbol{\theta^*})$$

Need to compute the solution of the inner

Value function gradient:

$$\nabla h(\lambda) = \nabla_{\lambda} F(\lambda, \theta^*) - \nabla^2_{\theta \lambda} G(\lambda, \theta^*) \big[\nabla^2_{\theta \theta} G(\lambda, \theta^*) \big]^{-1} \nabla_{\theta} F(\lambda, \theta^*)$$

- Need to compute the solution of the inner
- ▶ Need to solve a $p \times p$ linear system

$$\mathbf{v}^*(\lambda) = \left[
abla_{ heta heta}^2 G(\lambda, heta^*)
ight]^{-1}
abla_{ heta} F(\lambda, heta^*)$$

Computing the Hessian matrix and inverting it is prohibitive for large p.

In practice, we don't need to compute the full Hessian inverse, only the product with a vector $\nabla_{\theta} F(\lambda, \theta^*)$.

[inverse HVP]

And this can be done using an iterative method that only requires Hessian-vector products (HVP)!

[Conjugate Gradient]

Computing the Hessian matrix and inverting it is prohibitive for large p.

In practice, we don't need to compute the full Hessian inverse, only the product with a vector $\nabla_{\theta} F(\lambda, \theta^*)$.

[inverse HVP]

And this can be done using an iterative method that only requires Hessian-vector products (HVP)!

[Conjugate Gradient]

 \Rightarrow HVP can be computed efficiently using Pearlmutter's trick [Pearlmutter 1994]

Use automatic differentiation over automatic differentiation.

A quick detour by automatic differentiation

Automatic differentiation (AD) allows to compute derivatives of functions which is the composition of elementary operations implemented as a computer program.

$$\underbrace{\frac{\partial f}{\partial \theta}(\theta)}_{p \times d} = \underbrace{\frac{\partial z_n}{\partial \theta}}_{=} = \underbrace{\frac{\partial z_n}{\partial z_1}}_{=} \underbrace{\frac{\partial z_1}{\partial \theta}}_{=} = \cdots = \underbrace{\frac{\partial z_n}{\partial z_{n-1}}}_{p \times m_{n-1}} \underbrace{\frac{\partial z_{n-1}}{\partial z_{n-2}}}_{m_{n-1} \times m_{n-2}} \cdots \underbrace{\frac{\partial z_1}{\partial \theta}}_{m_1 \times d}.$$

A quick detour by automatic differentiation

Automatic differentiation (AD) allows to compute derivatives of functions which is the composition of elementary operations implemented as a computer program.

$$\underbrace{\frac{\partial f}{\partial \theta}(\theta)}_{p \times d} = \frac{\partial z_n}{\partial \theta} = \frac{\partial z_n}{\partial z_1} \frac{\partial z_1}{\partial \theta} = \cdots = \underbrace{\frac{\partial z_n}{\partial z_{n-1}}}_{p \times m_{n-1}} \underbrace{\frac{\partial z_{n-1}}{\partial z_{n-2}}}_{m_{n-1} \times m_{n-2}} \cdots \underbrace{\frac{\partial z_1}{\partial \theta}}_{m_1 \times d}.$$

Forward mode AD: compute the Jacobian-vector product (JVP) with a vector $v\mathbb{R}^d$:

$$\frac{\partial f}{\partial \theta}(\theta) \times v = \frac{\partial z_n}{\partial z_{n-1}} \frac{\partial z_{n-1}}{\partial z_{n-2}} \cdots \frac{\partial z_1}{\partial \theta} v .$$

A quick detour by automatic differentiation

Automatic differentiation (AD) allows to compute derivatives of functions which is the composition of elementary operations implemented as a computer program.

$$\underbrace{\frac{\partial f}{\partial \theta}(\theta)}_{p \times d} = \underbrace{\frac{\partial z_n}{\partial \theta}}_{=} = \underbrace{\frac{\partial z_n}{\partial z_1}}_{=} \underbrace{\frac{\partial z_1}{\partial \theta}}_{=} = \cdots = \underbrace{\frac{\partial z_n}{\partial z_{n-1}}}_{p \times m_{n-1}} \underbrace{\frac{\partial z_{n-1}}{\partial z_{n-2}}}_{m_{n-1} \times m_{n-2}} \cdots \underbrace{\frac{\partial z_1}{\partial \theta}}_{m_1 \times d}.$$

Forward mode AD: compute the Jacobian-vector product (JVP) with a vector $v\mathbb{R}^d$:

$$\frac{\partial f}{\partial \theta}(\theta) \times v = \frac{\partial z_n}{\partial z_{n-1}} \frac{\partial z_{n-1}}{\partial z_{n-2}} \cdots \frac{\partial z_1}{\partial \theta} v .$$

Reverse mode AD: compute the vector-Jacobian product (VJP) with a vector $u \in \mathbb{R}^p$:

$$u^{\top} \frac{\partial f}{\partial \theta}(\theta) = u^{\top} \frac{\partial z_n}{\partial z_{n-1}} \frac{\partial z_{n-1}}{\partial z_{n-2}} \cdots \frac{\partial z_1}{\partial \theta} .$$

A quick detour by automatic differentiation

Automatic differentiation (AD) allows to compute derivatives of functions which is the composition of elementary operations implemented as a computer program.

$$\frac{\partial f}{\partial \theta}(\rho) \quad \partial z_n \quad \partial z_n \, \partial z_1 \qquad \partial z_n \quad \partial z_{n-1} \qquad \partial z_1 \\ \text{For more details on AD, see} \\ \hline The Elements of Differentiable} \\ \text{Vector } v\mathbb{R}^c \\ \text{by V. Roulet \& M. Blondel} \\ \end{pmatrix} \text{ with a}$$

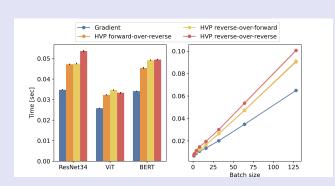
Reverse mode AD: compute the vector-Jacobian product (VJP) with a vector $u \in \mathbb{R}^p$:

$$u^{\top} \frac{\partial f}{\partial \theta}(\theta) = u^{\top} \frac{\partial z_n}{\partial z_{n-1}} \frac{\partial z_{n-1}}{\partial z_{n-2}} \cdots \frac{\partial z_1}{\partial \theta} .$$

Computing a HVP is a simple differentiation over a function that involves a JVP:

$$\nabla^2 f(\theta) v = \lim_{\epsilon \to 0} \frac{1}{\epsilon} [\nabla f(\theta + \epsilon v) - \nabla f(\theta)] = \nabla [\langle \nabla f(.), v \rangle](\theta) \ .$$

Can be computed using AD, with reverse over reverse, forward over reverse or reverse over forward mode.



https://
tinyurl.com/
bilevel-hvp

Hyperparameter optimization with Approximate Gradient HOAG [Pedregosa 2016]

Do we need to compute θ^* and v^* precisely?

Idea: Approximate $\theta^*(\lambda^t)$ and $v^*(\lambda^t) = \left[\nabla^2_{\theta\theta} G(\lambda^t, \theta^*)\right]^{-1} \nabla_{\theta} F(\lambda^t, \theta^*)$

Hyperparameter optimization with Approximate Gradient HOAG [Pedregosa 2016]

Do we need to compute θ^* and v^* precisely?

Idea: Approximate
$$\theta^*(\lambda^t)$$
 and $v^*(\lambda^t) = \left[\nabla^2_{\theta\theta} G(\lambda^t, \theta^*)\right]^{-1} \nabla_{\theta} F(\lambda^t, \theta^*)$

- ► Compute θ^t such that $\|\theta^t \theta^*(\lambda^t)\|_2 \le \epsilon_t$, iterative solver e.g. L-BFGS
- ► Compute v^t such that $\|\frac{\partial^2 G}{\partial \theta^2}(\lambda^t, \theta^t)v^t + \frac{\partial F}{\partial \theta}(\lambda^t, \theta^t)\|_2 \le \epsilon_t$,
- ▶ Compute the approximate gradient $g_t = \frac{\partial F}{\partial \lambda}(\lambda^t, \theta^t) + \frac{\partial^2 G}{\partial \theta \partial \lambda}(\lambda^t, \theta^t) v^t$
- ▶ Update the outer variable $\lambda^{t+1} = \lambda^t \rho^t g^t$

Theorem: (informal) If $\sum_t \epsilon_t < \infty$ and the step-sizes are chosen appropriatly, then the algorithm converges to a stationary point *i.e.*

$$\|\nabla h(\lambda^t)\|_2 \to 0$$
.

Further linear system approximation v^*

Linear system solution $v^*(\lambda^t)$ is a by product.

 \Rightarrow Avoid computing it as much as possible.

Proposed Methods:

- ▶ L-BFGS
- Jacobian-Free method
- $abla^2_{ heta heta} \mathcal{G}(\lambda^t, heta^t) pprox \mathit{Id}$
- ► SHINE

[Ramzi et al. 2022]

Conjugate Gradient

Neumann iterations

- Al :-1 II:

Algorithm unrolling

Shaban et al. 2019

 $\nabla^2_{\theta\theta} G(\lambda^t, \theta^t)^{-1} x \approx \sum_{t} (Id - \nabla^2_{\theta\theta} G(\lambda^t, \theta^t))^k x$

Jacobian estimation with unrolling

References

- ▶ Ablin, P., Peyré, G., and **TM** (2020). Super-efficiency of automatic differentiation for functions defined as a minimum. In *ICML*
- ▶ Malézieux, B., **TM**, and Kowalski, M. (2022). Understanding approximate and Unrolled Dictionary Learning for Pattern Recovery. In *ICLR*

Differentiable unrolling of θ^N

Idea: Compute $J_N = \frac{d\theta^N}{d\lambda}(\lambda) \approx \frac{d\theta^*}{d\lambda}(\lambda)$ using automatic differentiation through an iterative algorithm.

Differentiable unrolling of θ^N

Idea: Compute $J_N = \frac{d\theta^N}{d\lambda}(\lambda) \approx \frac{d\theta^*}{d\lambda}(\lambda)$ using automatic differentiation through an iterative algorithm.

For the gradient descent algorithm:

$$\theta^{N+1} = \theta^N - \rho \frac{\partial F}{\partial x}(\lambda, \theta^N)$$

The Jacobian reads,

$$\frac{d\theta^{N+1}}{d\lambda}(\lambda) = \left(Id - \rho \frac{\partial^2 F}{\partial \theta^2}(\lambda, \theta^N)\right) \frac{d\theta^N}{d\lambda}(\lambda) - \rho \frac{\partial^2 F}{\partial \mathbf{x} \partial \lambda}(\lambda, \theta^N)$$

Differentiable unrolling of θ^N

Idea: Compute $J_N = \frac{d\theta^N}{d\lambda}(\lambda) \approx \frac{d\theta^*}{d\lambda}(\lambda)$ using automatic differentiation through an iterative algorithm.

For the gradient descent algorithm:

$$\theta^{N+1} = \theta^N - \rho \frac{\partial F}{\partial x}(\lambda, \theta^N)$$

The Jacobian reads,

$$\frac{d\theta^{N+1}}{d\lambda}(\lambda) = \left(Id - \rho \frac{\partial^2 F}{\partial \theta^2}(\lambda, \theta^N)\right) \frac{d\theta^N}{d\lambda}(\lambda) - \rho \frac{\partial^2 F}{\partial \mathbf{x} \partial \lambda}(\lambda, \theta^N)$$

 \Rightarrow Under smoothness conditions, if θ^N converges to θ^* , this converges toward $\frac{\partial \theta^*}{\partial \lambda}(\lambda) = \frac{\partial^2 F}{\partial \theta^2}(\lambda, \theta^*)^{-1} \frac{\partial^2 F}{\partial \times \partial \lambda}(\lambda, \theta^*)$

We consider the 3 gradient estimates:

Analysis

Automatic

We consider the 3 gradient estimates:

Analysis

Automatic

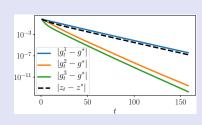
$$g_3^N = \nabla_{\lambda} F(\lambda, \theta^N) - \frac{\partial^2 G}{\partial x \partial \lambda} (\lambda, \theta^N) \frac{\partial^2 G}{\partial \theta^2}^{-1} (\lambda, \theta^N) \nabla_z F(\lambda, \theta^N)$$
 Implicit

Convergence rates: For G strongly convex in *z*,

$$|g_1^N(x) - g^*(x)| = O\left(|\theta^N(\lambda) - \theta^*(\lambda)|\right),$$

$$|g_t^N(x) - g^*(x)| = o\left(|\theta^N(\lambda) - \theta^*(\lambda)|\right),$$

$$|g_3^N(x) - g^*(x)| = O\left(|\theta^N(\lambda) - \theta^*(\lambda)|^2\right).$$



What about non-smooth problem?

Very common in inverse problem.

What about non-smooth problem?

Very common in inverse problem.

 \Rightarrow Here, we consider the case of the Lasso:

$$\theta^* = \operatorname*{argmin}_{\theta} \| \mathbf{y} - \mathbf{A} D \theta \|_2^2 + \lambda \| \theta \|_1$$

with $\lambda = D$

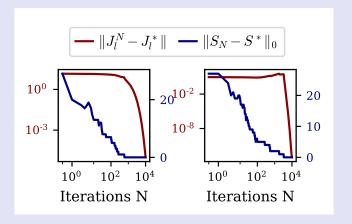
Convergence of the Jacobian

$$||J_N - J^*||_2 \le A_N + B_N$$
.

 A_N converges linearly towards 0, B_N is an error term which may increase for large N and vanishes on the support of θ^* .

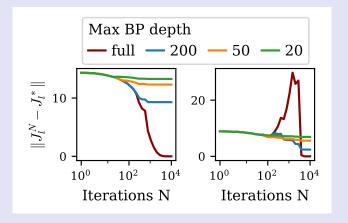
- On the support, the jacobian converges linearly
- \blacktriangleright Before reaching the support, B_N is an error term that can accumulate
- \triangleright B_N can be attenuated with truncated back-propagation

Empirical evaluation



- ightharpoonup Linear convergence once the support S^* is reached
- ▶ Possible explosion before reaching S^*

Empirical evaluation



- Truncated backpropagation (BP) reduces the explosion
- Less precise when the support is reached

Learning with unrolled models

Unrolling for Jacobian estimation

Not the expected performance boost in the non-smooth case

- ▶ Jacobian estimate stable only for a very low number of iteration
 - ⇒ What does this mean for unrolling?
- ► Still interesting to solve the problem:

$$\min_{\lambda} \mathcal{L}(\theta^{N}(\lambda))$$

- with $\theta^N(\lambda)$ an unrolled algorithm with N steps
- ▶ But we are not optimizing for θ^*
 - \Rightarrow We are not independent of how we obtain θ^N

[Ramzi et al. 2023]

Stochastic Bi-level Optimization

A framework for linear updates

References

- Dagréou, M., Ablin, P., Vaiter, S., and TM (2022). A framework for bilevel optimization that enables stochastic and global variance reduction algorithms. In NeurIPS
- ▶ Dagréou, M., Ablin, P., Vaiter, S., and TM (2024). How to compute Hessian-vector products? In The Third Blogpost Track at ICLR 2024

Empirical Risk minimization

Classical ML setting:

$$F(\lambda, \theta) = \frac{1}{m} \sum_{i=1}^{m} F_j(\lambda, \theta), \quad G(\lambda, \theta) = \frac{1}{n} \sum_{i=1}^{n} G_i(\lambda, \theta)$$

Empirical Risk minimization

Classical ML setting:

$$F(\lambda, \theta) = \frac{1}{m} \sum_{i=1}^{m} F_j(\lambda, \theta), \quad G(\lambda, \theta) = \frac{1}{n} \sum_{i=1}^{n} G_i(\lambda, \theta)$$

Consequence: For large m and n, any single derivative is cumbersome to compute.

Aside: Stochastic optimization for single level problems

Single level problem:

$$\min_{\theta} f(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$$

Aside: Stochastic optimization for single level problems

Single level problem:

$$\min_{\theta} f(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$$

First order stochastic optimization:

$$\theta^{t+1} = \theta^t - \rho^t g^t, \quad \mathbb{E}[g^t | \theta^t] = \nabla f(\theta^t)$$

Aside: Stochastic optimization for single level problems

Single level problem:

$$\min_{\theta} f(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$$

First order stochastic optimization:

$$\theta^{t+1} = \theta^t - \rho^t g^t, \quad \mathbb{E}[g^t | \theta^t] = \nabla f(\theta^t)$$

Example: stochastic gradient descent [Robbins and Monro 1951] :

$$\theta^{t+1} = \theta^t - \rho^t \nabla f_i(\theta^t), \quad i \sim \mathcal{U}(\{1, \dots, n\})$$

Bilevel optimization case

$$F(\lambda, \theta) = \frac{1}{m} \sum_{i=1}^{m} F_j(\lambda, \theta), \quad G(\lambda, \theta) = \frac{1}{n} \sum_{i=1}^{n} G_i(\lambda, \theta)$$

Bilevel optimization case

$$F(\lambda, \theta) = \frac{1}{m} \sum_{i=1}^{m} F_j(\lambda, \theta), \quad G(\lambda, \theta) = \frac{1}{n} \sum_{i=1}^{n} G_i(\lambda, \theta)$$

 $\nabla h(\lambda) = \nabla_1 F(\lambda, \theta^*(\lambda)) - \nabla_{12}^2 G(\lambda, \theta^*(\lambda)) \left[\nabla_{22}^2 G(\lambda, \theta^*(\lambda)) \right]^{-1} \nabla_2 F(\lambda, \theta^*(\lambda))$

Bilevel optimization case

$$F(\lambda, \theta) = \frac{1}{m} \sum_{i=1}^{m} F_j(\lambda, \theta), \quad G(\lambda, \theta) = \frac{1}{n} \sum_{i=1}^{n} G_i(\lambda, \theta)$$

 $\nabla h(\lambda) = \nabla_1 F(\lambda, \theta^*(\lambda)) - \nabla_{12}^2 G(\lambda, \theta^*(\lambda)) \left[\nabla_{22}^2 G(\lambda, \theta^*(\lambda)) \right]^{-1} \nabla_2 F(\lambda, \theta^*(\lambda))$

$$^{\prime\prime\prime}$$
 $_{j=1}$ $^{\prime\prime}$ $_{i=1}$

$$\left[\sum_{i=1}^n \nabla^2_{22} \mathsf{G}_i(\lambda, \theta^*(\lambda))\right]^{-1} \neq \sum_{i=1}^n \left[\nabla^2_{22} \mathsf{G}_i(\lambda, \theta^*(\lambda))\right]^{-1}$$

General algorithm

1 for $t = 1, \ldots, T$ do

- 1. Take for θ^t an approximation of $\theta^*(\lambda^t)$
- 2. Take for v^t an approximation of $\left[\nabla^2_{22}G(\lambda^t,\theta^t)\right]^{-1}\nabla_2F(\lambda^t,\theta^t)$
- **3.** Set

$$p^{t} = \underbrace{\nabla_{1}F(\lambda^{t}, \theta^{t}) - \nabla_{12}^{2}G(\lambda^{t}, \theta^{t})v^{t}}_{\approx \nabla h(\lambda^{t})}$$

4. Update the outer variable

$$\lambda^{t+1} = \lambda^t - \gamma^t p^t$$

Two loops algorithms

Two loops [Ghadimi et al. 2018]: $\theta^*(\lambda^t)$ is approximated by output of K steps of SGD:

$$\theta^{t,k+1} = \theta^{t,k} - \rho^t \nabla_2 G_i(\lambda^t, \theta^{t,k})$$

Warm start strategy [Ji et al. 2021, Arbel and Mairal 2022]: Initialize the inner SGD by the previous iterate θ^{t-1} .

What about the linear system?

Approximate $v^t = \left[\nabla_{22}^2 G(\lambda^t, \theta^t)\right]^{-1} \nabla_2 F(\lambda^t, \theta^t)$ with:

▶ Neumann approximations [Ghadimi et al. 2018, Ji et al. 2021]:

$$v^t pprox \eta \sum_{q=0}^{Q} \prod_{k=0}^{q} \left(I - \eta \nabla_{22}^2 G_{i_k}(\lambda^t, \theta^t)\right) \nabla_1 F_j(\lambda^t, \theta^t)$$

What about the linear system?

Approximate $v^t = \left[\nabla_{22}^2 G(\lambda^t, \theta^t)\right]^{-1} \nabla_2 F(\lambda^t, \theta^t)$ with:

▶ Neumann approximations [Ghadimi et al. 2018, Ji et al. 2021]:

$$v^{t} \approx \eta \sum_{q=0}^{Q} \prod_{k=0}^{q} \left(I - \eta \nabla_{22}^{2} G_{i_{k}}(\lambda^{t}, \theta^{t})\right) \nabla_{1} F_{j}(\lambda^{t}, \theta^{t})$$

▶ Stochastic Gradient Descent [Grazzi et al. 2021] since

$$v^t \in \operatorname*{argmin}_{v \in \mathbb{R}^p} rac{1}{2} \langle
abla_{22}^2 G(\lambda^t, \theta^t) v, v
angle + \langle
abla_2 F(\lambda^t, \theta^t), v
angle$$

One loop algorithms

Alternate steps in θ and λ [Hong et al. 2020, Yang et al. 2021]:

$$\theta^{t+1} = \theta^t - \rho^t \nabla_2 G_i(\lambda^t, \theta^t) \quad \text{SGD step}$$

$$v^{t+1} = \eta \sum_{q=1}^Q \prod_{k=0}^q \left(I - \eta \nabla_{22}^2 G_{i_k}(\lambda^t, \theta^{t+1}) \right) \nabla_2 F_j(\lambda^t, \theta^{t+1})$$

Neumann approximation

$$\lambda^{t+1} = \lambda^t - \gamma^t (\underbrace{\nabla_1 F_j(\lambda^t, \theta^{t+1}) - \nabla_{12}^2 G_i(\lambda^t, \theta^{t+1}) v^{t+1}}_{\approx \nabla h(\lambda^t)})$$

Main idea

Three variables to maintain:

- $ightharpoonup heta
 ightarrow ext{inner optimization problem}$
- ightharpoonup v
 ightarrow linear system
- $\lambda \rightarrow$ outer optimization problem

Idea: evolve in θ , ν and λ at the same time following well chosen directions.

$$D_{\theta}(\theta, \mathbf{v}, \lambda) = \nabla_2 G(\lambda, \theta)$$
 gradient step toward $\theta^*(\lambda)$

$$\begin{split} D_{\theta}(\theta, v, \lambda) &= \nabla_2 G(\lambda, \theta) \quad \text{gradient step toward } \theta^*(\lambda) \\ D_{v}(\theta, v, \lambda) &= \nabla_{22}^2 G(\lambda, \theta) v + \nabla_2 F(\lambda, \theta) \\ \text{gradient step toward } - \left[\nabla_{11}^2 G(\lambda, \theta) \right]^{-1} \nabla_2 F(\lambda, \theta) \end{split}$$

$$\begin{split} D_{\theta}(\theta, v, \lambda) &= \nabla_2 G(\lambda, \theta) \quad \text{gradient step toward } \theta^*(\lambda) \\ D_{v}(\theta, v, \lambda) &= \nabla_{22}^2 G(\lambda, \theta) v + \nabla_2 F(\lambda, \theta) \\ \quad \quad \quad \text{gradient step toward } - \left[\nabla_{11}^2 G(\lambda, \theta) \right]^{-1} \nabla_2 F(\lambda, \theta) \\ D_{\lambda}(\theta, v, \lambda) &= \nabla_{12}^2 G(\lambda, \theta) v + \nabla_1 F(\lambda, \theta) \\ \quad \quad \quad \text{gradient step toward } \lambda^* \end{split}$$

$$D_{\theta}(\theta, v, \lambda) = \frac{1}{n} \sum_{i=1}^{n} \nabla_{2} G_{i}(\lambda, \theta)$$

$$D_{v}(\theta, v, \lambda) = \frac{1}{n} \sum_{i=1}^{n} \nabla_{22}^{2} G_{i}(\lambda, \theta) v + \frac{1}{m} \sum_{j=1}^{m} \nabla_{2} F_{j}(\lambda, \theta)$$

$$D_{\lambda}(\theta, v, \lambda) = \frac{1}{n} \sum_{i=1}^{n} \nabla_{12}^{2} G_{i}(\lambda, \theta) v + \frac{1}{m} \sum_{i=1}^{m} \nabla_{1} F_{j}(\lambda, \theta)$$

Proposed framework

1 for
$$t = 1, \ldots, T$$
 do

1. Update
$$\theta$$

$$\theta^{t+1} = \theta^t - \rho^t D_\theta^t$$

2. Update v

$$v^{t+1} = v^t - \rho^t D_v^t$$

3. Update λ

$$\lambda^{t+1} = \lambda^t - \gamma^t D_\lambda^t$$

with D_{θ}^t , D_{v}^t , D_{λ}^t stochastic estimators of $D_{\theta}(\theta^t, v^t, \lambda^t)$, $D_{v}(\theta^t, v^t, \lambda^t)$ and $D_{\lambda}(\theta^t, v^t, \lambda^t)$.

SOBA (StOchastic Bilevel Algorithm) directions

Pick $i \in \{1, \ldots, n\}$ and $j \in \{1, \ldots, m\}$ and take

$$\begin{aligned} D_{\theta}^{t} &= \nabla_{2} G_{i}(\lambda^{t}, \theta^{t}) \\ D_{v}^{t} &= \nabla_{22}^{2} G_{i}(\lambda^{t}, \theta^{t}) v^{t} + \nabla_{2} F_{j}(\lambda^{t}, \theta^{t}) \\ D_{\lambda}^{t} &= \nabla_{12}^{2} G_{i}(\lambda^{t}, \theta^{t}) v^{t} + \nabla_{1} F_{j}(\lambda^{t}, \theta^{t}) \end{aligned}$$

SOBA (StOchastic Bilevel Algorithm) directions

$$\mathbb{E}_{i,j}[D_{\theta}^t] = \frac{1}{n} \sum_{i=1}^n \nabla_2 \mathcal{G}_i(\lambda^t, \theta^t) = D_{\theta}(\theta^t, v^t, \lambda^t)$$

$$\mathbb{E}_{i,j}[D_{v}^{t}] = \frac{1}{n} \sum_{i=1}^{n} \nabla_{22}^{2} G_{i}(\lambda^{t}, \theta^{t}) v^{t} + \frac{1}{m} \sum_{j=1}^{m} \nabla_{2} F_{j}(\lambda^{t}, \theta^{t}) = D_{v}(\theta^{t}, v^{t}, \lambda^{t})$$

$$\mathbb{E}_{i,j}[D_{\lambda}^t] = \frac{1}{n} \sum_{i=1}^n \nabla_{12}^2 G_i(\lambda^t, \theta^t) v^t + \frac{1}{m} \sum_{i=1}^m \nabla_1 F_j(\lambda^t, \theta^t) = D_{\lambda}(\theta^t, v^t, \lambda^t)$$

⇒ As the direction are linear combinations, we can use classical variance reduction techniques.

[SABA,SRBA, ...]

⇒ We prove it converges as fast as single level counter parts

Hyperparameter selection on ℓ^2 regularized logistic regression

Setting:

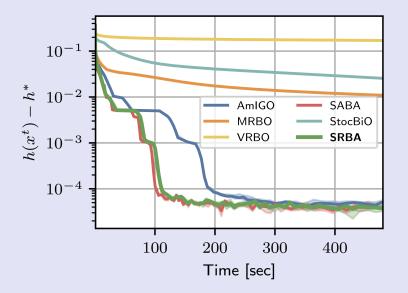
- ► Task: binary classification
- ► IJCNN1 dataset: 49 990 training samples, 91 701 validation samples, 22 features
- ► Training loss:

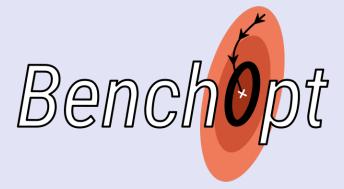
$$G(\theta,\lambda) = \frac{1}{n} \sum_{i=1}^{n} \log(1 + \exp(-y_i \langle x_i, \theta \rangle) + \frac{1}{2} \sum_{k=1}^{p} e^{\lambda_k} \theta_k^2$$

► Validation loss: logistic loss

$$F(\theta, \lambda) = \frac{1}{m} \sum_{i=1}^{m} \log(1 + \exp(-y_i^{val} \langle x_i^{val}, \theta \rangle))$$

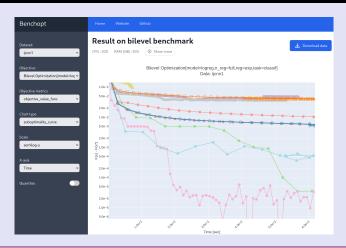
Hyperparameter selection on ℓ^2 regularized logistic regression





Reproducing a scientific comparison from an article can be as easy as:

git clone https://github.com/benchopt/benchmark_bilevel
benchopt run ./benchmark_bilevel



Join us!

Benchopt sprint in Paris July 2024.

 \Rightarrow Next sprint in April, stay tuned!

Conclusion

- ► Bi-level optimization is intrinsic in many ML problems.
- ► Classical optimization method can be used once we know how to compute the gradient requires approximating θ^* and v^* .
- ▶ There are various ways to compute the hyper-gradient.

Conclusion

- ▶ Bi-level optimization is intrinsic in many ML problems.
- ► Classical optimization method can be used once we know how to compute the gradient requires approximating θ^* and v^* .
- There are various ways to compute the hyper-gradient.

Thank you for your attention!

Advertising: we have an open postdoc position to work on bilevel optimization with Pierre Ablin. Contact me if interested!

Slides will be on my web page:

tommoral.github.io

in O C @tommoral

Iteration overfitting with unrolled optimization

References

► Ramzi, Z., Ablin, P., Peyré, G., and **TM** (2023). Test like you Train in Implicit Deep Learning. Preprint

Implicit deep learning

Consider the Deep Equilibrium Networks (more general than bilevel)

$$\min_{\theta} \mathcal{L}(\mathbf{x}^*(\theta))$$
 s.t. $\mathbf{x}^*(\theta) = f_{\theta}(\mathbf{x}^*(\theta))$

Implicit deep learning

Consider the Deep Equilibrium Networks (more general than bilevel)

$$\min_{\theta} \mathcal{L}(\mathbf{x}^*(\theta))$$
 s.t. $\mathbf{x}^*(\theta) = f_{\theta}(\mathbf{x}^*(\theta))$

In practice, solved as

$$\theta^{*,N} = \underset{\theta}{\operatorname{argmin}} \mathcal{L}(\mathbf{x}^{N}(\theta))$$

with $x^N(\theta)$ obtained through N iterations of a fixed-point algorithm

The promice of these models: you can use M > N during test time to get performance boost

Implicit deep learning

Consider the Deep Equilibrium Networks (more general than bilevel)

$$\min_{\theta} \mathcal{L}(\mathbf{x}^*(\theta))$$
 s.t. $\mathbf{x}^*(\theta) = f_{\theta}(\mathbf{x}^*(\theta))$

In practice, solved as

$$\theta^{*,N} = \operatorname*{argmin}_{\theta} \mathcal{L}(\mathbf{x}^N(\theta))$$

with $\mathbf{x}^N(\theta)$ obtained through N iterations of a fixed-point algorithm

The promice of these models: you can use M > N during test time to get performance boost

 \Rightarrow Is this true for all models?

Test-time fixed point computation

on [Ramzi et al., 2023]

If we learn $\theta^{*,N}$ with a given N, what can you say about $\mathcal{L}(\mathbf{x}^{N+\Delta N}(\theta^{*,N}))$?

If we learn $\theta^{*,N}$ with a given N, what can you say about $\mathcal{L}(\mathbf{x}^{N+\Delta N}(\theta^{*,N}))$?

Theorem 1 – Iteration overfitting

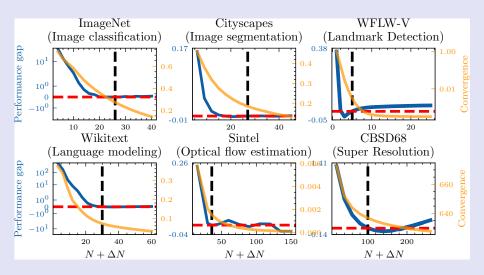
Under simplifying hypothesis (linear DEqs), if f_{θ} is overparametrized, we have for all ΔN :

$$\mathcal{L}(\mathbf{x}^{N+\Delta N}(\theta^{\star,N})) \ge \mathcal{L}(\mathbf{x}^{N}(\theta^{\star,N})), \tag{1}$$

We also show that the closer to overparametrized f_{θ} is, the less we expect to see improvement with $N+\Delta N$

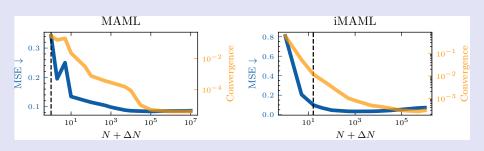
What happens in practice?

Context: Overparametrized DEQs.



What happens in practice?

Context: Underparametrized Meta-learning.



Theoretical guarantees of SOBA

Theorem (Convergence of SOBA)

Under some regularity assumptions on F and G, if h is bounded, then for decreasing step sizes that verify $\rho^t = \alpha t^{-\frac{2}{5}}$ and $\gamma^t = \beta t^{-\frac{3}{5}}$ for some $\alpha, \beta > 0$, the iterates $(\lambda^t)_{1 \le t \le T}$ of SOBA verify

$$\inf_{t \le T} \mathbb{E}[\|\nabla h(\lambda^t)\|^2] = \mathcal{O}(T^{-\frac{2}{5}}) .$$

Aside: SAGA for single level problems [Defazio et al. 2014]

Single level problem:

$$\min_{\theta \in \mathbb{R}^p} f(\theta) = \frac{1}{n} \sum_{i=1}^n f_i(\theta)$$

Single level problem:

$$\min_{\theta \in \mathbb{R}^p} f(\theta) = \frac{1}{n} \sum_{i=1}^n f_i(\theta)$$

Initialisation: Compute and store $m[i] = \nabla f_i(\theta^0)$ for any $i \in \{1, ..., n\}$ and $S[m] = \frac{1}{n} \sum_{i=1}^{n} m[i]$.

Single level problem:

$$\min_{\theta \in \mathbb{R}^p} f(\theta) = \frac{1}{n} \sum_{i=1}^n f_i(\theta)$$

Initialisation: Compute and store $m[i] = \nabla f_i(\theta^0)$ for any $i \in \{1, ..., n\}$ and $S[m] = \frac{1}{n} \sum_{i=1}^{n} m[i]$.

At iteration *t*:

- **1.** Pick $i \in \{1, ..., n\}$
- **2.** Update θ

$$\theta^{t+1} = \theta^t - \rho(\nabla f_i(\theta^t) \underbrace{-m[i] + S[m]}_{\text{variance reduction}})$$

3. Update the memory

$$m[i] \leftarrow \nabla f_i(\theta^t)$$

Bilevel case: SABA (Stochastic Average Bilevel Algorithm)

To estimate

$$D_{\theta}(\theta^{t}, v^{t}, \lambda^{t}) = \nabla_{2}G(\lambda^{t}, \theta^{t})$$

$$D_{v}(\theta^{t}, v^{t}, \lambda^{t}) = \nabla_{22}^{2}G(\lambda^{t}, \theta^{t})v^{t} + \nabla_{2}F(\lambda^{t}, \theta^{t})$$

$$D_{\lambda}(\theta^{t}, v^{t}, \lambda^{t}) = \nabla_{12}^{2}G(\lambda^{t}, \theta^{t})v^{t} + \nabla_{1}F(\lambda^{t}, \theta^{t})$$

we have 5 quantities to estimate on the principle of SAGA:

$$\nabla_2 G(\lambda^t, \theta^t), \quad \nabla_2 F(\lambda^t, \theta^t), \quad \nabla_1 F(\lambda^t, \theta^t)$$
$$\nabla_{12}^2 G(\lambda^t, \theta^t) v^t, \quad \nabla_{22}^2 G(\lambda^t, \theta^t) v^t$$

 D_{θ}^{t} , D_{ν}^{t} and D_{λ}^{t} given using these estimates = SABA directions

Theoretical guarantees

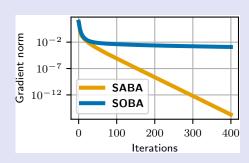
Theorem (Convergence of SABA)

Under some regularity assumptions on F and G, with constant and small enough step sizes, the iterates $(\lambda^t)_{1 \le t \le T}$ of SABA verify

$$\frac{1}{T} \sum_{t=1}^{T} \mathbb{E}[\|\nabla h(\lambda^t)\|^2] = \mathcal{O}(T^{-1}) .$$

Remarks

- ➤ We match the convergence rate of gradient descent
- ► SABA converges with fixed step sizes
- ► Faster than SOBA



Complexity

Number of calls to oracle to get an ϵ -stationary solution.

				SUSTAIN		
$\mathcal{O}(\epsilon^{-2})$	$ ilde{\mathcal{O}}(\epsilon^{-2})$	$ ilde{\mathcal{O}}(\epsilon^{-5/2})$	$\tilde{\mathcal{O}}(\epsilon^{-3/2})$	$\mathcal{O}(\epsilon^{-3/2})$	$\mathcal{O}(\epsilon^{-5/2})$	$\mathcal{O}(\epsilon^{-1})$

SABA achieves SOTA complexity

The role of warm-starting for unrolled optimization

References

Proximal Gradient Descent: Iterate

$$\mathbf{x}^{k+1} = \operatorname{prox}_{\rho \mathcal{R}}(\mathbf{x}^k - \rho \nabla f(\mathbf{x}^k))$$

for the original problem
$$\mathbf{x}^*(\mathbf{y}; \theta) = \operatorname{argmin}_{\mathbf{x}} \underbrace{\frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2}_{f(\mathbf{x})} + \mathcal{R}(\mathbf{x}; \theta)$$

Proximal Gradient Descent: Iterate

$$\mathbf{x}^{k+1} = \operatorname{prox}_{\rho \mathcal{R}}(\mathbf{x}^k - \rho \nabla f(\mathbf{x}^k))$$

for the original problem
$$\mathbf{x}^*(\mathbf{y}; \theta) = \operatorname{argmin}_{\mathbf{x}} \underbrace{\frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2}_{f(\mathbf{x})} + \mathcal{R}(\mathbf{x}; \theta)$$

However, computing the proximal operator can be expensive requires a sub-routine

Dictionary-based denoisers: take $\mathcal D$ as

$$D(\operatorname*{argmin}_{z}\|\mathbf{x}-Dz\|_{2}^{2}+\lambda\|z\|_{1})$$
 or $\operatorname*{argmin}_{u}\|\mathbf{x}-u\|_{2}^{2}+\lambda\|\Gamma u\|_{1}$

These denoisers are proximal operators, so the PnP algorithm converges

Proximal Gradient Descent: Iterate

$$\mathbf{x}^{k+1} = \operatorname{prox}_{\rho \mathcal{R}}(\mathbf{x}^k - \rho \nabla f(\mathbf{x}^k))$$

for the original problem $\mathbf{x}^*(\mathbf{y}; \theta) = \operatorname{argmin}_{\mathbf{x}} \underbrace{\frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2}_{f(\mathbf{x})} + \mathcal{R}(\mathbf{x}; \theta)$

However, computing the proximal operator can be expensive requires a sub-routine

Dictionary-based denoisers: take $\mathcal D$ as

$$D(\arg\min_{z} \|x - Dz\|_{2}^{2} + \lambda \|z\|_{1})$$
 or $\arg\min_{u} \|x - u\|_{2}^{2} + \lambda \|\Gamma u\|_{1}$

These denoisers are proximal operators, so the \mbox{PnP} algorithm converges

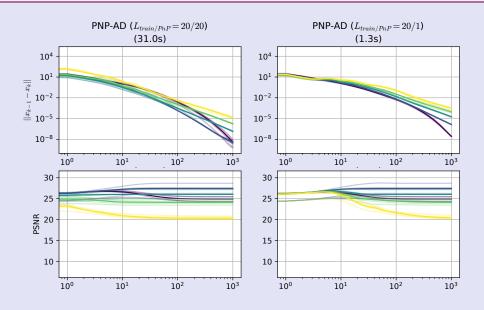
⇒ Replace the proximal operator by an unrolled model with convergence?

Replace computing the proximal operator with L steps of a solver for the proximal operator with warm-starting

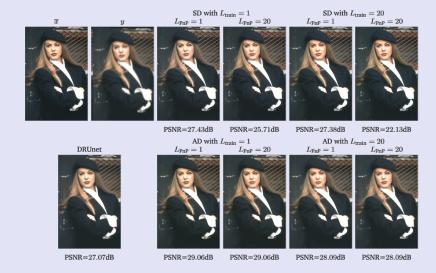
$$\begin{cases} \mathbf{x}^{k+1/2} = \mathbf{x}^{k} - \rho \nabla f(\mathbf{x}^{k}) \\ \mathbf{x}^{k+1}, u^{k+1} = T^{L}(\mathbf{x}^{k+1/2}, u^{k}) \end{cases}$$

- ▶ We show that for $L \to \infty$, the PnP algorithm converges
- ▶ For L = 1, the PnP algorithm also converges to the same solution
- ▶ For intermediate L, it is conjectured that it converges.
 Only able to show convergence for a smoothed version of the problem
 - \Rightarrow Warm-starting is key for the convergence here!

Stability of the unrolled algorithm



Dictionary-based denoisers in PnP



Take-home message

- Unrolled networks can be good approximations of the argmin for smooth problems
- ▶ For non-smooth problems, the jacobian estimate is unstable
- Beware that training with fixed number of iterations leads to iteration overfitting
- ▶ Warm-starting can be a key to get convergence with unrolled algorithms