

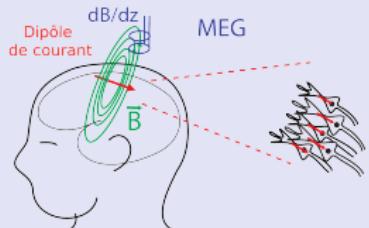
Event-based representations for Electromagnetic Brain Signals

Thomas Moreau
INRIA Saclay - MIND Team

Context: physiological signals

Physiological signals: Measurements of the body's functions and processes using physical sensors.

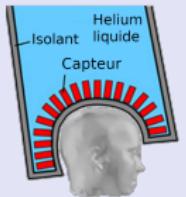
Gait Analysis



Occulography

Smart Watch

General Anesthesia (GA)



Magneto/Electro
EncephaloGram (M/EEG)

Physiological signals: applications

Use cases:

- ▶ Healthcare – early diagnosis, monitoring, treatment
- ▶ Interfaces – Brain-Computer Interface (BCI), prosthetics, . . .
- ▶ Neurosciences – understanding the brain functions

Corresponding ML tasks:

- ▶ Full signal – classification, regression, clustering
- ▶ Sequence to sequence – non-invasive monitoring, forecasting
- ▶ Event-based – event/anomaly/change point detection and prediction

- ▶ **Machine Learning:**
Multiple sources of variability, low-labeled data regime, complex evaluation
- ▶ **Signal Processing:**
High-dimensional data, underlying topology, require domain expertise
- ▶ **Medical:**
Complex evaluation, unclear labels, ethical and societal impact
- ▶ **Software:**
Many standards/formats, demanding computational resources

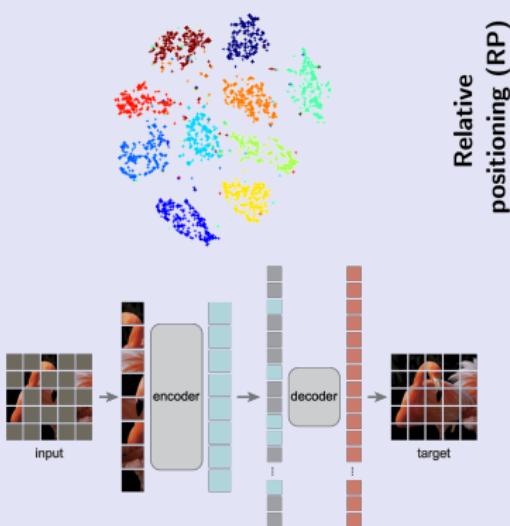
- ▶ **Machine Learning:**
Multiple sources of variability, **low-labeled data regime**, complex evaluation
- ▶ **Signal Processing:**
High-dimensional data, underlying topology, require domain expertise
- ▶ **Medical:**
Complex evaluation, **unclear labels**, ethical and societal impact
- ▶ **Software:**
Many standards/formats, demanding computational resources

⇒ This calls for **unsupervised learning** methods to characterize the signals and events distribution

Unsupervised and self-supervised learning

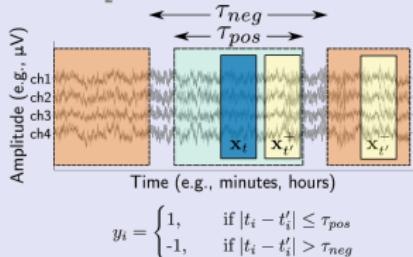
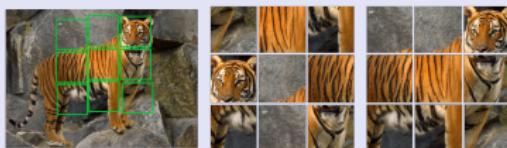
Learning from data without explicit supervision

[Macqueen 1967]



[He et al. 2022]

[Banville et al. 2019]



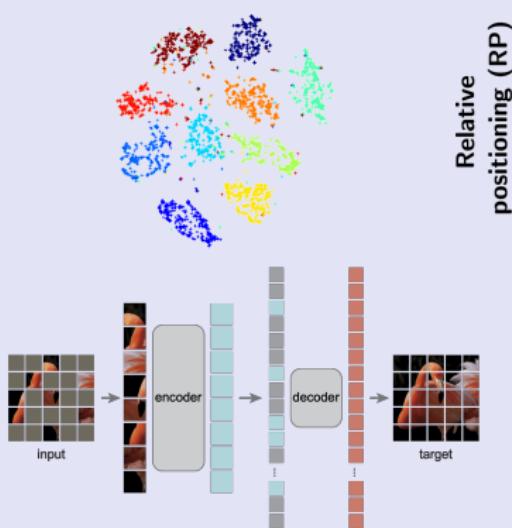
[Noroozi and Favaro 2017]

...

Unsupervised and self-supervised learning

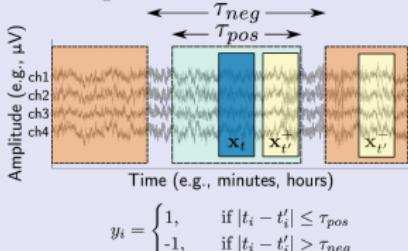
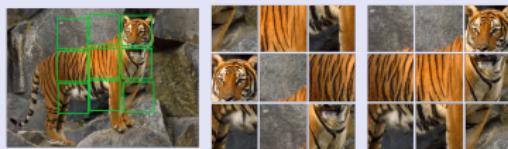
Learning from data without explicit supervision

[Macqueen 1967]



[He et al. 2022]

[Banville et al. 2019]



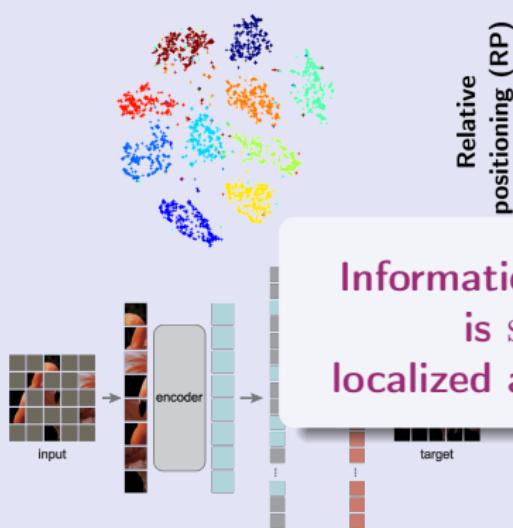
[Noroozi and Favaro 2017]

⇒ Despise successes for Image and Text, limited success for time-series

Unsupervised and self-supervised learning

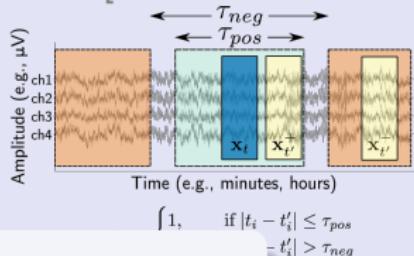
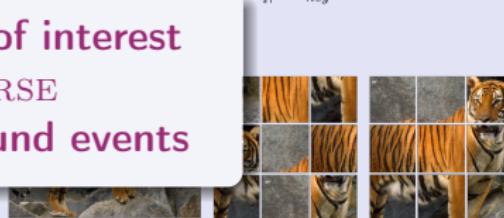
Learning from data without explicit supervision

[MacQueen 1967]



[He et al. 2022]

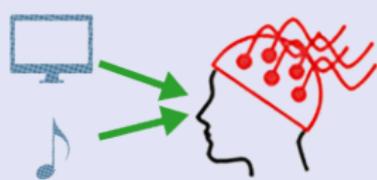
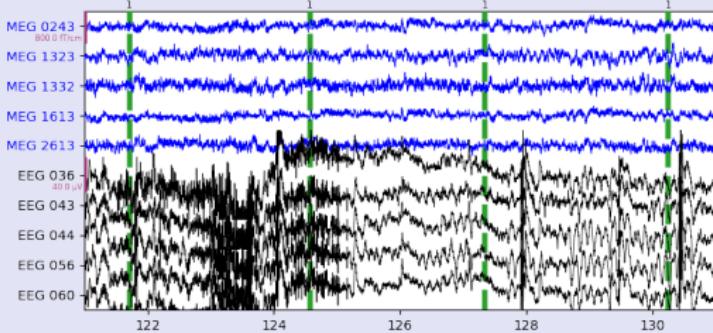
[Banville et al. 2019]



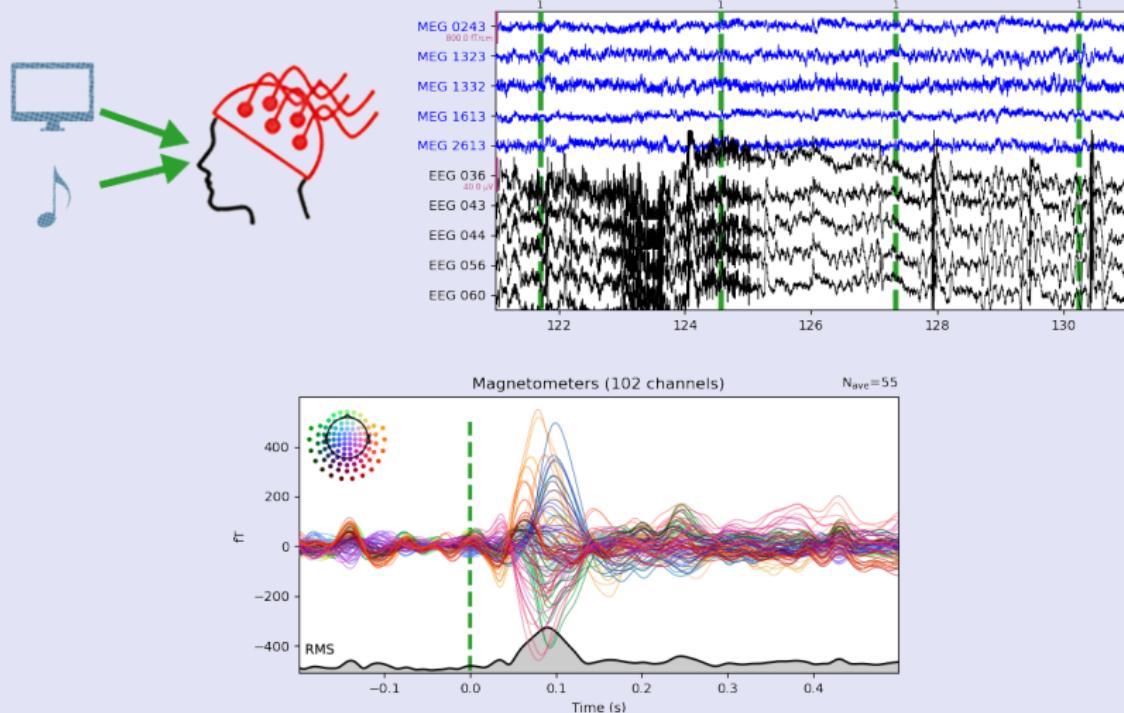
[Noroozi and Favaro 2017]

⇒ Despise successes for Image and Text, limited success for time-series

Event-based processing: the case of M/EEG signals

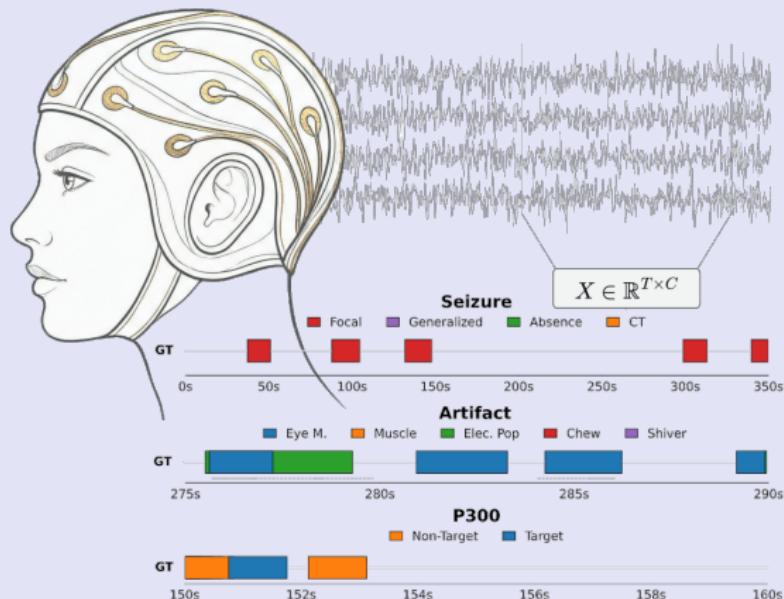


Event-based processing: the case of M/EEG signals



⇒ *Analysis: average effect after a stimuli (external event)*

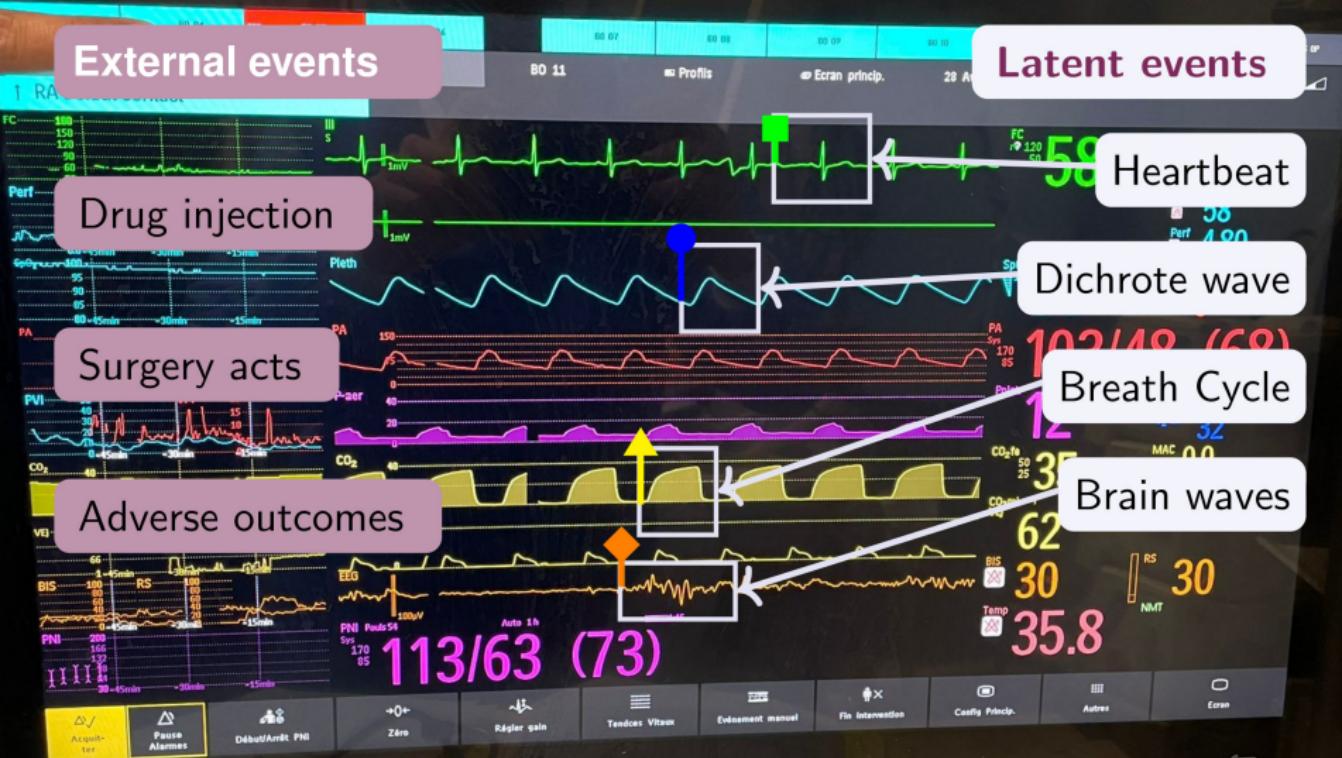
Event-based processing: M/EEG decoding [Levy et al. (upcoming)]



⇒ *Decoding*: the signal building blocks are events.

Event-based processing: the case of General Anesthesia

IntelliVue



Focus of my research for a few years:

- ▶ Unsupervised event detection in signals
- ▶ Modeling events distributions
- ▶ End-to-end frameworks for event-based learning

Convolutional Dictionary Learning for unsupervised event detection

References

- ▶ Dupré la Tour, T., **TM**, Jas, M., and Gramfort, A. (2018). [Multivariate Convolutional Sparse Coding for Electromagnetic Brain Signals](#). In *NeurIPS*
- ▶ Yehya, J., Benbakoura, M., Allain, C., Malézieux, B., Kowalski, M., and **TM** (2025). [RoseCDL: Robust and scalable convolutional dictionary learning for rare-event detection](#). Preprint

Key idea: find recurrent patterns and their localization

$$x^n[t] = \sum_{k=1}^K (z_k^n * d_k)[t] + \varepsilon[t]$$

For a set of N univariate signals \mathbf{x} , solve

$$\min_{\mathbf{D}; \|\mathbf{D}_k\|_2 \leq 1} \frac{1}{N} \sum_{\mathbf{x}} \left[\min_{\mathbf{z}} \frac{1}{2} \|\mathbf{x} - \sum_{k=1}^K \mathbf{z}_k * \mathbf{D}_k\|_2^2 + \lambda \|\mathbf{z}\|_1 \right]$$

This problem a problem solved with alternate minimization (AM)

1. Solve for each \mathbf{z} with a fixed \mathbf{D}
2. Update \mathbf{D} with fixed \mathbf{z} for the \mathbf{x} considered

For a set of N univariate signals \mathbf{x} , solve

$$\min_{\mathbf{D}; \|\mathbf{D}_k\|_2 \leq 1} \frac{1}{N} \sum_{\mathbf{x}} \left[\min_{\mathbf{z}} \frac{1}{2} \|\mathbf{x} - \sum_{k=1}^K \mathbf{z}_k * \mathbf{D}_k\|_2^2 + \lambda \|\mathbf{z}\|_1 \right]$$

This problem a problem solved with alternate minimization (AM)

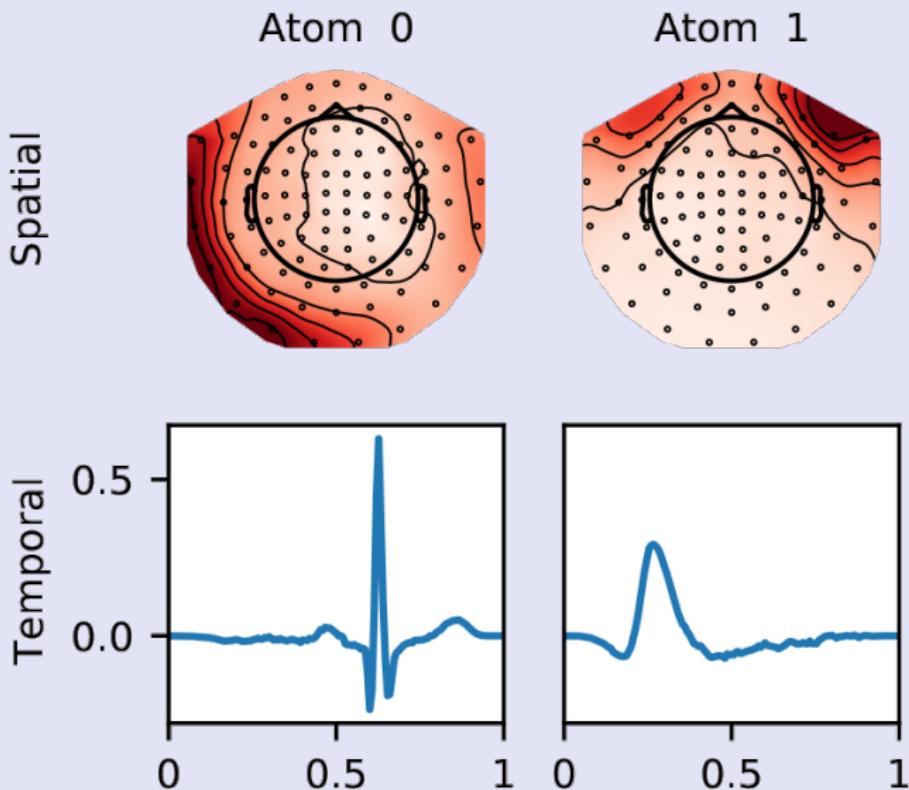
1. Solve for each \mathbf{z} with a fixed \mathbf{D}
2. Update \mathbf{D} with fixed \mathbf{z} for the \mathbf{x} considered

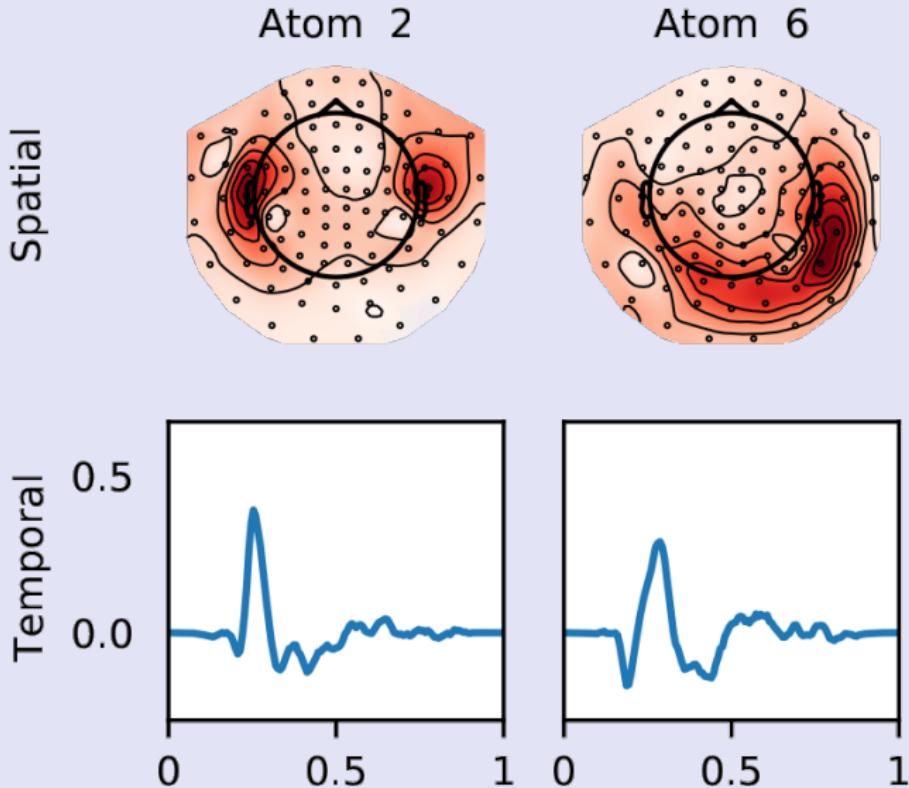
We proposed rank-1 extension

[Dupré la Tour et al. 2018]

$$\mathbf{D}_k = \mathbf{u}_k \mathbf{v}_k^\top$$

where \mathbf{u}_k captures the temporal pattern and \mathbf{v}_k the spatial pattern.





Convolutional Dictionary Learning for event detection

CDL is a powerful tool for unsupervised event detection with clear patterns

CDL is a powerful tool for unsupervised event detection with clear patterns

Challenges:

- ▶ Scalability issues with long signals and large datasets
- ▶ Sensitive to artifacts and outliers
- ▶ Analysis of the learned atoms requires expert knowledge
- ▶ Some events have unclear patterns/low occurrence

For a set of N signals \mathbf{x} , solve

$$\min_{\mathbf{D}; \|\mathbf{D}_k\|_2 \leq 1} \frac{1}{N} \sum_{\mathbf{x}} \left[\min_{\mathbf{z}} \frac{1}{2} \|\mathbf{x} - \sum_{k=1}^K \mathbf{z}_k * \mathbf{D}_k\|_2^2 + \lambda \|\mathbf{z}\|_1 \right]$$

For a **population** of signals \mathbf{x} , solve

$$\min_{\mathbf{D}; \|\mathbf{D}_k\|_2 \leq 1} \mathbb{E}_{\mathbf{x}} \sum_{\mathbf{x}} \left[\min_{\mathbf{z}} \frac{1}{2} \|\mathbf{x} - \sum_{k=1}^K \mathbf{z}_k * \mathbf{D}_k\|_2^2 + \lambda \|\mathbf{z}\|_1 \right]$$

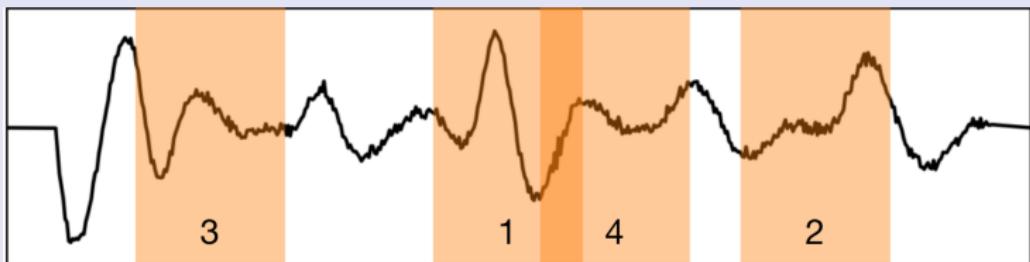
⇒ Shift to a population point of view

For a population of signals \mathbf{x} , solve

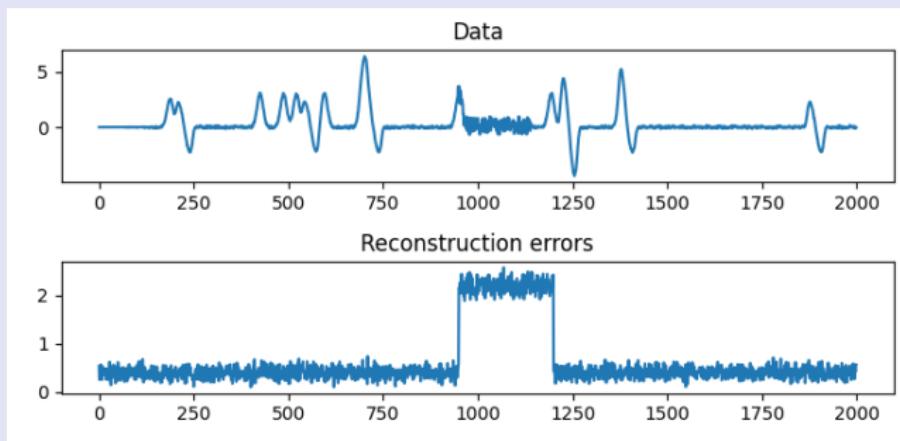
$$\min_{\mathbf{D}; \|\mathbf{D}_k\|_2 \leq 1} \mathbb{E}_{\mathbf{x}} \sum_{\mathbf{x}} \left[\min_{\mathbf{z}} \frac{1}{2} \|\mathbf{x} - \sum_{k=1}^K \mathbf{z}_k * \mathbf{D}_k\|_2^2 + \lambda \|\mathbf{z}\|_1 \right]$$

⇒ Shift to a population point of view

1. Stochastic optimization for scalability:

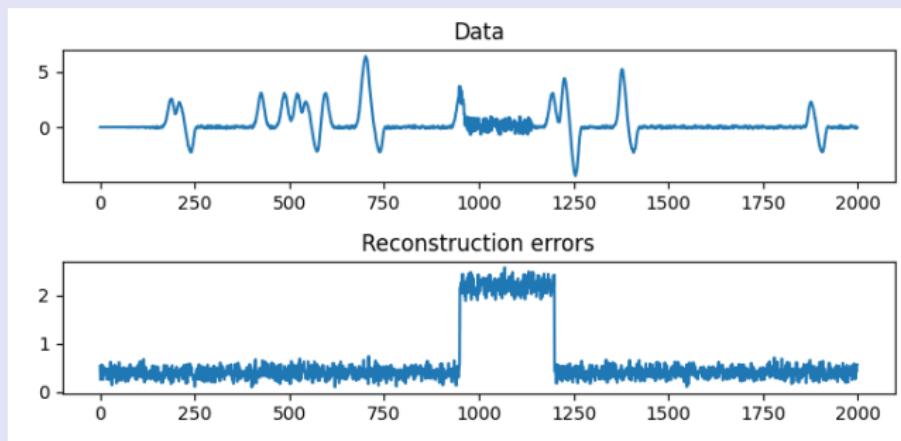


2. CDL for outlier detection:



Outlier if its reconstruction error is high compared to the usual one.

2. CDL for outlier detection:



Outlier if its reconstruction error is high compared to the usual one.

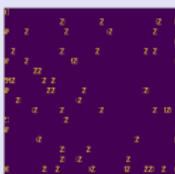
3. Inline outlier detection for robust CDL: Use this mechanism *inside* the CDL algorithm to improve the learned atoms.

4. CDL for rare event detection:

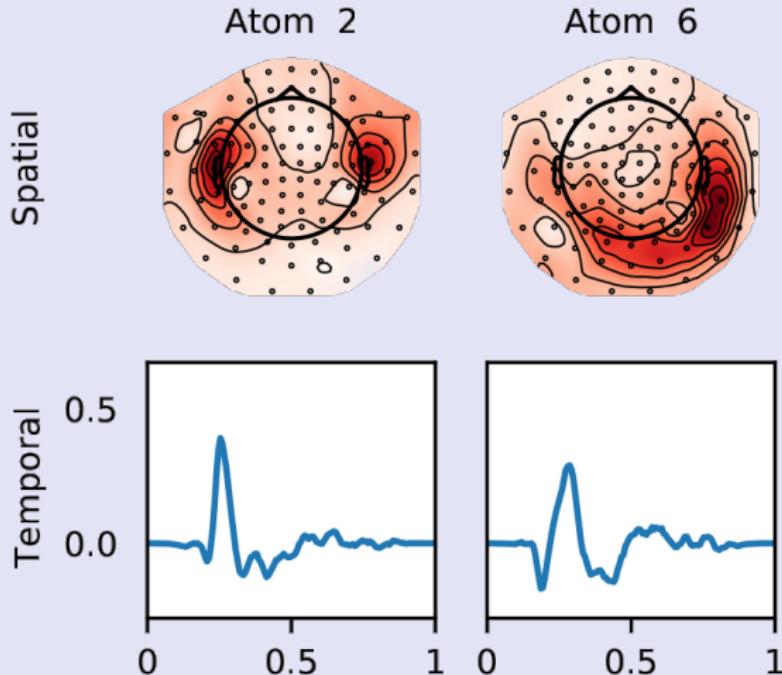
Example on the MINDZ letters

RoseCDL w/
Outlier
Detection active

Apply
mask on
data



102



⇒ Faster and with less preprocessing!

Modeling event distribution with Point Processes

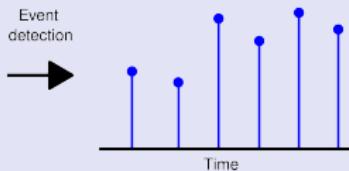
References

- ▶ Staerman, G., Allain, C., Gramfort, A., and **TM** (2023). FaDIn: Fast Discretized Inference for Hawkes Processes with General Parametric Kernels. In *ICML*
- ▶ Loison, V., Staerman, G., and **TM** (2025). Unmixing Noise from Hawkes Process to Model Learned Physiological Events. In *AISTATS*

Modeling event distribution

Empirical data

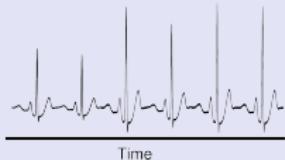
Events



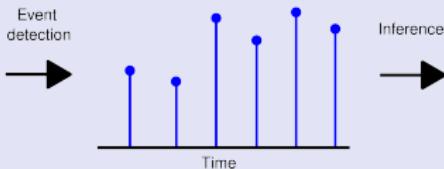
Event detection discretizes the signal into a stream of events.

Modeling event distribution

Empirical data



Events



Intensity function:
 $\lambda(t; \mathcal{F}_t, \theta)$

Event detection discretizes the signal into a stream of events.

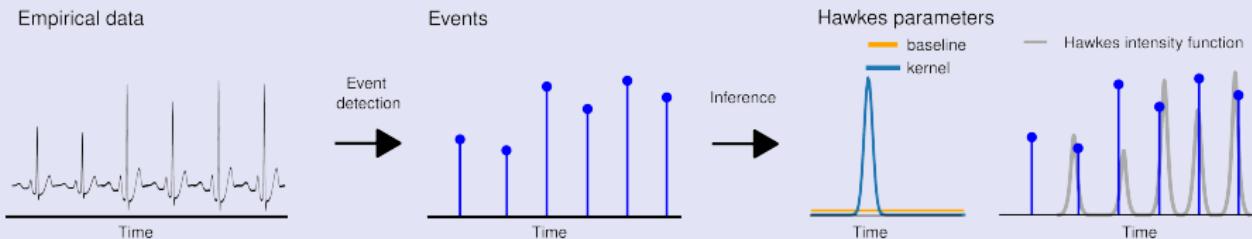
Models for the distribution of events in time: **Point processes**

Characterized by the intensity function $\lambda(t; \mathcal{F}_t, \theta)$

$$\lambda(t; \mathcal{F}_t, \theta) = \lim_{dt \rightarrow 0} \frac{P(N(t + dt) - N(t) = 1 | \mathcal{F}_t)}{dt}$$

instant rate of events at time t .

Adapting Hawkes processes for physiological events



Modeling interactions between events: **Hawkes processes** [\[Hawkes 1971\]](#)

$$\lambda(t; \mathcal{F}_t, \theta) = \mu(t) + \sum_{t_k < t} \kappa_\theta(t - t_k)$$

where κ_θ model the interaction between events

Inference for Hawkes processes

Hawkes process inference consists in minimizing NLL or ℓ_2 loss.

$$\mathcal{L}(\theta) = \int_0^T \phi(\lambda(t; \theta)) dt - \sum_{k=1}^K \psi(\lambda(t_k; \theta))$$

with ϕ, ψ simple functions. Computational bottleneck is to evaluate $\lambda(t_k; \theta)$

Hawkes process inference consists in minimizing NLL or ℓ_2 loss.

$$\mathcal{L}(\theta) = \int_0^T \phi(\lambda(t; \theta)) dt - \sum_{k=1}^K \psi(\lambda(t_k; \theta))$$

with ϕ, ψ simple functions. Computational bottleneck is to evaluate $\lambda(t_k; \theta)$

- ▶ Usually efficient due to markovian properties of the exponential kernel:
“Easy to compute $\lambda(t + \Delta t; \theta)$ from $\lambda(t; \theta)$ ”

⇒ *Complexity to compute $\lambda(t_k; \theta)$ linear $\mathcal{O}(K)$ in the number of events K*

Hawkes process inference consists in minimizing NLL or ℓ_2 loss.

$$\mathcal{L}(\theta) = \int_0^T \phi(\lambda(t; \theta)) dt - \sum_{k=1}^K \psi(\lambda(t_k; \theta))$$

with ϕ, ψ simple functions. Computational bottleneck is to evaluate $\lambda(t_k; \theta)$

- ▶ Usually efficient due to markovian properties of the exponential kernel:
“Easy to compute $\lambda(t + \Delta t; \theta)$ from $\lambda(t; \theta)$ ”
 \Rightarrow Complexity to compute $\lambda(t_k; \theta)$ linear $\mathcal{O}(K)$ in the number of events K
- ▶ With general kernels, naive computations of $\lambda(t_k; \theta)$ are in $\mathcal{O}(K^2)$

If we consider the ℓ_2 loss and discretize the time, we can rewrite the inference loss as:

$$L(\theta) = \sum_{t=0}^T \frac{1}{2} \|z[t] - (z * \kappa_\theta)[t] - \mu\|_2^2$$

where z is a *sparse activation vector*, with $z[t] = 1$ if $t \in \{t_k\}$, 0 otherwise.

If we consider the ℓ_2 loss and discretize the time, we can rewrite the inference loss as:

$$L(\theta) = \sum_{t=0}^T \frac{1}{2} \|z[t] - (z * \kappa_\theta)[t] - \mu\|_2^2$$

where z is a *sparse activation vector*, with $z[t] = 1$ if $t \in \{t_k\}$, 0 otherwise.

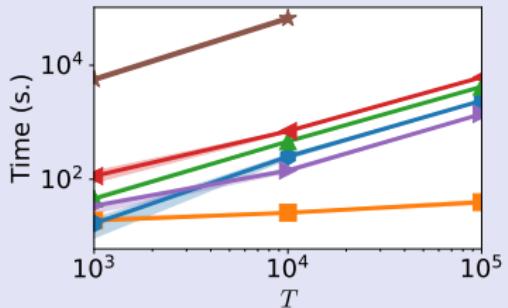
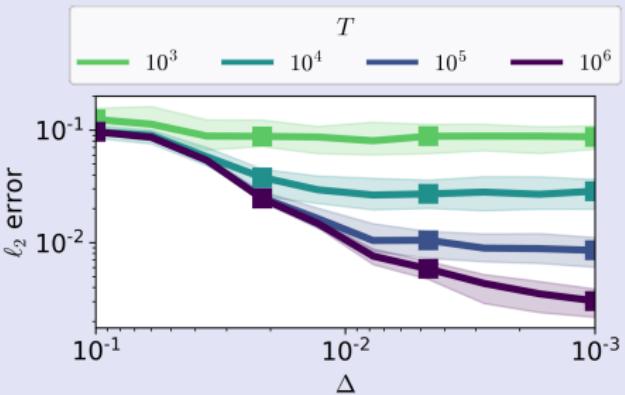
⇒ This loss is similar to dictionary updates in CDL

Can be minimized efficiently when the kernel has a finite support using precomputations

Efficient inference with FaDIn

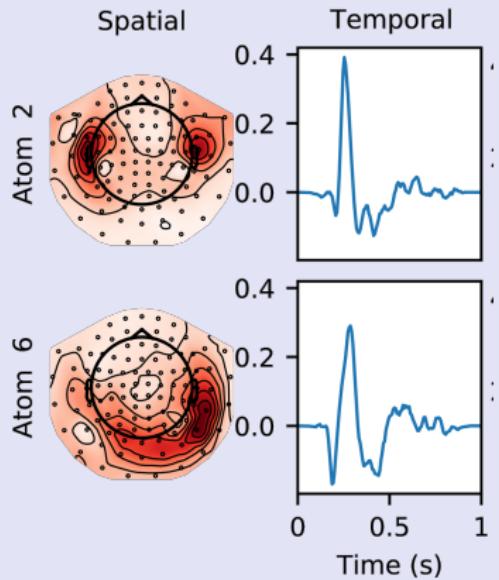
FaDIn: Fast Discretized Inference for finite support kernels

- ▶ Bias due to discretization goes to 0 as the discretization is refined



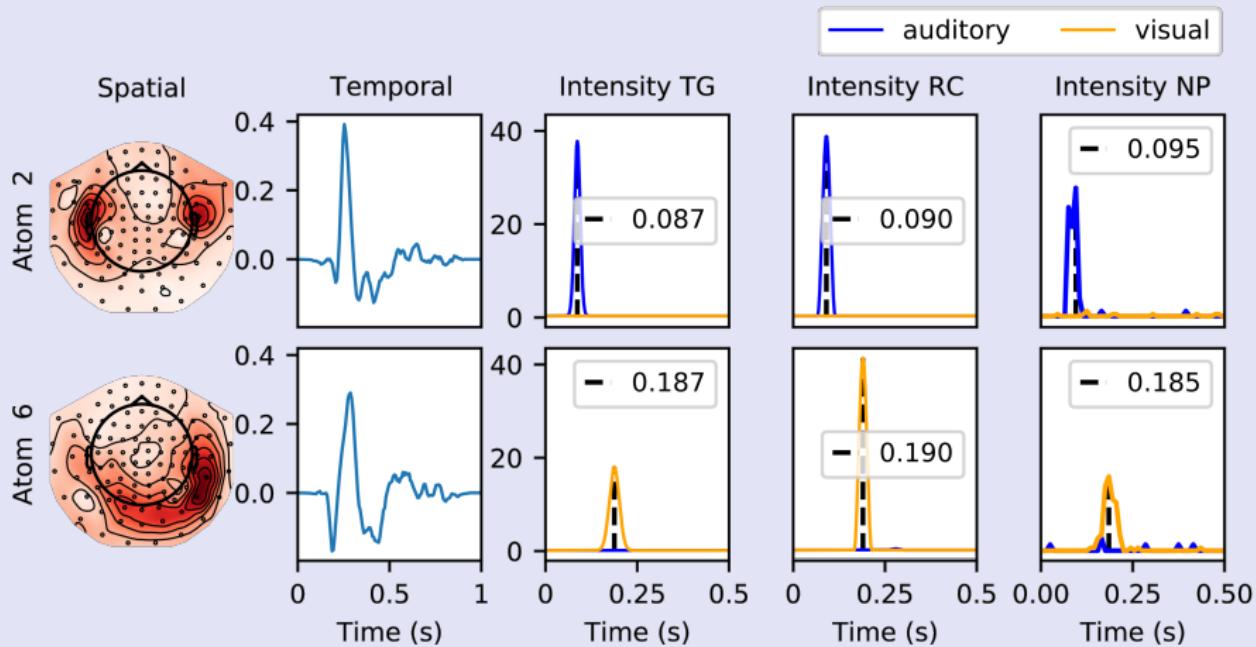
- ▶ Optimization complexity is independent of the number of events K

Characterizing evoked responses in M/EEG signals



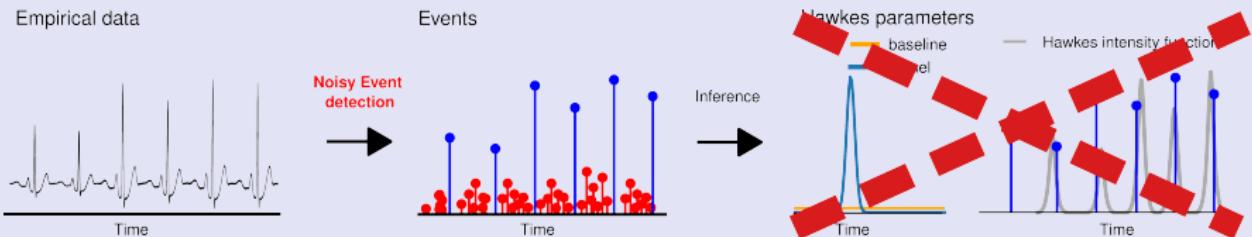
CDL

Characterizing evoked responses in M/EEG signals

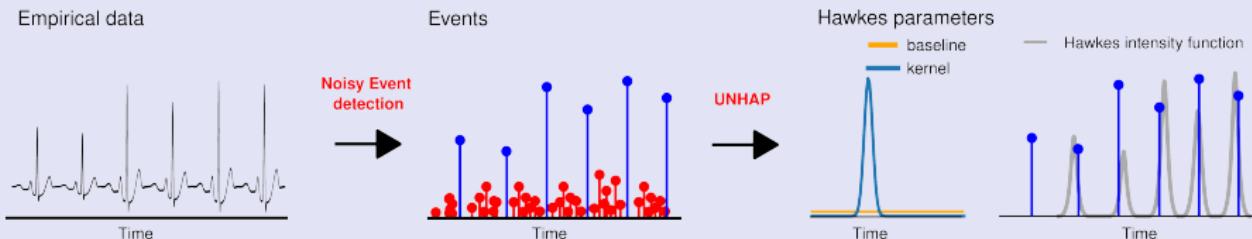


CDL

FaDIn



In most cases, the events we are looking for are structured, while the spurious detections are random.



In most cases, the events we are looking for are structured, while the spurious detections are random.

UNHaP Goal: Classify events based on their temporal distribution.

- ▶ The noisy detections are modeled as a Poisson process \mathcal{F}_T^0
- ▶ The structured events are modeled as a Hawkes process \mathcal{F}_T^1

We observe the mixture $\mathcal{F}_T = \mathcal{F}_T^0 \cup \mathcal{F}_T^1$

Deriving the mixture model

If we are given $Y_k \in \{0, 1\}$ encoding whether the event $t_k \in \mathcal{F}_T^0$ or \mathcal{F}_T^1 , we have:

$$\lambda^1(t) = \mu^1 + \sum_{t_k \in \mathcal{F}_T} Y_k \phi(t - t_k; \theta^1)$$

and we can rewrite the ℓ_2 -risk of the model as:

$$\begin{aligned} \mathcal{L}(\theta, Y; \mathcal{F}_T) &= \int_0^T \lambda^0(t; \theta)^2 + \lambda^1(t; \theta)^2 dt \\ &\quad - 2 \sum_{t_k \in \mathcal{F}_T} (1 - Y_k) \lambda^0(t_k; \theta) + Y_k \lambda^1(t_k; \theta) \end{aligned}$$

Deriving the mixture model

If we are given $Y_k \in \{0, 1\}$ encoding whether the event $t_k \in \mathcal{F}_T^0$ or \mathcal{F}_T^1 , we have:

$$\lambda^1(t) = \mu^1 + \sum_{t_k \in \mathcal{F}_T} Y_k \phi(t - t_k; \theta^1)$$

and we can rewrite the ℓ_2 -risk of the model as:

$$\begin{aligned} \mathcal{L}(\theta, Y; \mathcal{F}_T) &= \int_0^T \lambda^0(t; \theta)^2 + \lambda^1(t; \theta)^2 dt \\ &\quad - 2 \sum_{t_k \in \mathcal{F}_T} (1 - Y_k) \lambda^0(t_k; \theta) + Y_k \lambda^1(t_k; \theta) \end{aligned}$$

\Rightarrow Direct resolution with the EM algorithm is not possible

We use a mean-field approximation to the posterior distribution of Y_k where we compute ρ_k , the probability that event k is from \mathcal{F}_T^1 :

$$p(Y; \mathcal{F}_T) \approx \prod_{k=1}^K q(Y_k; \rho_k)$$

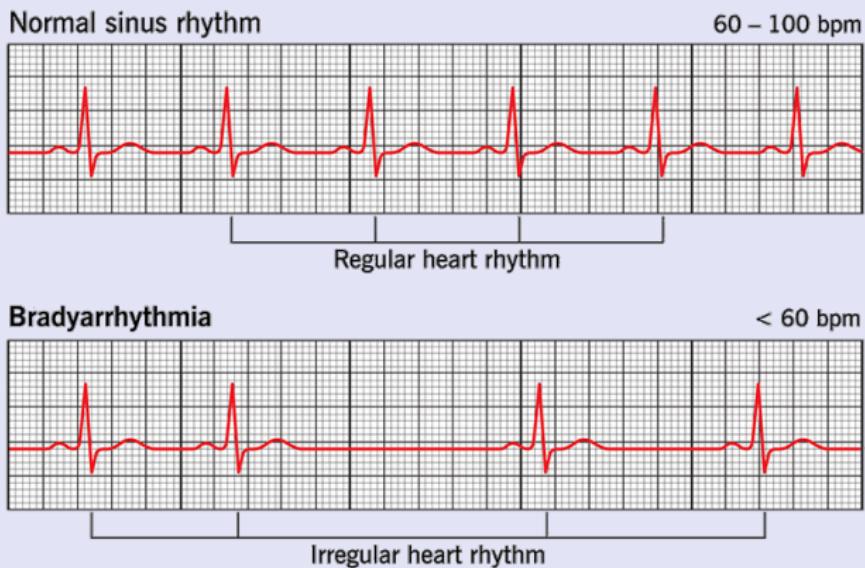
We use a mean-field approximation to the posterior distribution of Y_k where we compute ρ_k , the probability that event k is from \mathcal{F}_T^1 :

$$p(\mathbf{Y}; \mathcal{F}_T) \approx \prod_{k=1}^K q(Y_k; \rho_k)$$

Classification EM:

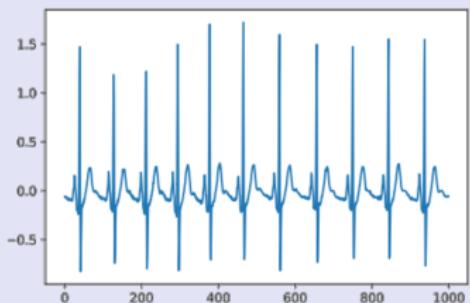
1. **E-step:** minimize $\mathcal{L}(\theta, \rho; \mathcal{F}_T)$ w.r.t ρ
2. **C-step:** for each event, assign Y_k based on the value of ρ_k
3. **M-step:** minimize $\mathcal{L}(\theta, \mathbf{Y}; \mathcal{F}_T)$ with respect to θ

Event-based processing: the case of ECG signals

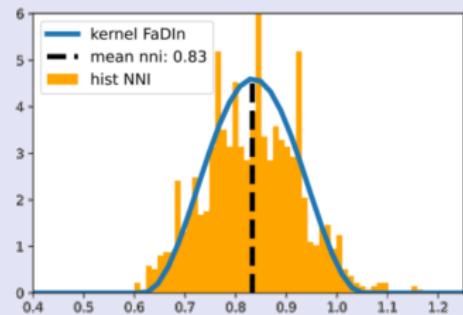


⇒ *Diagnosis:* Characterizing heartbeat shape and regularity

Characterizing heart rate from ECG



CDL + UNHaP



Model	CDL + FaDIn	CDL + UNHaP	pyHRV	Neurokit
error	2.57 (0.26-40.4)	0.27 (0.14-0.84)	0.81 (0.16-2.08)	0.54 (0.51-0.61)

Reproducible method comparison with Benchopt

References

- ▶ **TM**, Massias, M., Gramfort, A., Ablin, P., Bannier, P.-A., Charlier, B., Dagréou, M., la Tour, T. D., Durif, G., Dantas, C. F., Klopfenstein, Q., Larsson, J., Lai, E., Lefort, T., Malézieux, B., Moufad, B., Nguyen, B. T., Rakotomamonjy, A., Ramzi, Z., Salmon, J., and Vaiter, S. (2022). [Benchopt: Reproducible, efficient and collaborative optimization benchmarks](#). In *NeurIPS*

Benchmarks and reproducibility

Benchmarks fueled AI progress

Benchmarks and reproducibility

Benchmarks fueled AI progress



Do we really need Foundation Models for multi-step-ahead Epidemic Forecasting?

Position: Quo Vadis, Unsupervised Time Series Anomaly Detection?

M. Saquib Saefraz^{1,2} Mei-Yin Chen¹ Lukas Layer¹ Kunyu Peng² Marios Koulikakis²

PNAS

RESEARCH ARTICLE | COMPUTER SCIENCES

OPEN ACCESS

Implicit data crimes: Machine learning bias arising from misuse of public data

Efrat Shimron^a, Jonathan I. Tamir^{a,b,c,d}, Ke Wang^b, and Michael Lustig^b

Descending through a Crowded Valley — Benchmarking Deep Learning Optimizers

Robin M. Schmidt^{*1} Frank Schneider^{*1} Philipp Hennig^{1,2}

Many fields lack reproducible reference benchmarks!

⇒ Many novel methods but unclear improvements

Making runnable benchmarks with `benchopt`

benchopt provides a framework to organize and run benchmarks

Examples of existing benchmarks:

- ▶ **Image Classification (resnet)**
- ▶ **Logistic regression**
- ▶ **Lasso**
- ▶ **ICA**
- ▶ **Unsup. Domain Adaptation**
- ▶ **Bilevel Optimization**
- ▶ **Brain Computer Interface**
- ▶ **Many others ...**

Conclusion

- ▶ Event-based processing is a promising approach for M/EEG signals
- ▶ Convolutional Dictionary Learning (CDL) is a powerful tool for unsupervised events detection
- ▶ PP can be used to model the events distribution and detect anomalies

Some code available online:

⌚ **alphacsc** : <https://alphacsc.github.io>

⌚ **FaDIn** : <https://mind-inria.github.io/FaDIn/>

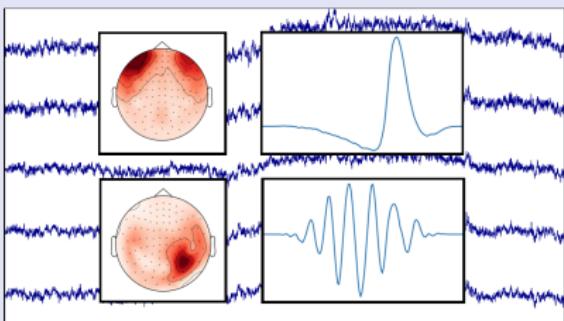
⌚ **benchopt** : <https://benchopt.github.io>

 tommoral.github.io

 [@tommoral](https://twitter.com/tommoral)

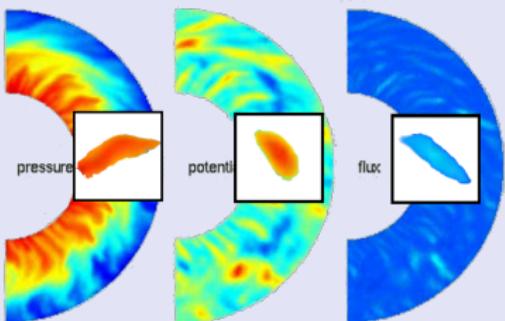
Finding Events in Physical Signals

General Anesthesia



Neuroscience (MEG)

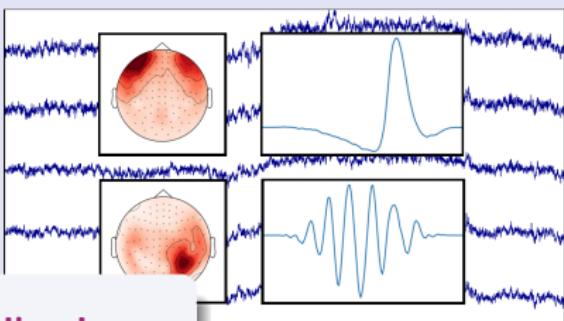
Astronomy



Physics Simulation

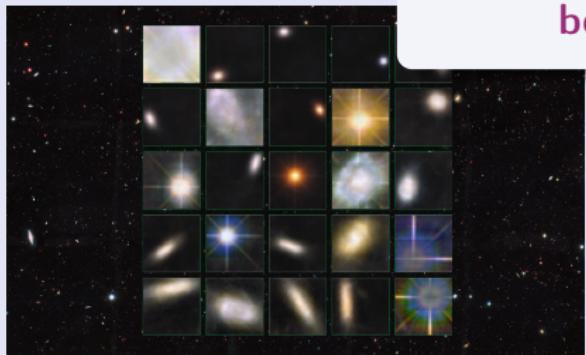
Finding Events in Physical Signals

General Anesth

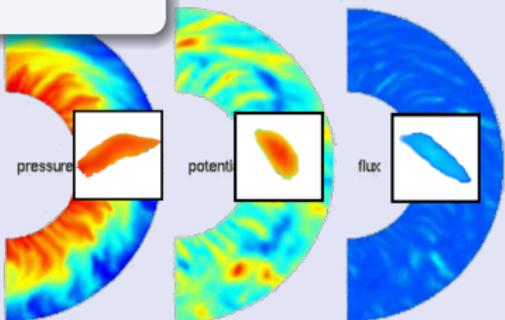


Events distribution
characterize the signal
behavior

Neuroscience (MEG)



Astronomy



Physics Simulation