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Context: physiological signals

Physiological signals: Measurements of the body’s functions and
processes using physical sensors.

Gait Analysis Occulography

General Anesthesia (GA)

Smart Watch
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Physiological signals: applications

Use cases:

▶ Healthcare – early diagnosis, monitoring, treatment

▶ Interfaces – Brain-Computer Interface (BCI), prosthetics, . . .

▶ Neurosciences – understanding the brain functions

Corresponding ML tasks:

▶ Full signal – classification, regression, clustering

▶ Sequence to sequence – non-invasive monitoring, forecasting

▶ Event-based – event/anomaly/change point detection and prediction
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Physiological signals: challenges

▶ Machine Learning:
Multiple sources of variability, low-labeled data regime, complex
evaluation

▶ Signal Processing:
High-dimensional data, underlying topology, require domain expertise

▶ Medical:
Complex evaluation, unclear labels, ethical and societal impact

▶ Software:
Many standards/formats, demanding computational resources

⇒ This calls for unsupervised learning methods
to characterize the signals and events distribution

3/31



Physiological signals: challenges

▶ Machine Learning:
Multiple sources of variability, low-labeled data regime, complex
evaluation

▶ Signal Processing:
High-dimensional data, underlying topology, require domain expertise

▶ Medical:
Complex evaluation, unclear labels, ethical and societal impact

▶ Software:
Many standards/formats, demanding computational resources

⇒ This calls for unsupervised learning methods
to characterize the signals and events distribution

3/31



Unsupervised and self-supervised learning

Learning from data without explicit supervision
[Macqueen 1967] [Banville et al. 2019]

[He et al. 2022] [Noroozi and Favaro 2017]

. . .

⇒ Despise successes for Image and Text, limited success for time-series

Information of interest
is sparse

localized around events

4/31



Unsupervised and self-supervised learning

Learning from data without explicit supervision
[Macqueen 1967] [Banville et al. 2019]

[He et al. 2022] [Noroozi and Favaro 2017]

⇒ Despise successes for Image and Text, limited success for time-series

Information of interest
is sparse

localized around events

4/31



Unsupervised and self-supervised learning

Learning from data without explicit supervision
[Macqueen 1967] [Banville et al. 2019]

[He et al. 2022] [Noroozi and Favaro 2017]

⇒ Despise successes for Image and Text, limited success for time-series

Information of interest
is sparse

localized around events

4/31



Event-based processing: the case of M/EEG signals

⇒ Analysis: average effect after a stimuli (external event)
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Event-based processing: M/EEG decoding [Levy et al. (upcoming)]

⇒ Decoding: the signal building blocks are events.
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Event-based processing: the case of General Anesthesia
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Event-based processing

Focus of my research for a few years:

▶ Unsupervised event detection in signals

▶ Modeling events distributions

▶ End-to-end frameworks for event-based learning
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Convolutional Dictionary Learning
for unsupervised event detection

References

▶ Dupré la Tour, T., TM, Jas, M., and Gramfort, A. (2018). Multivariate
Convolutional Sparse Coding for Electromagnetic Brain Signals. In NeurIPS

▶ Yehya, J., Benbakoura, M., Allain, C., Malézieux, B., Kowalski, M., and TM
(2025). RoseCDL: Robust and scalable convolutional dictionary learning for
rare-event detection. Preprint
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Convolutional Dictionary Learning [Grosse et al., 2007]

Key idea: find recurrent patterns and their localization

xn

∗d1zn1
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Convolutional Dictionary Learning [Grosse et al. 2007]

For a set of N univariate signals xxx , solve

min
DDD;∥DDDk∥2≤1

1
N

∑
xxx

[
min

zzz

1
2
∥xxx −

K∑
k=1

zzzk ∗DDDk∥2
2 + λ∥zzz∥1

]

This problem a problem solved with alternate minimization (AM)

1. Solve for each zzz with a fixed DDD
2. Update DDD with fixed zzz for the xxx considered

We proposed rank-1 extension [Dupré la Tour et al. 2018]

DDDk = ukv⊤
k

where uk captures the temporal pattern and vk the spatial pattern.
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Learned atoms – Artefacts [Dupré la Tour et al. 2018]
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Learned atoms – Evoked response [Dupré la Tour et al. 2018]
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Convolutional Dictionary Learning for event detection

CDL is a powerful tool for unsupervised event detection with clear patterns

Challenges:
▶ Scalability issues with long signals and large datasets

▶ Sensitive to artifacts and outliers

▶ Analysis of the learned atoms requires expert knowledge

▶ Some events have unclear patterns/low occurrence
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RoseCDL: Robust and Scalable CDL [Yehya et al. 2025]

For a set of N signals xxx , solve

min
DDD;∥DDDk∥2≤1

1
N

∑
xxx

[
min

zzz

1
2
∥xxx −

K∑
k=1

zzzk ∗DDDk∥2
2 + λ∥zzz∥1

]

⇒ Shift to a population point of view
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⇒ Shift to a population point of view

1. Stochastic optimization for scalability:
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RoseCDL: outliers detection [Yehya et al. 2025]

2. CDL for outlier detection:

Outlier if its reconstruction error is high compared to the usual one.

3. Inline outlier detection for robust CDL: Use this mechanism inside
the CDL algorithm to improve the learned atoms.
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RoseCDL: rare event detection [Yehya et al. 2025]

4. CDL for rare event detection:
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Learned atoms – Evoked response [Yehya et al. 2025]

⇒ Faster and with less preprocessing!
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Modeling event distribution
with Point Processes

References

▶ Staerman, G., Allain, C., Gramfort, A., and TM (2023). FaDIn: Fast
Discretized Inference for Hawkes Processes with General Parametric Kernels.
In ICML

▶ Loison, V., Staerman, G., and TM (2025). Unmixing Noise from Hawkes
Process to Model Learned Physiological Events. In AISTATS
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Modeling event distribution

Intensity function:
λ(t;Ft , θ)

Event detection discretizes the signal into a stream of events.

Models for the distribution of events in time: Point processes

Characterized by the intensity function λ(t;Ft , θ)

λ(t;Ft , θ) = lim
dt→0

P(N(t + dt)− N(t) = 1|Ft)

dt

instant rate of events at time t.
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Adapting Hawkes processes for physiological events

Modeling interactions between events: Hawkes processes [Hawkes 1971]

λ(t;Ft , θ) = µ(t) +
∑
tk<t

κθ(t − tk)

where κθ model the interaction between events
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Inference for Hawkes processes

Hawkes process inference consists in minimizing NLL or ℓ2 loss.

L(θ) =
∫ T

0
ϕ(λ(t; θ))dt −

K∑
k=1

ψ(λ(tk ; θ))

with ϕ, ψ simple functions. Computational bottleneck is to evaluate λ(tk ; θ)

▶ Usually efficient due to markovian properties of the exponential kernel:
“Easy to compute λ(t +∆t; θ) from λ(t; θ)”

⇒ Complexity to compute λ(tk ; θ) linear O (K ) in the number of events K

▶ With general kernels, naive computations of λ(tk ; θ) are in O
(
K 2)
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Efficient inference with FaDIn

If we consider the ℓ2 loss and discretize the time, we can rewrite the
inference loss as:

L(θ) =
T∑

t=0

1
2
∥z [t]− (z ∗ κθ)[t]− µ∥2

2

where z is a sparse activation vector, with z [t] = 1 if t ∈ {tk}, 0 otherwise.

⇒ This loss is similar to dictionary updates in CDL

Can be minimized efficiently when the kernel has a finite support using
precomputations
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Efficient inference with FaDIn

FaDIn: Fast Discretized Inference for finite support kernels

▶ Bias due to discretization goes
to 0 as the discretization is re-
fined

FaDIn
Non-param EM

Non-param SGD
Gibbs

VB
NeuralHawkes

103 104 105

T

102

104

Ti
m

e 
(s

.)

▶ Optimization complexity is in-
dependent of the number of
events K
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Characterizing evoked responses in M/EEG signals

CDL

FaDIn
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Characterizing evoked responses in M/EEG signals

CDL FaDIn
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UNHaP: handling noisy streams of events [Loison et al., 2025]

In most cases, the events we are looking for are structured, while the
spurious detections are random.

UNHaP Goal: Classify events based on their temporal distribution.

▶ The noisy detections are mod-
eled as a Poisson process F0

T

▶ The structured events are mod-
eled as a Hawkes process F1

T

We observe the mixture FT = F0
T ∪ F1

T
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Deriving the mixture model

If we are given Yk ∈ {0, 1} encoding whether the event tk ∈ F0
T or F1

T , we
have:

λ1(t) = µ1 +
∑

tk∈FT

Ykϕ(t − tk ; θ1)

and we can rewrite the ℓ2-risk of the model as:

L(θ,Y;FT ) =

∫ T

0
λ0(t; θ)2 + λ1(t; θ)2dt

− 2
∑

tk∈FT

(1 − Yk)λ
0(tk ; θ) + Ykλ

1(tk ; θ)

⇒ Direct resolution with the EM algorithm is not possible
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Classification EM

We use a mean-field approximation to the posterior distribution of Yk where
we compute ρk , the probability that event k is from F1

T :

p(Y;FT ) ≈
K∏

k=1

q(Yk ; ρk)

Classification EM:
1. E-step: minimize L(θ, ρ;FT ) w.r.t ρ
2. C-step: for each event, assign Yk based on the value of ρk

3. M-step: minimize L(θ,Y;FT ) with respect to θ
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Event-based processing: the case of ECG signals

⇒ Diagnosis: Characterizing heartbeat shape and regularity
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Characterizing heart rate from ECG

Model CDL
+ FaDIn

CDL
+ UNHaP

pyHRV Neurokit

error 2.57
(0.26-40.4)

0.27
(0.14-0.84)

0.81
(0.16-2.08)

0.54
(0.51-0.61)
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Reproducible method comparison with Benchopt

. . .

References

▶ TM, Massias, M., Gramfort, A., Ablin, P., Bannier, P.-A., Charlier, B.,
Dagréou, M., la Tour, T. D., Durif, G., Dantas, C. F., Klopfenstein, Q.,
Larsson, J., Lai, E., Lefort, T., Malézieux, B., Moufad, B., Nguyen, B. T.,
Rakotomamonjy, A., Ramzi, Z., Salmon, J., and Vaiter, S. (2022). Benchopt:
Reproducible, efficient and collaborative optimization benchmarks. In NeurIPS
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Benchmarks and reproducibility

Benchmarks fueled AI progress

Many fields lack reproducible
reference benchmarks!

⇒ Many novel methods but unclear improvements
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Making runnable benchmarks with benchopt

Bench pt

benchopt provides a framework to organize and run benchmarks

Examples of existing benchmarks:
▶ Image Classification (resnet)

▶ Logistic regression

▶ Lasso

▶ ICA

▶ Unsup. Domain Adaptation

▶ Bilevel Optimization

▶ Brain Computer Interface

▶ Many others . . .
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https://github.com/benchopt/benchmark_resnet_classif
https://github.com/benchopt/benchmark_logreg_l2
https://github.com/benchopt/benchmark_lasso
https://github.com/benchopt/benchmark_linear_ica
https://github.com/scikit-adaptation/skada-bench
https://github.com/benchopt/benchmark_bilevel
https://github.com/benchopt/benchmark_bci
https://github.com/benchopt/?q=benchmark_&type=all&language=&sort=name


Conclusion

▶ Event-based processing is a promising approach for M/EEG signals

▶ Convolutional Dictionary Learning (CDL) is a powerful tool for
unsupervised events detection

▶ PP can be used to model the events distribution and detect anomalies

Some code available online:

alphacsc : https://alphacsc.github.io

FaDIn : https://mind-inria.github.io/FaDIn/

benchopt : https://benchopt.github.io

tommoral.github.io @tommoral
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Finding Events in Physical Signals

General Anesthesia

Astronomy

Neuroscience (MEG)

Physics Simulation

Events distribution
characterize the signal

behavior
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