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Context: physiological signals

Physiological signals: Measurements of the body's functions and
processes using physical sensors.
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Physiological signals: applications

Use cases:

» Healthcare — early diagnosis, monitoring, treatment
» Interfaces — Brain-Computer Interface (BClI), prosthetics, ...

» Neurosciences — understanding the brain functions

Corresponding ML tasks:

» Full signal — classification, regression, clustering
» Sequence to sequence — non-invasive monitoring, forecasting

» Event-based — event/anomaly/change point detection and prediction
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Physiological signals: challenges

» Machine Learning:
Multiple sources of variability, low-labeled data regime, complex
evaluation

» Signal Processing:
High-dimensional data, underlying topology, require domain expertise

» Medical:
Complex evaluation, unclear labels, ethical and societal impact

» Software:
Many standards/formats, demanding computational resources
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Physiological signals: challenges

» Machine Learning:
Multiple sources of variability, low-labeled data regime, complex
evaluation

» Signal Processing:
High-dimensional data, underlying topology, require domain expertise

» Medical:
Complex evaluation, unclear labels, ethical and societal impact

» Software:
Many standards/formats, demanding computational resources

= This calls for unsupervised learning methods
to characterize the signals and events distribution
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Unsupervised and self-supervised learning

Learning from data without explicit supervision
[Macqueen 1967] [Banville et al. 2019]
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= Despise successes for Image and Text, limited success for time-series
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Event-based processing: the case of M/EEG signals
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Event-based processing: the case of M/EEG signals
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= Analysis: average effect after a stimuli (external event)
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Event-based processing: M/EEG decoding [Levy et al. (upcoming)]
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= Decoding: the signal building blocks are events.
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Event-based processing: the case of General Anesthesia

‘e & -Heartbeat

0

1701

Breath Cycle

E
#113/63 73)

-u-—- e Evinement manvel é
§

PHILIPS



Event-based processing

Focus of my research for a few years:

» Unsupervised event detection in signals
» Modeling events distributions

» End-to-end frameworks for event-based learning
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Convolutional Dictionary Learning
for unsupervised event detection
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References

» Dupré la Tour, T., TM, Jas, M., and Gramfort, A. (2018). Multivariate
Convolutional Sparse Coding for Electromagnetic Brain Signals. In NeurlPS

» Yehya, J., Benbakoura, M., Allain, C., Malézieux, B., Kowalski, M., and TM
(2025). RoseCDL: Robust and scalable convolutional dictionary learning for
rare-event detection. Preprint
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Convolutional Dictionary Learning [Grosse et al., 2007]

Key idea: find recurrent patterns and their localization
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Convolutional Dictionary Learning [Grosse et al. 2007]

For a set of N univariate signals x, solve
K
: 1 1
min  — Z [mln ~||x — sz * Dill3 + Mzl
Dklla<1 N . z 2 ]

This problem a problem solved with alternate minimization (AM)

1. Solve for each z with a fixed

2. Update D with fixed z for the x considered

10/31



Convolutional Dictionary Learning [Grosse et al. 2007]

For a set of N univariate signals x, solve

K
. 1 1
lb<1 N Z [mzm EHX - sz * D13 + Allzlly
B X k=1

MO

This problem a problem solved with alternate minimization (AM)

1. Solve for each z with a fixed

2. Update D with fixed z for the x considered
We proposed rank-1 extension [Dupré la Tour et al. 2018]
k= vy

where u, captures the temporal pattern and v, the spatial pattern.
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Learned atoms — Artefacts [Dupré la Tour et al. 2018]
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Learned atoms — Evoked response [Dupré la Tour et al. 2018]
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Convolutional Dictionary Learning for event detection

CDL is a powerful tool for unsupervised event detection with clear patterns
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Convolutional Dictionary Learning for event detection

CDL is a powerful tool for unsupervised event detection with clear patterns

Challenges:

» Scalability issues with long signals and large datasets
» Sensitive to artifacts and outliers
» Analysis of the learned atoms requires expert knowledge

» Some events have unclear patterns/low occurrence
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RoseCDL: Robust and Scalable CDL [Yehya et al. 2025]

For a set of N signals x, solve

K
. 1 1 )
min — min —||X — zi * D5 + M|z||1
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RoseCDL: Robust and Scalable CDL [Yehya et al. 2025]

For a population of signals x, solve

K
. o1 )
min _ Eed  |minZlx =D zix Dill3 + Allzlls
HIDilla<1™ ™ £ [ in S| kZ:1 12+ Allz]l

= Shift to a population point of view
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RoseCDL: Robust and Scalable CDL [Yehya et al. 2025]

For a population of signals x, solve
1 K
min E min =[x — Y ze * Di||32 + A||z|l1
Dk l2<1 X;[ in Sl kZ:l 12+ Allz|

= Shift to a population point of view

1. Stochastic optimization for scalability:
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RoseCDL: outliers detection [Yehya et al. 2025]

2. CDL for outlier detection:

Data
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Outlier if its reconstruction error is high compared to the usual one.
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RoseCDL: outliers detection [Yehya et al. 2025]

2. CDL for outlier detection:

Data
54
oA
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Reconstruction errors

]
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Outlier if its reconstruction error is high compared to the usual one.

3. Inline outlier detection for robust CDL: Use this mechanism inside
the CDL algorithm to improve the learned atoms.
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RoseCDL: rare event detection [Yehya et al. 2025]

4. CDL for rare event detection:

Example on the MINDZ letters
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Learned atoms — Evoked response [Yehya et al. 2025]
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= Faster and with less preprocessing!
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Modeling event distribution
with Point Processes

S LT

» Staerman, G., Allain, C., Gramfort, A., and TM (2023). FaDIn: Fast

Discretized Inference for Hawkes Processes with General Parametric Kernels.
In ICML

References

» Loison, V., Staerman, G., and TM (2025). Unmixing Noise from Hawkes
Process to Model Learned Physiological Events. In AISTATS
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Modeling event distribution

Empirical data Events

Event

L =

Time Time

Event detection discretizes the signal into a stream of events.
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Modeling event distribution

Empirical data Events

MM»LWJ‘M‘M“

Time Time

Event
detection Inference

— —>

Intensity function:
)\(t, ]:ty 9)

Event detection discretizes the signal into a stream of events.

Models for the distribution of events in time: Point processes

Characterized by the intensity function A(t; Ft, 6)

)\(t;Ft,H) = lim

P(N(t + dt) — N(t) = 1|F;)

dt—0

instant rate of events at time t.
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Adapting Hawkes processes for physiological events

Empirical data Events Hawkes parameters
baseline Hawkes intensity function
e kernel
Event
detection Inference
“L\‘AL/\’% ‘y/\*ﬁ UV\' [ I ]
Time Time Time Time

Modeling interactions between events: Hawkes processes [Hawkes 1971]

At Fe,0) = p(t) + > kot — ti)

t <t

where kg model the interaction between events
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Inference for Hawkes processes

Hawkes process inference consists in minimizing NLL or ¢ loss.

T K
£0) = [ oA 0)de = 3 vM5:6)
k=1

with ¢, 1) simple functions. Computational bottleneck is to evaluate A(ty; 0)
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Inference for Hawkes processes

Hawkes process inference consists in minimizing NLL or ¢ loss.

T K
£(6) = /O SO\ 0))dt — 3 w(\ (8 0))
k=1

with ¢, 1) simple functions. Computational bottleneck is to evaluate A(ty; 0)

» Usually efficient due to markovian properties of the exponential kernel:
“Easy to compute X(t + At; 8) from A(t; 0)”

= Complexity to compute \(ty; 8) linear O (K) in the number of events K
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Inference for Hawkes processes

Hawkes process inference consists in minimizing NLL or ¢ loss.

T K
£(6) = /O SO\ 0))dt — 3 w(\ (8 0))
k=1

with ¢, 1) simple functions. Computational bottleneck is to evaluate A(ty; 0)

» Usually efficient due to markovian properties of the exponential kernel:
“Easy to compute X(t + At; 8) from A(t; 0)”

= Complexity to compute \(ty; 8) linear O (K) in the number of events K

» With general kernels, naive computations of A(t; 8) are in O (K?)
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Efficient inference with FaDlIn

If we consider the ¢> loss and discretize the time, we can rewrite the
inference loss as:

I2[t] = (2 * rp)[t] — pill3

N|

,
LO) =)
t=0

where z is a sparse activation vector, with z[t] = 1 if t € {tx}, 0 otherwise.
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Efficient inference with FaDlIn

If we consider the ¢5 loss and discretize the time, we can rewrite the
inference loss as:

T

L(6) =3 2 lele] — (2 « 5] — 3

t=0
where z is a sparse activation vector, with z[t] = 1 if t € {t,}, 0 otherwise.

= This loss is similar to dictionary updates in CDL

Can be minimized efficiently when the kernel has a finite support using
precomputations

21/31



Efficient inference with FaDlIn

FaDlIn: Fast Discretized Inference for finite support kernels
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Characterizing evoked responses in M/EEG signals

Spatial Temporal
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Atom 6
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Time (s)
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Characterizing evoked responses in M/EEG signals

Atom 2

Atom 6
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UNHaP: handling noisy streams of events [Loison et al., 2025]

Empirical data Events kes parameters
baselme Hawkes |n|enswt ho
Noisy Event
%’V«J detection Inference
Time Time Tlme

In most cases, the events we are looking for are structured, while the
spurious detections are random.
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UNHaP: handling noisy streams of events [Loison et al., 2025]

Hawkes parameters
baseline
= kernel

Empirical data Events
Hawkes intensity function

Noisy Event
detection UNHAP

WV'M‘M ulw - - [ ‘

Time Time Time

Time

In most cases, the events we are looking for are structured, while the
spurious detections are random.

UNHaP Goal: Classify events based on their temporal distribution.

» The noisy detections are mod- » The structured events are mod-
eled as a Poisson process ]-'(} eled as a Hawkes process ]-'%

: — 70 1
We observe the mixture Fr = 77 U F7t
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Deriving the mixture model

If we are given Yj € {0,1} encoding whether the event t; € F% or FL, we
have:

() =p'+ D Vit — ti; 0%

t€FT

and we can rewrite the #»>-risk of the model as:
T
L£(6,Y; F1) :/ MO(t;0)% + \(t; 0)3dt
0

—2 ) (1= V)X (1 60) + YA (t: 6)

t€EFT
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Deriving the mixture model

If we are given Yj € {0,1} encoding whether the event t; € F% or FL, we
have:

() =p'+ D Vit — ti; 0%

t€FT

and we can rewrite the #»>-risk of the model as:
T
L£(6,Y; F1) :/ AO(;0)? + AL(t; 0)2dt
0

—2 ) (1= V)X (1 60) + YA (t: 6)

t€EFT

= Direct resolution with the EM algorithm is not possible
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Classification EM

We use a mean-field approximation to the posterior distribution of Y, where
we compute py, the probability that event k is from ]-'%:

p(Y: Fr) ~ HQ(Yk Pk)
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Classification EM

We use a mean-field approximation to the posterior distribution of Y, where
we compute py, the probability that event k is from Fx:

p(Y; Fr) = Hq(Yk Pk)

Classification EM:
1. E-step: minimize £(0, p; F7) w.r.t p
2. C-step: for each event, assign Y} based on the value of pj
3. M-step: minimize £(6,Y; F1) with respect to 0
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Event-based processing: the case of ECG signals

Normal sinus rhythm 60 — 100 bpm

| |
Regular heart rhythm

Irregular heart rhythm

= Diagnosis: Characterizing heartbeat shape and regularity
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Characterizing heart rate from ECG

o, |
s CDL + UNHaP :
— ’ I
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Reproducible method comparison with Benchopt

References

» TM, Massias, M., Gramfort, A., Ablin, P., Bannier, P.-A., Charlier, B.,
Dagréou, M., la Tour, T. D., Durif, G., Dantas, C. F., Klopfenstein, Q.,
Larsson, J., Lai, E., Lefort, T., Malézieux, B., Moufad, B., Nguyen, B. T,
Rakotomamonjy, A., Ramzi, Z., Salmon, J., and Vaiter, S. (2022). Benchopt:
Reproducible, efficient and collaborative optimization benchmarks. In NeurlPS
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Benchmarks and reproducibility

Benchmarks fueled Al progress
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Benchmarks and reproducibility

D I d Foundation Models f
Benchmarks fueled Al progress vult-step-ahead Epidemic Forecasting?

multi-step-ahead Epidemic Forecasting?

Position: Quo Vadis, Unsupervised Time Series Anomaly Detection?

M. Saquib Sarfraz'* Mel-Yen Chen' Lukas Layer! Kuny Peng? Marios Koulakis

Implicit data crimes: Machine learning bias arising from
misuse of public data
Efrat Shimron (9 ', Jonathan I Tamir

964, Ke Wang?, and Michael Lustig

Descending through a Crowded Valley —
Benchmarking Deep Learning Optimizers

Robin M. Schmidt " Frank Schneider ' Philipp Hennig'*

Many fields lack reproducible
reference benchmarks!

= Many novel methods but unclear improvements
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Making runnable benchmarks with benchopt

benchopt provides a framework to organize and run benchmarks

Examples of existing benchmarks:

» Image Classification (resnet) > Unsup. Domain Adaptation
» Logistic regression »> Bilevel Optimization

» Lasso » Brain Computer Interface
» ICA » Many others ...
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https://github.com/benchopt/benchmark_resnet_classif
https://github.com/benchopt/benchmark_logreg_l2
https://github.com/benchopt/benchmark_lasso
https://github.com/benchopt/benchmark_linear_ica
https://github.com/scikit-adaptation/skada-bench
https://github.com/benchopt/benchmark_bilevel
https://github.com/benchopt/benchmark_bci
https://github.com/benchopt/?q=benchmark_&type=all&language=&sort=name

Conclusion

» Event-based processing is a promising approach for M/EEG signals

» Convolutional Dictionary Learning (CDL) is a powerful tool for
unsupervised events detection

» PP can be used to model the events distribution and detect anomalies

Some code available online:

O alphacsc : https://alphacsc.github.io

O FaDlIn : https://mind-inria.github.io/FaDIn/
© benchopt : https://benchopt.github.io

€ tommoral.github.io © O @tommoral
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Finding Events in Physical Signals
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Finding Events in Physical Signals
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