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Inverse Problems

Imaging Neuroimaging — M/EEG
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Inverse Problem Resolution

MAP estimate as a regularized regression problem

x*(y:0) = argmin —log p(xly:0) = 3lly — AxI3 + R(x;0)
X . ; N——

— I 0
—log p(ylx) og p(xi6)

where R encodes prior information to select a good/plausible solution
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Inverse Problem Resolution

MAP estimate as a regularized regression problem

x*(y:0) = argmin —log p(xly:0) = 3lly — AxI3 + R(x;0)
X . ; N——

— I 0
—log p(ylx) og p(xi6)

where R encodes prior information to select a good/plausible solution

Common framework:
» Efficient solvers: Forward backward, ADMM, HQS ...

= But might require many iterations to get good results

» Flexible: Can choose many priors — handpicked, learned, implicit, . ..

= Quality of the solution depends on the prior's choice p(x; )
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Defining a the prior p(x;6)

Explicitely: choose a log-prior R promoting certain properties of the signal.
TV, sparsity, wavelets, dictionary, ...

Interpretable, no learning, convergence guarantees
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TV, sparsity, wavelets, dictionary, ...

Interpretable, no learning, convergence guarantees

Implicitely: we only need the prior's score VR or its prox
Pnp/RED frameworks with denoisers

Linked to the score with the Tweedie's formula

bs y=x+e proxrv(y) DRUNet(y)
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Desirable properties of the prior

How to choose the structure of the prior p(x; 6)?

» Adapted to the data: capture the distribution of the data
» Easy to learn: few data, fast training, no overfitting
» Fast to compute: used in an iterative algorithm

» Interpretable: understand the role of the prior and its convergence
guarantees

» Adapt to the task: allow to recover the information lost by A
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The role of the structure in unsupervised prior learning J

References

» Malézieux, B., Michel, F., TM, and Kowalski, M. (2024). Where prior
learning can and can't work in unsupervised inverse problems. Preprint
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The goal of prior learning

The goal of prior learning is to recover the information lost by the
operator A, while the data fidelity term ensures consistency with the
observed measurements.

» Data fidelity: Ensures that the solution matches the known
measurements (what is observed).

» Prior: Completes the missing information (what is lost by A), guiding
the solution towards plausible images.

= A well-chosen prior needs to recover Py a(x) from the observations
(either y or Afy).
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Prior selection and learning

Supervised learning of the prior
Evaluate the quality of the prior on a dataset (y,x)

: 1 « . .
min E(y7x)§]\x —x*(y;0)|3 s.t. x*(y;0) = argmin —log p(x|y;6)
y

Task Agnostic learning
Characterize the distribution of the data p(x) by training a denoiser

1
min B 2 [}x — x*(x + € 0)]3

Self-supervised learning [Tachella et al., 2022]

Learn with incomplete measurements y with equivariance, consistency, ...

: 1 .
min Ey—(yjy yja) 5 11Yl2 = Alx"(v11: 0)112
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Prior selection and learning

Self-supervised learning [Tachella et al., 2022]

Learn with incomplete measurements y with equivariance, consistency, ...
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min By}, y1)5 12 = Alx*(v11: 0)l13
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Dictionary-based priors: a tool to study prior learning

We consider the problem of learning a dictionary D to solve inverse problems
with a sparse prior with a synthesis formulation

* ol
x'(73) = D (argmin 3lly — ADz[B + Azl

» Explicit prior parameterization with the dictionary
» Can generate data according to the model

» Can study the dynamic of learning
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Single measurement dictionary learning

With no extra constraint, if the dictionary is learned in an unsupervised
manner, the dictionary cannot recover any information lost by A

1
= argminargmin =|ly — ADz||3 + \||z]1 = D € ker(A)*
IDlbst =z 2

= The dictionary is null in the null space of A

Therefore, the prior cannot help in solving the inverse problem.
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Multiple measurement dictionary learning

When learning with multiplte operators A;, the dictionary can recover some
information lost by each operator

. 1
= argmin Z argmin 5”)’; — A;Dzi||5 + A||zi|1
IDll2<1 75~ 2

Here, an interesting cases is when the operators A; are incomplete but their
union is complete, i.e. ), ker(A;) = {0}

In this case, the dictionary can recover information lost by each operator and
perform well in solving the inverse problem.

This is similar results as for unsupervised inverse problems training loss.
[Tachella et al., 2022]
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Prior recovery with incomplete operators — Compressed Sensing

Recovery of a D generated as a 100 x 100 normalized Gaussian dictionary
A; is a random m x 100 sensing matrix, with Bernouilli-gaussian signals z;

1.0¢

Recovery score
Compr. sensing
o o
) ©
:

©
N

0.6

1 2 3 4 5
Number of matrices
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Convolutional Priors in Inverse Problems

Convolutional structures are widely used as priors for inverse problems.

We can consider Convolutional Dictionary Learning as a simple model of
convolutional priors:

x*(y; D) = D xargmin ~|ly — A(D * 2)|I3 + Allzx
z

» Convolutional structure encodes translation invariance.
» The dictionary atoms capture local spatial patterns.

» Constrain local context to be similar to learned filters.

= But how does this structure impact different inverse problems?
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Inpainting: Leveraging Local Structure

Inpainting involves recovering missing pixels using surrounding information.

If the signal is stationary, convolutional prior on a single large measurement
acts as on multiple measurements for each patch independently.

Digits recovery
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Inpainting: Leveraging Local Structure

Original Observed (33. 2 dB) CDL (34 8dB) DIP (34 1 dB) Wavelets (34 7 dB) TV (34.3 dB)
'R 5 { P

This structure is well adapted as it captures the distribution of local patterns,
which is sufficient to fill in missing pixels.

14/42



Deblurring: The Challenge for Convolutional Priors

Deblurring aims to recover sharp images from blurred observations.

In this case, the convolutional structure is less adapted, as the kernel of the
blur is aligned with the spectral structure of the prior.

Original

\ &

For each patch in the image, the kernel is the same, so the convolutional
structure does not provide the same advantage as in inpainting.
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Takeaways on prior learning

» Dictionary-based priors are useful tools to study prior learning.

» Understanding the structure of the kernel of A is crucial
to design or learn a good prior.

» Our aim should be to find priors that links Pkera(x)
to the observed part of the image.

= Evaluating priors based on this criterion
should help select better priors.

This is typically what is done with splitting loss or equivariant learning.
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Unrolling dictionary-based denoiser

References

» Kowalski, M., Malézieux, B., TM, and Repetti, A. (2025). Analysis and
synthesis denoisers for forward-backward plug-and-play algorithms. In SIIMS
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Dictionary-based denoisers [Kowalski et al., 2025]

Proximal Gradient Descent: lterate
x*H1 = prox,p (x* — pVF(x*))

for the original problem x*(y; 0) = argmin,, %Hy — Ax||3 +R(x; )

—_—
f(x)
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for the original problem x*(y; 0) = argmin,, %HY — Ax||3 +R(x; )
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f(x)
Dictionary-based denoisers: take D as
(argmin [|lx — Dz[|3 + Al|z[l1) or argmin [lx — ul[f + Al|lulx
z u

These denoisers are proximal operators, so the PnP algorithm converges

However, computing the proximal operator can be expensive
requires a sub-routine

= Replace the proximal operator by an unrolled model
but keeping convergence guarantees?
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Convergence of the unrolled scheme [Kowalski et al., 2025]

Replace computing the proximal operator with L steps of a solver for the
proximal operator with warm-starting

xk+1/2 — ok pr(Xk))
xk-l—l’ uktl — 7—L(Xk-|—1/27 uk)

» We show that for L — oo, the PnP algorithm converges
» For L =1, the PnP algorithm also converges to the same solution

» For intermediate L, it is conjectured that it converges.
Only able to show convergence for a smoothed version of the problem

= Warm-starting is key for the convergence here!
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Warm-starting for bilevel optimization

Bilevel optimization problem:

main F(0,x*(6)) st. x*(0)= argminf(x,6)

X
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Warm-starting for bilevel optimization

Bilevel optimization problem:

mein F(0,x*(6)) st. x*(0)= argminf(x,6)

X

Unrolling replace x*(8) by x"V(8) the output of N iterations of an algorithm

= "Bilevel” convergence is hindered by the fixed precision of the
unrolled network.

Idea: warm-start the unrolled algorithm with the previous value xV(6%—1).

Key point for efficient stochastic bilevel solvers:
» Two loops: AMIGO [Arbel and Mairal 2021]
» One-loop: FSL/SOBA [Li et al., 2022, Dagreou et al. 2022]
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Stability of the unrolled algorithm

PNP-AD (Liyqin/pnp = 20/20)

PNP-AD (Lyyqin/pnp=20/1)
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Dictionary-based denoisers in PnP

SD with Lygin = 1 SD with L = 20
Lpnp = 1

Lpnp =1 Lpnp = 20

PSNR=27.43dB PSNR=25.71dB PSNR=27.38dB PSNR=22.13dB

AD with Lygin = 1 AD with Lygin = 20
Lppp =1 pop = 20

PSNR=27.07dB PSNR=29.06dB PSNR=29.06dB PSNR=28.09dB PSNR=28.09dB
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Take-home message

» Dictionary-based priors are useful tools to study prior learning and
interpretable.

» Warm-starting can be a key to get convergence with unrolled algorithms

» We obtain reasonable performance with few unrolled iterations for
learning a dictionary-based denoiser
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FiRe: Fixed-Point Restoration

References

» Terris, M., Kamilov, U., and TM (2025). FiRe: Fixed-points of Restoration
Priors for Solving Inverse Problems. In CVPR
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Using restoration networks as priors

Many efficient restoration networks have been proposed for various tasks in
the last years.

» JPEG restoration: SCUNet [Zhang et al., 2023|
» Deblurring: Restormer [Zamir et al., 2022]
» Inpainting: LAMA [Suvorov et al., 2022]
>

These models are trained to solve p(x|y) for a specific degradation
y = D(x).

A good network for deblurring should be able to recover high frequencies
from a blurry image.

= Can we use them to solve other inverse problems?

TL;DR: yes, this is what is done with DRP, SHARP, . ..
[Hu et al., 2024a, 2024b]
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Fixed-point of restoration networks

Observation: Denoisers are not stable when iterated

Xk =DoD---0D(Xp) is not converging to a realistic image

~~

k times

Here with DRUNet with ¢ = 0.05 [Zhang et al., 2021]

X10
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Fixed-point of restoration networks

Observation: Similar observation holds for restoration networks

Here with SCUNet [Zhang et al., 2023]
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Restoration models

Definition

A restoration model RP adapted to a degradation D is model solving

RP(D(x))~ x for images x~ X .

We have in mind degradation models D(x) of the form
D(x) = Ax + w,
with A a linear operator, and some noise w ~ W.

Restormer SCUNet LAMA
Deblurring JPEG Restoration inpainting




Training of restoration models

Direct restoration models are trained in a supervised manner, starting from
clean images x ~ X, and a degradation model D.

£(8) = Exw | RE(Hx + w) = x]]] .

Observation:

» Let T =RPoD, then for RP sufficiently well trained, we expect
T2~ T.

» T shows an idempotence property so if fixed-points exist, they should
be for RoD and not R.

» With this training, we expect that the original data x are part of the
fixed-point set of T.
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Fixed-point of restoration networks

Observation: degradation + denoisers are stable when iterated

Xk =DoD---0D(Xp) is not converging to a realistic image

~~

k times

Here with DRUNet with ¢ = 0.05 [Zhang et al., 2021]

and for T:
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Fixed-point of restoration networks

Observation: Similar observation holds for restoration networks

SCU Nt Restformer

and for T:
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Restoration models as projections

Assumption

Let C = {x € R"; T(x) = x}, then T = RoD can be expressed as a
projection T = projc onto a closed, prox-regular set C.

Proposition

Under our projection assumption, around any point x where C is
prox-regular, we have:

T(x)=x— %Vd%(x),
where: d¢(x) = infC ||x — u| is the distance to the set C.
ue

= Define a prior p(x) o exp (—1d%(x)), promoting fixed points of T.
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A anomaly detection view on restoration networks

T is a reconstruction network, that can be viewed as an auto-encoder with a
fixed encoder D.

Anomaly detection literature: [Liu and Paparrizos 2024]

» Train a reconstruction network on normal data,

» use large reconstruction error as an anomaly indicator.

Anomaly score(x) = ||x — T(x)||? = d%(x)
= Characterize p(x|D(x)) for x ~ X a natural image.

This is usually easier to learn than p(x) directly.
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FiRe-HQS Algorithm

We can define the FiRe-HQS algorithm as:
U = Xk — %Vd%(x)

Xk+1 = Proxy(u).
Note: This is also similar to SNORE for denoisers. [Renaud et al. 2024] .

Proposition
Under our projection assumption, the FiRe-HQS algorithm converges to a
point x* satisfying

x* = argmin M (x) + %/d%(x),

X
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Extended FiRe-HQS Algorithm

We can extend the FiRe-HQS algorithm to multiple restoration models
{T; = R,-oD,-},-"i1 as:

Input: Initial estimate xp, weights ~,, regularization parameter \.
fork=1,...,K do
forn=1,...,N do
Select restoration model (R", D");
Compute residual: r] = x, — R"(D"(xx));
U = Xk — ZnNzl 'an/? ]
X1 = Proxyg(u);
Output: Final estimate xx11.

= We combine the strengths of multiple restoration models to remove
artifacts from each other.

Key point: They are all trained to have the natural images as fixed-points.
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Experimental Setting

We consider inverse problems y = Ax + € and solve:
1
x* = argmin A §||AX =yl +%E5N5 [da(x)}
& —_—

F(x)
for various implicit priors (recall that 3Vdc(x) = x — R(Hx + w)).

Restoration Models R:
e DRUNet: Gaussian denoising with H = Id and w ~ N(0, o2).
Gaussian or motion deblurring with H as Gaussian or

motion blurs, w ~ N(0, 02).

e SCUNet: Non-linear restoration with H = JPEG, (g € [20, 100]),
w ~ N(0,02).

e SwinlR: Super-resolution (x2, x3) with H as downsampling, w = 0.

e LAMA: (a) Pretrained: H as a large mask, w = 0. (b) Fine-tuned: H
for random inpainting, w = 0.
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Results with a single prior

We first consider our FiRe approach with a single restoration model. We
consider the 4x SR problem.

Case 1: prior is the SCUNet with noisy JPEG degradations.

y=Ax+e

25.45 dB 25.96 dB
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Results with a single prior

(c) DPIR ~ (d) LAMA

-Eﬂ-

19.71 dB 22.04 dB 20.27 dB

(f) SwinIR 2x (g) SCUNet JPEG  (h) Rest gauss.

W 7T

21.17 dB 21.23 dB 22.44 dB 22 47 dB
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Combining priors

The FiRe framework allows us to combine priors as

Y1R1(Hix + wa) + v2Ra(Hox + wo)

Example:
y2 (Rest. gaussian) y2 (SWinIR 2x)
200 150 1.00 050  0.00 200 150 1.00 050  0.00
! 1 1 1 1 ! ] L L L
yit+y2=1 Vity:=1
26.0 - 24.25
o o 24.00
= =2 ° 23.75
« e
Z 25.0 & 23.50
o
23.25
24.5
T T T T T
000 050 1.00 150 2.00

T T T T T
0.00 050 1.00 150 2.00
y1 (SCUNet denoise)

~ vs PSNR within the reconstruction quality for two different problems. Left:
Gaussian deblurring, right: SRx4. The 71 and 2 parameter control the
strength of the associated prior.

y1 (Rest. gaussian)

36/42



Combining priors

Visual results:
Observed P DPIR DiffPIR

Groundtruth

Proposed

(30.22, 0.22) (30.03, 0.32) (30.42, 0.27) (30.17, 0.31) (PSNR, LPIPS)

Image restoration with various algorithms. Top: SRx4 problem with ¢ = 0.01 on
BSD20. Middle: Motion blur on Imnet100. Bottom: Gaussian deblurring with blur
kernel of size 3 and o = 0.01 on Imnet100.
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Conditioning the prior on the measurements

Recall the iteration (simplified)
ug = R(ka aF Wk)

Xk41 = Proxye(u).
Given that f = 3||Ax — y||?, one can set H = A. Application to inpainting:

(b) Denoise (c) Inpaint (d) Denoising  (e) Inpainting
First First Prior Prior

—




Take-home message

» Restoration networks can serve as interpretable priors.

» A key point is to consider the fixed-point set of the restoration network.

» Multiple priors can be combined efficiently using a stochastic approach.

» When adapted to the task, Fire can complete the missing information
from ker(A).
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Reproducible method comparison with Benchopt

References

» TM, Massias, M., Gramfort, A., Ablin, P., Bannier, P.-A., Charlier, B.,
Dagréou, M., la Tour, T. D., Durif, G., Dantas, C. F., Klopfenstein, Q.,
Larsson, J., Lai, E., Lefort, T., Malézieux, B., Moufad, B., Nguyen, B. T,
Rakotomamonjy, A., Ramzi, Z., Salmon, J., and Vaiter, S. (2022). Benchopt:
Reproducible, efficient and collaborative optimization benchmarks. In NeurlPS
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Benchmarks and reproducibility

Benchmarks fueled Al progress
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Benchmarks and reproducibility

Benchmarks fueled Al progress

But sometime, it is not so clear
which methods should be included:

Different evaluation protocols
Different implementations

>
>
» Hard to tune all methods
>

= Many novel methods but unclear improvements
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Making runnable benchmarks with benchopt

benchopt provides a framework to organize and run benchmarks

Examples of existing benchmarks:
» NanoGPT optimization (GPT2) » Unsup. Domain Adaptation

» Image Classification (ResNet) > Bilevel Optimization
» Logistic regression » Brain Computer Interface
» Lasso > ...
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https://github.com/benchopt/benchmark_nanogpt
https://github.com/benchopt/benchmark_resnet_classif
https://github.com/benchopt/benchmark_logreg_l2
https://github.com/benchopt/benchmark_lasso
https://github.com/scikit-adaptation/skada-bench
https://github.com/benchopt/benchmark_bilevel
https://github.com/benchopt/benchmark_bci
https://github.com/benchopt/?q=benchmark_&type=all&language=&sort=name

Example: Benchmarking Inverse Problems solvers with Deepinv

Benchmarking various methods in a @

single repo: Deeplnverse: a Python library for imaging
with deep learning

» Imaging, MRI, CT, ...

Direct, PnP, Variational,

>
» Centralized evaluation
>

Clear rules on tuning the {“ . - “4 ]_ il \

methods

= Goal: Make it easy to add new methods and datasets

https://github.com/benchopt/benchmark_inverse_problems/
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https://github.com/benchopt/benchmark_inverse_problems/

Thanks for your attention!

Slides are on my web page:

€ tommoral.github.io in O O @tommoral
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