
Filling the gaps:
a story of priors and conditional

probabilities
Thomas Moreau INRIA Saclay

1/42

Inverse Problems

Imaging

Super-Resolution, Inpainting,
Deblurring, ...

Neuroimaging – MRI

Neuroimaging – M/EEG

Maxwell’s
Equations

Inverse Problem

Astrophysics

Seismology – Prospection

Forward model:
yyy = AAAxxx + ε

Inverse problem:
find xxx from yyy

2/42

Inverse Problems

Imaging

Super-Resolution, Inpainting,
Deblurring, ...

Neuroimaging – MRI

Neuroimaging – M/EEG

Maxwell’s
Equations

Inverse Problem

Astrophysics

Seismology – Prospection

Forward model:
yyy = AAAxxx + ε

Inverse problem:
find xxx from yyy

2/42

Inverse Problem Resolution

MAP estimate as a regularized regression problem

xxx∗(yyy ; θ) = argmin
xxx
− log p(xxx |yyy ; θ) = 1

2
∥yyy −AAAxxx∥22︸ ︷︷ ︸
−log p(yyy |xxx)

+ R(xxx ; θ)︸ ︷︷ ︸
−log p(xxx ;θ)

where R encodes prior information to select a good/plausible solution

Common framework:
▶ Efficient solvers: Forward backward, ADMM, HQS . . .

⇒ But might require many iterations to get good results

▶ Flexible: Can choose many priors – handpicked, learned, implicit, . . .

⇒ Quality of the solution depends on the prior’s choice p(xxx ; θ)

3/42

Inverse Problem Resolution

MAP estimate as a regularized regression problem

xxx∗(yyy ; θ) = argmin
xxx
− log p(xxx |yyy ; θ) = 1

2
∥yyy −AAAxxx∥22︸ ︷︷ ︸
−log p(yyy |xxx)

+ R(xxx ; θ)︸ ︷︷ ︸
−log p(xxx ;θ)

where R encodes prior information to select a good/plausible solution

Common framework:
▶ Efficient solvers: Forward backward, ADMM, HQS . . .

⇒ But might require many iterations to get good results

▶ Flexible: Can choose many priors – handpicked, learned, implicit, . . .

⇒ Quality of the solution depends on the prior’s choice p(xxx ; θ)

3/42

Defining a the prior p(xxx ; θ)

Explicitely: choose a log-prior R promoting certain properties of the signal.

TV, sparsity, wavelets, dictionary, . . .

Interpretable, no learning, convergence guarantees

Implicitely: we only need the prior’s score ∇R or its prox

Pnp/RED frameworks with denoisers

Linked to the score with the Tweedie’s formula

x y = x + e proxTV(y) DRUNet(y)

4/42

Defining a the prior p(xxx ; θ)

Explicitely: choose a log-prior R promoting certain properties of the signal.

TV, sparsity, wavelets, dictionary, . . .

Interpretable, no learning, convergence guarantees

Implicitely: we only need the prior’s score ∇R or its prox

Pnp/RED frameworks with denoisers

Linked to the score with the Tweedie’s formula

x y = x + e proxTV(y) DRUNet(y)

4/42

Defining a the prior p(xxx ; θ)

Explicitely: choose a log-prior R promoting certain properties of the signal.

TV, sparsity, wavelets, dictionary, . . .

Interpretable, no learning, convergence guarantees

Implicitely: we only need the prior’s score ∇R or its prox

Pnp/RED frameworks with denoisers

Linked to the score with the Tweedie’s formula

x y = x + e proxTV(y) DRUNet(y)
4/42

Desirable properties of the prior

How to choose the structure of the prior p(xxx ; θ)?

▶ Adapted to the data: capture the distribution of the data

▶ Easy to learn: few data, fast training, no overfitting

▶ Fast to compute: used in an iterative algorithm

▶ Interpretable: understand the role of the prior and its convergence
guarantees

▶ Adapt to the task: allow to recover the information lost by AAA

5/42

Desirable properties of the prior

How to choose the structure of the prior p(xxx ; θ)?

▶ Adapted to the data: capture the distribution of the data

▶ Easy to learn: few data, fast training, no overfitting

▶ Fast to compute: used in an iterative algorithm

▶ Interpretable: understand the role of the prior and its convergence
guarantees

▶ Adapt to the task: allow to recover the information lost by AAA

5/42

The role of the structure in unsupervised prior learning

References

▶ Malézieux, B., Michel, F., TM, and Kowalski, M. (2024). Where prior
learning can and can’t work in unsupervised inverse problems. Preprint

5/42

The goal of prior learning

The goal of prior learning is to recover the information lost by the
operator AAA, while the data fidelity term ensures consistency with the
observed measurements.

▶ Data fidelity: Ensures that the solution matches the known
measurements (what is observed).

▶ Prior: Completes the missing information (what is lost by AAA), guiding
the solution towards plausible images.

⇒ A well-chosen prior needs to recover PkerAAA(xxx) from the observations
(either yyy or AAA†yyy).

6/42

Prior selection and learning

Supervised learning of the prior
Evaluate the quality of the prior on a dataset (yyy ,xxx)

min
θ

E(yyy ,xxx)
1
2
∥xxx − xxx∗(yyy ; θ)∥22 s.t. xxx∗(yyy ; θ) = argmin

yyy
−log p(xxx |yyy ; θ)

Task Agnostic learning
Characterize the distribution of the data p(xxx) by training a denoiser

min
θ

Exxx
1
2
∥xxx − xxx∗(xxx + ϵ; θ)∥22

Self-supervised learning [Tachella et al., 2022]

Learn with incomplete measurements yyy with equivariance, consistency, . . .

min
θ

Eyyy=(yyy |1,yyy |2)
1
2
∥yyy |2 −AAA|2xxx∗(yyy |1; θ)∥22

7/42

Prior selection and learning

Supervised learning of the prior
Evaluate the quality of the prior on a dataset (yyy ,xxx)

min
θ

E(yyy ,xxx)
1
2
∥xxx − xxx∗(yyy ; θ)∥22 s.t. xxx∗(yyy ; θ) = argmin

yyy
−log p(xxx |yyy ; θ)

Task Agnostic learning
Characterize the distribution of the data p(xxx) by training a denoiser

min
θ

Exxx
1
2
∥xxx − xxx∗(xxx + ϵ; θ)∥22

Self-supervised learning [Tachella et al., 2022]

Learn with incomplete measurements yyy with equivariance, consistency, . . .

min
θ

Eyyy=(yyy |1,yyy |2)
1
2
∥yyy |2 −AAA|2xxx∗(yyy |1; θ)∥22

7/42

Dictionary-based priors: a tool to study prior learning

We consider the problem of learning a dictionary DDD to solve inverse problems
with a sparse prior with a synthesis formulation

xxx∗(yyy ;DDD) = DDD
(
argmin

zzz

1
2
∥yyy −AAADDDzzz∥22 + λ∥zzz∥1

)
▶ Explicit prior parameterization with the dictionary DDD

▶ Can generate data according to the model

▶ Can study the dynamic of learning DDD

8/42

Single measurement dictionary learning

With no extra constraint, if the dictionary is learned in an unsupervised
manner, the dictionary cannot recover any information lost by AAA

DDD = argmin
∥DDD∥2≤1

argmin
zzz

1
2
∥yyy −AAADDDzzz∥22 + λ∥zzz∥1 =⇒ DDD ∈ ker(AAA)⊥

⇒ The dictionary is null in the null space of AAA

Therefore, the prior cannot help in solving the inverse problem.

9/42

Multiple measurement dictionary learning

When learning with multiplte operators AAAi , the dictionary can recover some
information lost by each operator

DDD = argmin
∥DDD∥2≤1

∑
i

argmin
zzz i

1
2
∥yyy i −AAAiDDDzzz i∥22 + λ∥zzz i∥1

Here, an interesting cases is when the operators AAAi are incomplete but their
union is complete, i.e.

⋂
i ker(AAAi) = {0}

In this case, the dictionary can recover information lost by each operator and
perform well in solving the inverse problem.

This is similar results as for unsupervised inverse problems training loss.
[Tachella et al., 2022]

10/42

Prior recovery with incomplete operators – Compressed Sensing

Recovery of a DDD generated as a 100× 100 normalized Gaussian dictionary

AAAi is a random m × 100 sensing matrix, with Bernouilli-gaussian signals zzz i

1 2 3 4 5
Number of matrices

0.6

0.7

0.8

0.9

1.0
Re

co
ve

ry
 sc

or
e

Co
m

pr
. s

en
sin

g

Dim. m
40
60
80
100

11/42

Convolutional Priors in Inverse Problems

Convolutional structures are widely used as priors for inverse problems.

We can consider Convolutional Dictionary Learning as a simple model of
convolutional priors:

xxx∗(yyy ;DDD) = DDD ∗ argmin
zzz

1
2
∥yyy −AAA(DDD ∗ zzz)∥22 + λ∥zzz∥1

▶ Convolutional structure encodes translation invariance.
▶ The dictionary atoms capture local spatial patterns.
▶ Constrain local context to be similar to learned filters.

⇒ But how does this structure impact different inverse problems?

12/42

Inpainting: Leveraging Local Structure

Inpainting involves recovering missing pixels using surrounding information.

If the signal is stationary, convolutional prior on a single large measurement
acts as on multiple measurements for each patch independently.

13/42

Inpainting: Leveraging Local Structure

This structure is well adapted as it captures the distribution of local patterns,
which is sufficient to fill in missing pixels.

14/42

Deblurring: The Challenge for Convolutional Priors

Deblurring aims to recover sharp images from blurred observations.

In this case, the convolutional structure is less adapted, as the kernel of the
blur is aligned with the spectral structure of the prior.

For each patch in the image, the kernel is the same, so the convolutional
structure does not provide the same advantage as in inpainting.

15/42

Takeaways on prior learning

▶ Dictionary-based priors are useful tools to study prior learning.
▶ Understanding the structure of the kernel of AAA is crucial

to design or learn a good prior.
▶ Our aim should be to find priors that links PKerAAA(xxx)

to the observed part of the image.

⇒ Evaluating priors based on this criterion
should help select better priors.

This is typically what is done with splitting loss or equivariant learning.

16/42

Unrolling dictionary-based denoiser

References

▶ Kowalski, M., Malézieux, B., TM, and Repetti, A. (2025). Analysis and
synthesis denoisers for forward-backward plug-and-play algorithms. In SIIMS

16/42

Dictionary-based denoisers [Kowalski et al., 2025]

Proximal Gradient Descent: Iterate

xxxk+1 = proxρR(xxx
k − ρ∇f (xxxk))

for the original problem xxx∗(yyy ; θ) = argminxxx
1
2
∥yyy −AAAxxx∥22︸ ︷︷ ︸

f (xxx)

+R(xxx ; θ)

Dictionary-based denoisers: take D as

DDD(argmin
zzz
∥xxx −DDDzzz∥22 + λ∥zzz∥1) or argmin

uuu
∥xxx − uuu∥22 + λ∥ΓΓΓuuu∥1

These denoisers are proximal operators, so the PnP algorithm converges

However, computing the proximal operator can be expensive
requires a sub-routine

⇒ Replace the proximal operator by an unrolled model
but keeping convergence guarantees?

17/42

Dictionary-based denoisers [Kowalski et al., 2025]

Proximal Gradient Descent: Iterate

xxxk+1 = proxρR(xxx
k − ρ∇f (xxxk))

for the original problem xxx∗(yyy ; θ) = argminxxx
1
2
∥yyy −AAAxxx∥22︸ ︷︷ ︸

f (xxx)

+R(xxx ; θ)

Dictionary-based denoisers: take D as

DDD(argmin
zzz
∥xxx −DDDzzz∥22 + λ∥zzz∥1) or argmin

uuu
∥xxx − uuu∥22 + λ∥ΓΓΓuuu∥1

These denoisers are proximal operators, so the PnP algorithm converges

However, computing the proximal operator can be expensive
requires a sub-routine

⇒ Replace the proximal operator by an unrolled model
but keeping convergence guarantees?

17/42

Dictionary-based denoisers [Kowalski et al., 2025]

Proximal Gradient Descent: Iterate

xxxk+1 = proxρR(xxx
k − ρ∇f (xxxk))

for the original problem xxx∗(yyy ; θ) = argminxxx
1
2
∥yyy −AAAxxx∥22︸ ︷︷ ︸

f (xxx)

+R(xxx ; θ)

Dictionary-based denoisers: take D as

DDD(argmin
zzz
∥xxx −DDDzzz∥22 + λ∥zzz∥1) or argmin

uuu
∥xxx − uuu∥22 + λ∥ΓΓΓuuu∥1

These denoisers are proximal operators, so the PnP algorithm converges

However, computing the proximal operator can be expensive
requires a sub-routine

⇒ Replace the proximal operator by an unrolled model
but keeping convergence guarantees?

17/42

Convergence of the unrolled scheme [Kowalski et al., 2025]

Replace computing the proximal operator with L steps of a solver for the
proximal operator with warm-starting{

xxxk+1/2 = xxxk − ρ∇f (xxxk))

xxxk+1,uuuk+1 = T L(xxxk+1/2,uuuk)

▶ We show that for L→∞, the PnP algorithm converges
▶ For L = 1, the PnP algorithm also converges to the same solution
▶ For intermediate L, it is conjectured that it converges.

Only able to show convergence for a smoothed version of the problem

⇒ Warm-starting is key for the convergence here!

18/42

Warm-starting for bilevel optimization

Bilevel optimization problem:

min
θ

F (θ, x∗(θ)) s.t. x∗(θ) = argmin
x

f (x , θ)

Unrolling replace x∗(θ) by xN(θ) the output of N iterations of an algorithm

⇒ “Bilevel” convergence is hindered by the fixed precision of the
unrolled network.

Idea: warm-start the unrolled algorithm with the previous value xxxN(θk−1).

Key point for efficient stochastic bilevel solvers:
▶ Two loops: AMIGO [Arbel and Mairal 2021]
▶ One-loop: FSL/SOBA [Li et al., 2022, Dagreou et al. 2022]

19/42

Warm-starting for bilevel optimization

Bilevel optimization problem:

min
θ

F (θ, x∗(θ)) s.t. x∗(θ) = argmin
x

f (x , θ)

Unrolling replace x∗(θ) by xN(θ) the output of N iterations of an algorithm

⇒ “Bilevel” convergence is hindered by the fixed precision of the
unrolled network.

Idea: warm-start the unrolled algorithm with the previous value xxxN(θk−1).

Key point for efficient stochastic bilevel solvers:
▶ Two loops: AMIGO [Arbel and Mairal 2021]
▶ One-loop: FSL/SOBA [Li et al., 2022, Dagreou et al. 2022]

19/42

Warm-starting for bilevel optimization

Bilevel optimization problem:

min
θ

F (θ, x∗(θ)) s.t. x∗(θ) = argmin
x

f (x , θ)

Unrolling replace x∗(θ) by xN(θ) the output of N iterations of an algorithm

⇒ “Bilevel” convergence is hindered by the fixed precision of the
unrolled network.

Idea: warm-start the unrolled algorithm with the previous value xxxN(θk−1).

Key point for efficient stochastic bilevel solvers:
▶ Two loops: AMIGO [Arbel and Mairal 2021]
▶ One-loop: FSL/SOBA [Li et al., 2022, Dagreou et al. 2022]

19/42

Stability of the unrolled algorithm

100 101 102 103

10−8

10−5

10−2

101

104

jjx
k
¡
1
¡
x
k
jj

PNP-SD (Ltrain=PnP =20=20)
(18.5s)

100 101 102 103

10−8

10−5

10−2

101

104

PNP-SD (Ltrain=PnP =20=1)
(1.2s)

100 101 102 103

10−8

10−5

10−2

101

104

PNP-SD (Ltrain=PnP =1=1)
(1.2s)

100 101 102 103

10−8

10−5

10−2

101

104

PNP-SD (Ltrain=PnP =1=20)
(18.6s)

100 101 102 103

10−8

10−5

10−2

101

104

jjx
k
¡
1
¡
x
k
jj

PNP-AD (Ltrain=PnP =20=20)
(31.0s)

100 101 102 103

10−8

10−5

10−2

101

104

PNP-AD (Ltrain=PnP =20=1)
(1.3s)

100 101 102 103

10−8

10−5

10−2

101

104

PNP-AD (Ltrain=PnP =1=1)
(1.3s)

100 101 102 103

10−8

10−5

10−2

101

104

PNP-AD (Ltrain=PnP =1=20)
(31.0s)

100 101 102 103

Iterations

10−8

10−5

10−2

101

104

jjx
k
¡
1
¡
x
k
jj

PNP-DRUNet
(49.2s)

¸=1e¡ 03 ¸=3e¡ 03 ¸=1e¡ 02 ¸=3e¡ 02 ¸=1e¡ 01

100 101 102 103

10

15

20

25

30

PS
NR

PNP-SD (Ltrain=PnP =20=20)
(18.5s)

100 101 102 103

10

15

20

25

30

PNP-SD (Ltrain=PnP =20=1)
(1.2s)

100 101 102 103

10

15

20

25

30

PNP-SD (Ltrain=PnP =1=1)
(1.2s)

100 101 102 103

10

15

20

25

30

PNP-SD (Ltrain=PnP =1=20)
(18.6s)

100 101 102 103

10

15

20

25

30

PS
NR

PNP-AD (Ltrain=PnP =20=20)
(31.0s)

100 101 102 103

10

15

20

25

30

PNP-AD (Ltrain=PnP =20=1)
(1.3s)

100 101 102 103

10

15

20

25

30

PNP-AD (Ltrain=PnP =1=1)
(1.3s)

100 101 102 103

10

15

20

25

30

PNP-AD (Ltrain=PnP =1=20)
(31.0s)

100 101 102 103

Iterations

10

15

20

25

30

PS
NR

PNP-DRUNet
(49.2s)

¸=1e¡ 03 ¸=3e¡ 03 ¸=1e¡ 02 ¸=3e¡ 02 ¸=1e¡ 01

20/42

Dictionary-based denoisers in PnP

21/42

Take-home message

▶ Dictionary-based priors are useful tools to study prior learning and
interpretable.

▶ Warm-starting can be a key to get convergence with unrolled algorithms

▶ We obtain reasonable performance with few unrolled iterations for
learning a dictionary-based denoiser

22/42

FiRe: Fixed-Point Restoration

References

▶ Terris, M., Kamilov, U., and TM (2025). FiRe: Fixed-points of Restoration
Priors for Solving Inverse Problems. In CVPR

22/42

Using restoration networks as priors

Many efficient restoration networks have been proposed for various tasks in
the last years.
▶ JPEG restoration: SCUNet [Zhang et al., 2023]
▶ Deblurring: Restormer [Zamir et al., 2022]
▶ Inpainting: LAMA [Suvorov et al., 2022]
▶ . . .

These models are trained to solve p(xxx |yyy) for a specific degradation
yyy = D(xxx).

A good network for deblurring should be able to recover high frequencies
from a blurry image.

⇒ Can we use them to solve other inverse problems?

TL;DR: yes, this is what is done with DRP, SHARP, . . .
[Hu et al., 2024a, 2024b]

23/42

Fixed-point of restoration networks

Observation: Denoisers are not stable when iterated

Xk = D ◦ D · · · ◦ D(X0)︸ ︷︷ ︸
k times

is not converging to a realistic image

Here with DRUNet with σ = 0.05 [Zhang et al., 2021]

xxx0 xxx1 xxx3 xxx10

24/42

Fixed-point of restoration networks

Observation: Similar observation holds for restoration networks

Here with SCUNet [Zhang et al., 2023]

xxx0

and Restformer

xxx1 xxx20 xxx49

[Zamir et al., 2022]

25/42

Fixed-point of restoration networks

Observation: Similar observation holds for restoration networks

Here with SCUNet [Zhang et al., 2023]

xxx0

and Restformer

xxx1 xxx20 xxx49

[Zamir et al., 2022]

25/42

Restoration models

Definition

A restoration model RD adapted to a degradation D is model solving

RD(D(xxx)) ≈ xxx for images xxx ∼ X .

We have in mind degradation models D(x) of the form

D(xxx) = AAAxxx + w ,

with AAA a linear operator, and some noise w ∼ W.

Restormer
Deblurring

→

SCUNet
JPEG Restoration

→

LAMA
inpainting

→

26/42

Training of restoration models

Direct restoration models are trained in a supervised manner, starting from
clean images x ∼ X , and a degradation model D.

L(θ) = Exxx ,w∼W

[
∥RD

θ (Hxxx + w)− x∥
]
.

Observation:

▶ Let T = RD ◦D, then for RD sufficiently well trained, we expect
T 2 ≈ T .

▶ T shows an idempotence property so if fixed-points exist, they should
be for R ◦D and not R.

▶ With this training, we expect that the original data xxx are part of the
fixed-point set of T .

27/42

Fixed-point of restoration networks

Observation: degradation + denoisers are stable when iterated

Xk = D ◦ D · · · ◦ D(X0)︸ ︷︷ ︸
k times

is not converging to a realistic image

Here with DRUNet with σ = 0.05 [Zhang et al., 2021]

xxx0

and for T :

xxx1 xxx3 xxx10

28/42

Fixed-point of restoration networks

Observation: Similar observation holds for restoration networks

xxx0

and for T :

SCUNet Restformer

29/42

Restoration models as projections

Assumption

Let C = {x ∈ Rn;T (x) = x}, then T = R ◦D can be expressed as a
projection T = projC onto a closed, prox-regular set C .

Proposition
Under our projection assumption, around any point xxx where C is
prox-regular, we have:

T (xxx) = xxx − 1
2
∇d2

C (xxx),

where: dC (xxx) = inf
u∈C
∥xxx − u∥ is the distance to the set C .

⇒ Define a prior p(xxx) ∝ exp
(
−1

2d
2
C (xxx)

)
, promoting fixed points of T .

30/42

A anomaly detection view on restoration networks

T is a reconstruction network, that can be viewed as an auto-encoder with a
fixed encoder D.

Anomaly detection literature: [Liu and Paparrizos 2024]

▶ Train a reconstruction network on normal data,

▶ use large reconstruction error as an anomaly indicator.

Anomaly score(xxx) = ∥xxx − T (xxx)∥2 = d2
C (xxx)

⇒ Characterize p(xxx |D(xxx)) for xxx ∼ X a natural image.

This is usually easier to learn than p(xxx) directly.

31/42

FiRe-HQS Algorithm

We can define the FiRe-HQS algorithm as:

uk = xk −
γ

2
∇d2

C (x)

xk+1 = proxλf (uk).

Note: This is also similar to SNORE for denoisers. [Renaud et al. 2024] .

Proposition
Under our projection assumption, the FiRe-HQS algorithm converges to a
point x∗ satisfying

x∗ = argmin
x

λf (x) +
γ

2
d2
C (x),

32/42

Extended FiRe-HQS Algorithm

We can extend the FiRe-HQS algorithm to multiple restoration models
{Ti = Ri ◦Di}Mi=1 as:

Input: Initial estimate x0, weights γn, regularization parameter λ.
for k = 1, . . . ,K do

for n = 1, . . . ,N do
Select restoration model (Rn,Dn);
Compute residual: rn

k = xk − Rn(Dn(xk));
uk = xk −

∑N
n=1 γnrn

k ← xk − γ∇d2
C (xk);

xk+1 = proxλf (uk);
Output: Final estimate xk+1.

⇒ We combine the strengths of multiple restoration models to remove
artifacts from each other.

Key point: They are all trained to have the natural images as fixed-points.

33/42

Experimental Setting

We consider inverse problems yyy = AAAxxx + ϵ and solve:

xxx∗ = argmin
xxx

λ
1
2
∥AAAxxx − yyy∥︸ ︷︷ ︸

f (xxx)

+
γ

2
Eξ∼Ξ

[
d2
Cξ
(xxx)

]

for various implicit priors (recall that 1
2∇dC (xxx) = xxx − R(Hxxx + w)).

Restoration Models R:
• DRUNet: Gaussian denoising with H = Id and w ∼ N (0, σ2).
• Restormer: Gaussian or motion deblurring with H as Gaussian or

motion blurs, w ∼ N (0, σ2).
• SCUNet: Non-linear restoration with H = JPEGq (q ∈ [20, 100]),

w ∼ N (0, σ2).
• SwinIR: Super-resolution (×2,×3) with H as downsampling, w = 0.
• LAMA: (a) Pretrained: H as a large mask, w = 0. (b) Fine-tuned: H

for random inpainting, w = 0.

34/42

Results with a single prior

We first consider our FiRe approach with a single restoration model. We
consider the 4× SR problem.

Case 1: prior is the SCUNet with noisy JPEG degradations.

y = Ax + e

PSNR

PnP

25.45 dB

FiRe

25.96 dB

35/42

Results with a single prior

(a) yyy (b) AAA†yyy (c) DPIR (d) LAMA

PSNR 19.71 dB 22.04 dB 20.27 dB
(e) Rest. Motion (f) SwinIR 2× (g) SCUNet JPEG (h) Rest. gauss.

21.17 dB 21.23 dB 22.44 dB 22.47 dB

35/42

Combining priors

The FiRe framework allows us to combine priors as

γ1R1(H1xxx + w1) + γ2R2(H2xxx + w2)

Example:

γ vs PSNR within the reconstruction quality for two different problems. Left:
Gaussian deblurring, right: SR×4. The γ1 and γ2 parameter control the
strength of the associated prior.

36/42

Combining priors

Visual results:
Observed DRP DPIR DiffPIR Proposed Groundtruth

(22.02, 0.52) (24.02, 0.55) (24.72, 0.49) (25.11, 0.44) (PSNR, LPIPS)

(22.68, 0.27) (29.19, 0.11) (29.42, 0.09) (28.64, 0.10) (PSNR, LPIPS)

(30.22, 0.22) (30.03, 0.32) (30.42, 0.27) (30.17, 0.31) (PSNR, LPIPS)

Image restoration with various algorithms. Top: SR×4 problem with σ = 0.01 on
BSD20. Middle: Motion blur on Imnet100. Bottom: Gaussian deblurring with blur

kernel of size 3 and σ = 0.01 on Imnet100.

36/42

Conditioning the prior on the measurements

Recall the iteration (simplified)
uk = R(Hxxxk + wk)

xxxk+1 = proxλf (uk).

Given that f = 1
2∥AAAxxx − yyy∥2, one can set H = AAA. Application to inpainting:

(a)
Observed

(b) Denoise
First

(c) Inpaint
First

(d) Denoising
Prior

(e) Inpainting
Prior

(f) DiffPIR (g) DRP (h) ShaRP (i) Proposed

37/42

Take-home message

▶ Restoration networks can serve as interpretable priors.

▶ A key point is to consider the fixed-point set of the restoration network.

▶ Multiple priors can be combined efficiently using a stochastic approach.

▶ When adapted to the task, Fire can complete the missing information
from ker(AAA).

38/42

Reproducible method comparison with Benchopt

. . .

References

▶ TM, Massias, M., Gramfort, A., Ablin, P., Bannier, P.-A., Charlier, B.,
Dagréou, M., la Tour, T. D., Durif, G., Dantas, C. F., Klopfenstein, Q.,
Larsson, J., Lai, E., Lefort, T., Malézieux, B., Moufad, B., Nguyen, B. T.,
Rakotomamonjy, A., Ramzi, Z., Salmon, J., and Vaiter, S. (2022). Benchopt:
Reproducible, efficient and collaborative optimization benchmarks. In NeurIPS

38/42

Benchmarks and reproducibility

Benchmarks fueled AI progress

But sometime, it is not so clear
which methods should be included:

▶ Different evaluation protocols
▶ Different implementations
▶ Hard to tune all methods
▶ . . .

⇒ Many novel methods but unclear improvements

39/42

Benchmarks and reproducibility

Benchmarks fueled AI progress

But sometime, it is not so clear
which methods should be included:

▶ Different evaluation protocols
▶ Different implementations
▶ Hard to tune all methods
▶ . . .

⇒ Many novel methods but unclear improvements

39/42

Making runnable benchmarks with benchopt

Bench pt

benchopt provides a framework to organize and run benchmarks

Examples of existing benchmarks:
▶ NanoGPT optimization (GPT2)

▶ Image Classification (ResNet)

▶ Logistic regression

▶ Lasso

▶ Unsup. Domain Adaptation

▶ Bilevel Optimization

▶ Brain Computer Interface

▶ . . .

40/42

https://github.com/benchopt/benchmark_nanogpt
https://github.com/benchopt/benchmark_resnet_classif
https://github.com/benchopt/benchmark_logreg_l2
https://github.com/benchopt/benchmark_lasso
https://github.com/scikit-adaptation/skada-bench
https://github.com/benchopt/benchmark_bilevel
https://github.com/benchopt/benchmark_bci
https://github.com/benchopt/?q=benchmark_&type=all&language=&sort=name

Example: Benchmarking Inverse Problems solvers with Deepinv

Benchmarking various methods in a
single repo:

▶ Imaging, MRI, CT, . . .

▶ Direct, PnP, Variational, . . .

▶ Centralized evaluation

▶ Clear rules on tuning the
methods

⇒ Goal: Make it easy to add new methods and datasets

https://github.com/benchopt/benchmark_inverse_problems/

41/42

https://github.com/benchopt/benchmark_inverse_problems/

Thanks for your attention!

Slides are on my web page:

tommoral.github.io @tommoral

42/42

	The role of the structure in unsupervised prior learning
	Unrolling dictionary-based denoiser
	FiRe: Fixed-Point Restoration
	Reproducible method comparison with Benchopt

