Exa-DoSt - Data-oriented Software and Tools for the Exascale

Description

I am the co-leader of a work-package focused on AI methods to process results from large scale physical simulations to reduce the I/O pressure on the machine.

Funded Participants

Mansour Benbakoura, Postdoc Geraud Ilinca, Intern

Publications

RoseCDL: Robust and scalable convolutional dictionary learning for rare-event detection 2025
Jad Yehya, Mansour Benbakoura, Cédric Allain, Benoit Malezieux, Matthieu Kowalski, Thomas Moreau preprint Arxiv
Identifying recurring patterns and rare events in large-scale signals is a fundamental challenge in fields such as astronomy, physical simulations, and biomedical science. Convolutional Dictionary Learning (CDL) offers a powerful framework for modeling local structures in signals, but its use for detecting rare or anomalous events remains largely unexplored. In particular, CDL faces two key challenges in this setting: high computational cost and sensitivity to artifacts and outliers. In this ...
Identifying recurring patterns and rare events in large-scale signals is a fundamental challenge in fields such as astronomy, physical simulations, and biomedical science. Convolutional Dictionary Learning (CDL) offers a powerful framework for modeling local structures in signals, but its use for detecting rare or anomalous events remains largely unexplored. In particular, CDL faces two key challenges in this setting: high computational cost and sensitivity to artifacts and outliers. In this paper, we introduce RoseCDL, a scalable and robust CDL algorithm designed for unsupervised rare event detection in long signals. RoseCDL combines stochastic windowing for efficient training on large datasets with inline outlier detection to enhance robustness and isolate anomalous patterns. This reframes CDL as a practical tool for event discovery and characterization in real-world signals, extending its role beyond traditional tasks like compression or denoising.
Simulation-Based Inference: A Practical Guide 2025
Michael Deistler, Jan Boelts, Peter Steinbach, Guy Moss, Thomas Moreau, Manuel Gloeckler, Pedro LC Rodrigues, Julia Linhart, Janne K Lappalainen, Benjamin Kurt Miller, Pedro J Gonçalves, Jan-Matthis Lueckmann, Cornelius Schröder, Jakob H Macke preprint Arxiv
A central challenge in many areas of science and engineering is to identify model parameters that are consistent with prior knowledge and empirical data. Bayesian inference offers a principled framework for this task, but can be computationally prohibitive when models are defined by stochastic simulators. Simulation-based Inference (SBI) is a suite of methods developed to overcome this limitation, which has enabled scientific discoveries in fields such as particle physics, astrophysics, and ...
A central challenge in many areas of science and engineering is to identify model parameters that are consistent with prior knowledge and empirical data. Bayesian inference offers a principled framework for this task, but can be computationally prohibitive when models are defined by stochastic simulators. Simulation-based Inference (SBI) is a suite of methods developed to overcome this limitation, which has enabled scientific discoveries in fields such as particle physics, astrophysics, and neuroscience. The core idea of SBI is to train neural networks on data generated by a simulator, without requiring access to likelihood evaluations. Once trained, inference is amortized: The neural network can rapidly perform Bayesian inference on empirical observations without requiring additional training or simulations. In this tutorial, we provide a practical guide for practitioners aiming to apply SBI methods. We outline a structured SBI workflow and offer practical guidelines and diagnostic tools for every stage of the process -- from setting up the simulator and prior, choosing and training inference networks, to performing inference and validating the results. We illustrate these steps through examples from astrophysics, psychophysics, and neuroscience. This tutorial empowers researchers to apply state-of-the-art SBI methods, facilitating efficient parameter inference for scientific discovery.
DeepInverse: A Python package for solving imaging inverse problems with deep learning 2025
Julián Tachella, Matthieu Terris, Samuel Hurault, Andrew Wang, Dongdong Chen, Minh-Hai Nguyen, Maxime Song, Thomas Davies, Leo Davy, Jonathan Dong, Paul Escande, Johannes Hertrich, Zhiyuan Hu, Tobías I Liaudat, Nils Laurent, Brett Levac, Mathurin Massias, Thomas Moreau, Thibaut Modrzyk, Brayan Monroy, Sebastian Neumayer, Jérémy Scanvic, Florian Sarron, Victor Sechaud, Georg Schramm, Romain Vo, Pierre Weiss preprint Arxiv
DeepInverse is an open-source PyTorch-based library for solving imaging inverse problems. The library covers all crucial steps in image reconstruction from the efficient implementation of forward operators (e.g., optics, MRI, tomography), to the definition and resolution of variational problems and the design and training of advanced neural network architectures. In this paper, we describe the main functionality of the library and discuss the main design choices.
DeepInverse is an open-source PyTorch-based library for solving imaging inverse problems. The library covers all crucial steps in image reconstruction from the efficient implementation of forward operators (e.g., optics, MRI, tomography), to the definition and resolution of variational problems and the design and training of advanced neural network architectures. In this paper, we describe the main functionality of the library and discuss the main design choices.
sbi reloaded: a toolkit for simulation-based inference workflows 2025
Jan Boelts, Michael Deistler, Manuel Gloeckler, Álvaro Tejero-Cantero, Jan-Matthis Lueckmann, Guy Moss, Peter Steinbach, Thomas Moreau, Fabio Muratore, Julia Linhart, Conor Durkan, Julius Vetter, Benjamin Kurt Miller, Maternus Herold, Abolfazl Ziaeemehr, Matthijs Pals, Theo Gruner, Sebastian Bischoff, Nastya Krouglova, Richard Gao, Janne K Lappalainen, Bálint Mucsányi, Felix Pei, Auguste Schulz, Zinovia Stefanidi, Pedro Rodrigues, Cornelius Schröder, Faried Abu Zaid, Jonas Beck, et al. In JOSS
Scientists and engineers use simulators to model empirically observed phenomena. However, tuning the parameters of a simulator to ensure its outputs match observed data presents a significant challenge. Simulation-based inference (SBI) addresses this by enabling Bayesian inference for simulators, identifying parameters that match observed data and align with prior knowledge. Unlike traditional Bayesian inference, SBI only needs access to simulations from the model and does not require ...
Scientists and engineers use simulators to model empirically observed phenomena. However, tuning the parameters of a simulator to ensure its outputs match observed data presents a significant challenge. Simulation-based inference (SBI) addresses this by enabling Bayesian inference for simulators, identifying parameters that match observed data and align with prior knowledge. Unlike traditional Bayesian inference, SBI only needs access to simulations from the model and does not require evaluations of the likelihood-function. In addition, SBI algorithms do not require gradients through the simulator, allow for massive parallelization of simulations, and can perform inference for different observations without further simulations or training, thereby amortizing inference. Over the past years, we have developed, maintained, and extended `sbi`, a PyTorch-based package that implements Bayesian SBI algorithms based on neural networks. The `sbi` toolkit implements a wide range of inference methods, neural network architectures, sampling methods, and diagnostic tools. In addition, it provides well-tested default settings but also offers flexibility to fully customize every step of the simulation-based inference workflow. Taken together, the `sbi` toolkit enables scientists and engineers to apply state-of-the-art SBI methods to black-box simulators, opening up new possibilities for aligning simulations with empirically observed data.