Exa-DoSt - Data-oriented Software and Tools for the Exascale
Description
I am the co-leader of a work-package focused on AI methods to process results from large scale physical simulations to reduce the I/O pressure on the machine.
Funded Participants
Mansour Benbakoura, Postdoc Geraud Ilinca, InternPublications
preprint Arxiv
Identifying recurring patterns and rare events in large-scale signals is a fundamental challenge in fields such as astronomy, physical simulations, and biomedical science. Convolutional Dictionary Learning (CDL) offers a powerful framework for modeling local structures in signals, but its use for detecting rare or anomalous events remains largely unexplored. In particular, CDL faces two key challenges in this setting: high computational cost and sensitivity to artifacts and outliers. In this ...
Identifying recurring patterns and rare events in large-scale signals is a fundamental challenge in fields such as astronomy, physical simulations, and biomedical science. Convolutional Dictionary Learning (CDL) offers a powerful framework for modeling local structures in signals, but its use for detecting rare or anomalous events remains largely unexplored. In particular, CDL faces two key challenges in this setting: high computational cost and sensitivity to artifacts and outliers. In this paper, we introduce RoseCDL, a scalable and robust CDL algorithm designed for unsupervised rare event detection in long signals. RoseCDL combines stochastic windowing for efficient training on large datasets with inline outlier detection to enhance robustness and isolate anomalous patterns. This reframes CDL as a practical tool for event discovery and characterization in real-world signals, extending its role beyond traditional tasks like compression or denoising.
A central challenge in many areas of science and engineering is to identify model parameters that are consistent with prior knowledge and empirical data. Bayesian inference offers a principled framework for this task, but can be computationally prohibitive when models are defined by stochastic simulators. Simulation-based Inference (SBI) is a suite of methods developed to overcome this limitation, which has enabled scientific discoveries in fields such as particle physics, astrophysics, and ...
A central challenge in many areas of science and engineering is to identify model parameters that are consistent with prior knowledge and empirical data. Bayesian inference offers a principled framework for this task, but can be computationally prohibitive when models are defined by stochastic simulators. Simulation-based Inference (SBI) is a suite of methods developed to overcome this limitation, which has enabled scientific discoveries in fields such as particle physics, astrophysics, and neuroscience. The core idea of SBI is to train neural networks on data generated by a simulator, without requiring access to likelihood evaluations. Once trained, inference is amortized: The neural network can rapidly perform Bayesian inference on empirical observations without requiring additional training or simulations. In this tutorial, we provide a practical guide for practitioners aiming to apply SBI methods. We outline a structured SBI workflow and offer practical guidelines and diagnostic tools for every stage of the process -- from setting up the simulator and prior, choosing and training inference networks, to performing inference and validating the results. We illustrate these steps through examples from astrophysics, psychophysics, and neuroscience. This tutorial empowers researchers to apply state-of-the-art SBI methods, facilitating efficient parameter inference for scientific discovery.
preprint Arxiv
DeepInverse is an open-source PyTorch-based library for solving imaging inverse problems. The library covers all crucial steps in image reconstruction from the efficient implementation of forward operators (e.g., optics, MRI, tomography), to the definition and resolution of variational problems and the design and training of advanced neural network architectures. In this paper, we describe the main functionality of the library and discuss the main design choices.
DeepInverse is an open-source PyTorch-based library for solving imaging inverse problems. The library covers all crucial steps in image reconstruction from the efficient implementation of forward operators (e.g., optics, MRI, tomography), to the definition and resolution of variational problems and the design and training of advanced neural network architectures. In this paper, we describe the main functionality of the library and discuss the main design choices.
Scientists and engineers use simulators to model empirically observed phenomena. However, tuning the parameters of a simulator to ensure its outputs match observed data presents a significant challenge. Simulation-based inference (SBI) addresses this by enabling Bayesian inference for simulators, identifying parameters that match observed data and align with prior knowledge. Unlike traditional Bayesian inference, SBI only needs access to simulations from the model and does not require ...
Scientists and engineers use simulators to model empirically observed phenomena. However, tuning the parameters of a simulator to ensure its outputs match observed data presents a significant challenge. Simulation-based inference (SBI) addresses this by enabling Bayesian inference for simulators, identifying parameters that match observed data and align with prior knowledge. Unlike traditional Bayesian inference, SBI only needs access to simulations from the model and does not require evaluations of the likelihood-function. In addition, SBI algorithms do not require gradients through the simulator, allow for massive parallelization of simulations, and can perform inference for different observations without further simulations or training, thereby amortizing inference. Over the past years, we have developed, maintained, and extended `sbi`, a PyTorch-based package that implements Bayesian SBI algorithms based on neural networks. The `sbi` toolkit implements a wide range of inference methods, neural network architectures, sampling methods, and diagnostic tools. In addition, it provides well-tested default settings but also offers flexibility to fully customize every step of the simulation-based inference workflow. Taken together, the `sbi` toolkit enables scientists and engineers to apply state-of-the-art SBI methods to black-box simulators, opening up new possibilities for aligning simulations with empirically observed data.